
Dirac Cohomology and Unitary Representations

Dan Barbasch, Cornell University

Xiamen and Kunming July 2024

Based on,

▶ Earlier results with Pavle Pandžić.

▶ Joint with Chao-Ping-Dong, and Daniel Wong for complex
classical groups and spin groups.

▶ More recent joint with Daniel Wong on E8

Still very much in progress. See the two sets of references at the
end



Original Dirac Operator I
One of the simplest versions of the Dirac operator is

D =
∑

∂iϵi

with the property that it is a formal square root of the Laplacian,
i.e.

D2 = ∆ =
∑

(ϵiϵj + ϵjϵi )∂ij = 2
∑

∂2i .

This forces ϵiϵj + ϵjϵi = 2δij , which makes sense in the Clifford
algebra. According to Wikipedia, the original version of the Dirac
equation, which he found staring into the fireplace, is(

A∂x + B∂y + C∂z +
i

c
∂t

)
ψ = κψ

A,B,C ,D are 4× 4 matrices, formed out of the 2× 2 Pauli
matrices,

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)



Dirac operator from Physics I
Look for D such that D2 = −

∑
∂2i . (Or D

2 =
∑
±∂2i .)

If D =
∑

ei∂i , get

e2i = −1; eiej + ejei = 0, i ̸= j .

The original Dirac equation was motivated by trying to give a
relativistic version of the Klein-Gordon equation(

∇2 − 1

c2

)
ψ =

m2c2

h2
ψ.

Dirac replaced ∇2 − 1
c2

by
(
A∂x + B∂y + C∂x +

i
cD∂t

)2
. The

requirements are

A2 = B2 = C 2 = D2 = 1,

AB + BA = 0 . . .

This leads to the Clifford algebra.



Dirac operator from Physics II

Similarly, the relativistic version of Schrödinger equation

i∂tΨ = − 1

2m
∆Ψ h := 1

requires a square root of ∆. This also leads to the Dirac equation.

(“Anonymous Quote”)

In particle physics, the Dirac equation is a relativistic wave
equation derived by British physicist Paul Dirac in 1928. In its free
form, or including electromagnetic interactions, it describes all
spin− 1/2 massive particles such as electrons and quarks for which
parity is a symmetry. It is consistent with both the principles of
quantum mechanics and the theory of special relativity, [D], and
was the first theory to account fully for special relativity in the
context of quantum mechanics. It was validated by accounting for



Dirac operator from Physics III

the fine details of the hydrogen spectrum in a completely rigorous
way.
The equation also implied the existence of a new form of matter,
antimatter, previously unsuspected and unobserved and which was
experimentally confirmed several years later. It also provided a
theoretical justification for the introduction of several component
wave functions in Pauli’s phenomenological theory of spin.

There are many sources, particularly courses in Physics
departments.



Background I

If a Lie group G acts on a manifold X , then it also induces a
representation on functions on X , via

(g · f )(x) = f (g−1 · x).
Typically there is a G -invariant measure dx on X .
For example:

C∞(X ) is a smooth representation of G

L2(X ) is a unitary representation of G

A representation of G is a complex topological vector space V ,
typically complete, with a continuous G -action by linear operators.
Harmonic analysis: “decompose such representations into
irreducible representations.”

Irreducible Representations: those with no closed invariant
subspace.



Background II

Example: G = T, the circle group. The irreducible modules are
1-dimensional, spanned by functions fn : e it 7→ e int on T, n ∈ Z,
and

L2(T) =
⊕̂

n∈Z
C fn

(Fourier series).
Similarly, for G = R, the irreducible unitary representations are
1-dimensional, spanned by the functions fn : t 7→ e ixt on R, x ∈ R,
and

L2(R) =
∫ ⊕

x∈R
C fx dχ

(Fourier transformation).



Connection with differential equations

Let ∆ be a G−invariant differential operator on X .
Then any eigenspace of ∆ is G−invariant.

Conversely, (by some version of Schur’s Lemma) ∆ acts by scalars
on irreducible G -subspaces.

So in the presence of such an operator, decomposing the
representation is related to finding ∆-eigenspaces.

The representation of G gives extra structure to the eigenspace.



Real reductive groups

G : a real reductive Lie group (often assumed connected).

Main examples: closed (Lie) subgroups of GL(n,C), stable under
the Cartan involution Θ(g) = t ḡ−1.

E.g., SL(n,R), U(p, q), Sp(2n,R), O(p, q).

