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1. Introduction

The full unitary dual for the complex classical groups viewed as real Lie
groups is computed in [B1]. This was close to 20 years ago. Since then there
have been many advances, but the general problem of classifying the unitary
dual is far from solved.

In [B1] the complementary series are given in terms of an algorithm. In
this talk I will give a closed form of the answer inspired by the spherical
unitary dual for split groups. The groups are G = Sp(2n,C), and G =
SO(n,C).

2. General Background

2.1. Complex groups. Assume that G is a complex group viewed as a
real group. Let θ be Cartan involution, and H = TA be a θ−stable Cartan
subgroup with Lie algebra h = t + a be a θ−stable Cartan subalgebra. Let
B = HN be a Borel subgroup