K = GΘ: maximal compact subgroup

E.g., SO(n) ⊂ SL(n,R); U(p)× U(q) ⊂ U(p, q);
U(n) ⊂ Sp(2n,R), O(p)× O(q) ⊂ O(p, q).

The newer results are for the exceptional groups.



Cohomology of Discrete Groups I

- G the real points of a linear algebraic reductive connected
group.

- g0 := Lie(G ), θ a Cartan involution, g := (g0)C, g0 = k0 + s0,
K the maximal compact subgroup, k0 := Lie(K ), g = k+ s.

- A (g,K ) module (π,H) is called unitary, if H admits a
g−invariant positive hermitian form.

- Γ ⊂ G a discrete cocompact subgroup. The theory of
automorphic forms deals with the decomposition
L2(Γ\G ) =

⊕
mππ. Let X := Γ\G/K . Then

H i (Γ) = H i (X ) =
⊕

mπH
i (g,K , π).



Cohomology of Discrete Groups II

The multiplicities mπ are very hard to compute. In order to get
information about Γ, one approach is to study H i (g,K , π) for π
unitary.

Problem: Classify all unitary representations with nontrivial
(g,K )−cohomology.
For complex groups, this was solved by Enright, and then
generalized to real groups by Vogan-Zuckerman.
In the real case the answer is that π = Rs

q(Cλ), where

- q = l+ u is a θ−stable parabolic subalgebra, s = dim u ∩ s,

- Ri
q is cohomological induction introduced by Parthasarathy

and Zuckerman.

- Cλ is a unitary character such that Rs
q(Cλ) has infinitesimal

character the same as the trivial representation.



Cohomology of Discrete Groups III

H i (g,K , π) = HomK [∧is, π] is computable explicitly for such
modules.
Dirac cohomology is a generalization of (g,K )−cohomology. The
underlying reason is that (essentially) Spin ⊗ Spin = ∧∗s.

While the calculations proceed case-by-case, one of the goals is to
produce a proof of the B-Pandžić conjecture in a uniform way. So
far ...



From High Hopes, Sinatra

Just what makes that little old ant
Think he’ll move that rubber tree plant
Anyone knows an ant, can’t
Move a rubber tree plant
But he’s got high hopes, he’s got high hopes . . .

Just remember that ant
Oops, there goes another rubber tree plant . . .



The Dirac and Casimir operators for G

Let bi be any basis of p; let di be the dual basis with respect to B.
Dirac operator:

D =
∑
i

bi ⊗ di ∈ U(g)⊗ C (p)

D is independent of bi and K -invariant.
The Casimir operator, Casg is an element in the center of the
enveloping algebraU(g):
Take dual bases ei , fi of g with respect to B.

Write
Casg =

∑
ei fi .



D2 is the spin Laplacian (Parthasarathy):

D2 = −Casg⊗1 + Cask∆ +constant.

Here Casg, Cask∆ are the Casimir elements of U(g), U(k∆);

k∆ is the diagonal copy of k in U(g)⊗ C (p) defined by

k ↪→ g ↪→ U(g) and k→ so(p) ↪→ C (p).

The constant is explicitly computed as −||ρ||2 + ||ρk||2.

Atiyah-Schmid, Schmid, and Parthasarthy use these notions to
construct Discrete Series.



(g,K )-modules

It is always easier to study representations of the Lie algebra, and
then derive properties of the representations of the Lie group.

For real reductive groups, these are the (g,K )−modules.

Following Harish-Chandra, one associates a (g,K )−module to each
representation of the group. Let V be an admissible representation
V of G , i.e., dimHom(Vδ,V ) <∞ for all irreducible
K -representations Vδ.

Let VK be the space of K -finite vectors in V . These vectors are
smooth i.e. one can differentiate the group action to get an action
of the Lie algebra. g = (g0)C, the complexification of the real Lie
algebra acts automatically.



Definition
A (g,K )−module is a vector space V , with a Lie algebra action of
g and a locally finite action of K , which are compatible, i.e.,
induce the same action of k0 := Lie(K ). (If K is disconnected, one
requires also that the action g⊗ V → V is K−equivariant). Such
a V can be decomposed under K as

V =
⊕
δ∈K̂

mδVδ.

V is called a Harish-Chandra module if it is finitely generated and
all mδ <∞.



Casimir element

The Casimir Element, Casg, in the center of the enveloping algebra
U(g) is defined as follows:

Fix a nondegenerate invariant symmetric bilinear form B on g (e.g.
trXY for gl(n)).

Take dual bases bi , di of g with respect to B.

Write
Casg =

∑
bidi .



Infinitesimal character

The center Z (g) of U(g) is a polynomial algebra; one of the
generators is Casg.

All elements of Z (g) act as scalars on irreducible modules.

This defines the infinitesimal character of a module M,
χM : Z (g)→ C.

Harish-Chandra proved that Z (g) ∼= P(h∗)W , so infinitesimal
characters correspond to h∗/W .

(h is a Cartan subalgebra of g; in examples, the diagonal matrices.
W is the Weyl group of (g, h); it is a finite reflection group.)



The Clifford algebra for G

Let g = k⊕ p be the Cartan decomposition.

(k and p are the ±1 eigenspaces of the Cartan involution;

k is the complexified Lie algebra of the maximal compact subgroup
K of G .)

Let C (p) be the Clifford algebra of p with respect to B:

the associative algebra with 1, generated by p, with relations

xy + yx + 2B(x , y) = 0.



The Dirac operator for G

Let bi be any basis of p; let di be the dual basis with respect to B.
Dirac operator:

D =
∑
i

bi ⊗ di ∈ U(g)⊗ C (p)

D is independent of bi and K -invariant.



D2 is the spin Laplacian:

D2 = −Casg⊗1 + Cask∆ +constant.

Here Casg, Cask∆ are the Casimir elements of U(g), U(k∆);

k∆ is the diagonal copy of k in U(g)⊗ C (p) defined by

k ↪→ g ↪→ U(g) and k→ so(p) ↪→ C (p).

The constant is explicitly computed as −||ρ||2 + ||ρk||2.

The formula for D2 was first establieshed by Parthasarathy and
Schmid.
Atiyah-Schmid, Schmid, and Parthasarthy use these ideas to
construct Discrete Series.



Dirac cohomology
Motivated by the Dirac inequality (see below) and its uses to
compute spectral gaps, Vogan introduced the notion of Dirac
Cohomology.

Let M be an admissible (g,K )-module. Let S be a Spin module for
C (p); it is constructed as S =

∧
p+ for p+ ⊂ p maximal isotropic.

Then D acts on M ⊗ S .

Dirac cohomology of M:

HD(M) = KerD/(ImD ∩ KerD)

HD(M) is a module for the spin double cover K̃ of K . It is
finite-dimensional if M is of finite length.

If M is unitary, then D is self adjoint w.r.t. an inner product. So

HD(M) = KerD = KerD2,

and D2 ≥ 0 (Dirac inequality).



Vogan’s Conjecture

Let h = t⊕ a be a fundamental Cartan subalgebra of g. View
t∗ ⊂ h∗ via extension by 0 over a.

The following was conjectured by Vogan in 1997, and proved by
Huang-Pandžić in 2002.

Theorem
Assume M has an infinitesimal character, and HD(M) contains a
K̃ -type Eτ of highest weight τ ∈ t∗. Let h = t+ a be a
fundamental θ−stable Cartan subalgebra. The infinitesimal
character is a W−orbit of a semisimple element λ ∈ h∗.

Then there is w ∈W such that wλ |t= τ + ρk, and wλ |a= 0.



Motivation

▶ unitarity: Dirac inequality and its improvements.

▶ irreducible unitary M with HD ̸= 0 are interesting (discrete
series, Aq(λ) modules, unitary highest weight modules, some
unipotent representations...) They should form a nice part of
the unitary dual.

▶ HD is related to classical topics like generalized Weyl character
formula, generalized Bott-Borel-Weil Theorem, construction
of discrete series, multiplicities of automorphic forms

▶ There are nice constructions of representations with HD ̸= 0;
e.g., Parthasarthy and Atiyah-Schmid constructed the discrete
series representations using spin bundles on G/K .



Complex Groups

Let G be a complex reductive group viewed as a real group. Let K
be a maximal compact subgroup of G . Let Θ be the corresponding
Cartan involution, and let g0 = k0 + s0 be the corresponding
Cartan decomposition of the Lie algebra g0 of G . Let H = TA be a
θ−stable Cartan subgroup of G , with Lie algebra h0 = t0 + a0, a
θ−stable Cartan subalgebra of g0. We assume that t0 ⊆ k0 and
a0 ⊆ s0.
Let B = HN be a Borel subgroup of G . Let (λL, λR) ∈ h0 × h0 be
such that µ := λL + λR is integral. Write ν := λL − λR . We can
view µ as a weight of T and ν as a character of A. Let

X (λL, λR) := IndGB [Cµ ⊗ Cν ⊗ 11]K−finite .

Then the K−type with extremal weight µ occurs in X (λL, λR)
with multiplicity 1. Let L(λL, λR) be the unique irreducible
subquotient containing this K−type.



Admissible Representations

Theorem ([Zh], [PRV])

1. Every irreducible admissible (g,K ) module is of the form
L(λL, λR).

2. Two such modules L(λL, λR) and L(λ′L, λ
′
R) are equivalent if

and only if the parameters are conjugate by
∆(W ) ⊂Wc

∼= W ×W . In other words, there is w ∈W such
that wµ = µ′ and wν = ν ′.

3. L(λL, λR) admits a nondegenerate hermitian form if and only
if there is w ∈W such that wµ = µ, wν = −ν.

This result is a special case of the more general Langlands
classification, which can be found for example in [Kn], Theorem
8.54.



Spin Representation I

We next describe the spin representation of the group K̃ . Let
ρ := 1

2

∑
α∈∆(b,h) α. Let r denote the rank of g.

Lemma
The spinor representation Spin viewed as a K̃ -module is a direct
sum of 2[

r
2
] copies of the irreducible representation E (ρ) of K̃ with

highest weight ρ.

Lemma 4 implies that in calculating HD(π) for unitary π, one can
replace Spin by E (ρ) and then in the end simply multiply the result
by the multiplicity 2[

r
2
].

So a unitary representation L(λL, λR) has nonzero Dirac
cohomology if and only if there is (w1,w2) ∈W ×W such that

w1λL − w2λR = 0, w1λL + w2λR = τ + ρ. (1)

We get w1λ = w2λ, and 2w1λ = 2w2λ = τ + ρ. Since τ is the
highest weight of a K̃−type (which occurs in L(λL, λR)⊗ E (ρ)),



Spin Representation II

we conclude that 2λ is regular integral. Thus w1 = w2 as well. We
write the representation as L(λ, sλ). with s ∈W . More precisely

[HD(π) : E (τ)] = 2[
r
2
]
∑
µ

[π : E (µ)] [E (µ)⊗ E (ρ) : E (τ)], (2)

where the sum is over all K -types E (µ) of π.



Dirac Cohomology for Unitary Representations

Since L(λ, sλ) is assumed unitary, it is hermitian. So there is
w ∈W such that

w(λ+ sλ) = λ+ sλ, w(λ− sλ) = −λ+ sλ. (3)

This implies that wλ = sλ, so w = s since λ is regular, and
wsλ = s2λ = λ. So s must be an involution.
Thus to compute HD(π) for π that are unitary, we need to know

1. L(λ, sλ) that are unitary with

2λ = τ + ρ, (4)

in particular 2λ is regular integral,

2. The multiplicity [
L(λ, sλ)⊗ E (ρ) : E (τ)

]
. (5)



Unitary Dual

Conjecture

A representation L(λ, sλ) is unitary if and only if it is unitarily
induced from a unipotent representation on a Levi subgroup.
(assuming 2λ regular integral).

Theorem (Classical Groups, [B])

A hermitian module with infinitesimal character (λ, λ) with 2λ
integral is unitary if and only if it is unitarily induced from a
unipotent representation. For the classical groups, (aside from the
trivial representation) they are

Type A λ = (a, . . . ,−a, b − 1/2, . . . ,−b + 1/2), a, b ∈ N,
Type B Θ−lifts of the trivial representation of an Sp in the

stable range,
λ = (−K0 + 1/2, . . . ,−1/2,−N0, . . . ,−1) K0 ≥ N0

Type C The components of the metaplectic representation,
λ = (−K0 + 1/2, . . . ,−1/2),

Type D Θ−lifts of the metaplectic representation,
λ = (−N0, . . . ,−1, 0,−K0 + 1/2, . . . ,−1/2)
K0 ≤ N0.



Remarks

▶ (Sp(2n,C),O(m,C)) are dual pairs; Sp(2n,C) is simply
connected.

▶ [BP] computes some of the Dirac cohomology of the
representations; the unipotent cases, and some of the unitarily
induced modules. An elegant complete calculation is in
[BDW].

▶ [BDW] completes the classification of unitary modules with
nontrivial Dirac cohomology for the classical cases (including
the Spin groups).

▶ The relevant unipotent representations for all complex groups
are listed in [BP]. The next slide gives E6,E7 and E8.



Type E6

We use the Bourbaki realization for the root system. There are
two integral systems, A5A1 which gives the nilpotent 3A1, and
D5T1 which gives 2A1. The parameters are

λ = (−5/2,−3/2,−1/2, 1/2, 3/4,−3/4,−3/4, 3/4)←→ 3A1

λ = (−9/4,−5/4,−1/4, 3/4, 7/4,−7/4,−7/4, 7/4)←→ 2A1.
(6)

The representations are factors in IndE6
A5
[Cν ]. The parameter is

(−11/4,−7/4,−3/4, 1/4, 5/4,−5/4,−5/4, 5/4)+
+ν(1/2, 1/2, 1/2, 1/2, 1/2,−1/2,−1/2, 1/2).

(7)

The two points above are ν = 1/2 and ν = 1. The representations
are unitary because the induced module has multiplicity 1
K−structure.



Type E7 I

We use the Bourbaki realization. There are three integral systems,
D6A1 which gives the nilpotent (3A1)

′, E6T1 which gives 2A1, and
A7 which gives 4A1. The parameters for the first two are

λ = (0, 1, 2, 3, 4, 5,−1, 1)←→ (3A1)
′

λ = (0, 1, 2, 3, 4,−7/2,−17/4, 17/4)←→ 2A1.
(8)

The first representation is a factor in IndE6
D6
[Cν ]. The parameter is

(0, 1, 2, 3, 4, 5, 0, 0) + ν(0, 0, 0, 0, 0, 0,−1, 1). (9)

The point above is ν = 1, an end point of a complementary series.
In any case the representation is multiplicity free, so the
representation is unitary. The second representation is a factor in
IndE7

E6
[Cν ]. The parameter is

(0, 1, 2, 3, 4− 4,−4, 4) + ν(0, 0, 0, 0, 0, 1,−1/2, 1/2) (10)



Type E7 II

with ν = 1/2. The representation is unitary because it is at an end
point complementary series; also the induced module is multiplicity
free.

The third representation has parameter

(−9/4,−5/4,−1/4, 3/4, 7/4, 11/4,−4, 4). (11)

This is the minimal length parameter which gives the integral
system A7. By [AHV], the K−structure is multiplicity free and a
full lattice in E7. It does not occur in a multiplicity free induced
module, and is not an end point of a complementary series. I know
of no “elementary” proof.



Type E8

Same here, the Bourbaki realization. There are two integral
systems, D8 which gives the nilpotent 4A1, and E7A1 which gives
3A1. The parameters are

λ = (0, 1, 2, 3, 4, 5, 6, 8)←→ 4A1

λ = (0, 1, 2, 3, 4, 5,−8, 9)←→ 3A1.
(12)

These are the minimal length parameters which gives the integral
systems D8 and E7A1. Again by [AHV], the K−structure of the
first one is multiplicity free and a full lattice in E8. It does not
occur in a multiplicity free induced module, and is not an end
point of a complementary series. The second one is also
multiplicity free, and occurs at an endpoint of a complementary
series. It is conjectured that all these representations are unitary.



Most Recent Results, complex E8. I

See [BW]. The strategy applies to all cases of complex groups.

▶ Realize the representation in the [PRV], equivalently [Zh]
classification. The Levi component is formed of Type A
factors, and possibly one more of the same Type as g.

▶ In all cases, starting with [V1] and [B], there is a small set of
K−types that detect the lack of unitarity (subsequently called
certificates of unitarity). In [B] these K−types are called level
less than or equal to 4.

▶ Such K−types are considered for all the split real and
complex groups in [BC] called petite (“single petaled” by
Oda). The complex case requires level ≤ 4. They are
fundamental representations with label ≤ 1, 2 and tensor
products of two fundamental representations with label ≤ 2.
The calculations rely heavily on knowledge of intertwining
operators.



Most Recent Results, complex E8. II

▶ A fundamental notion that allows one to conclude that the
signature on a K−type coincides with one on a Levi
component is “bottom layers”. This allows one to rule out the
bulk of the representations not satisfying the conjecture.

▶ The condition 2λ regular integral rules out practically all
remaining ones, except for a very few cases, which turn out to
be unitary, and satisfy the conjecture.

This gives an outline of the proof of the conjecture in [BP]

THANK YOU FOR LISTENING SO FAR

and to the organizers for their work to make this meeting a success,
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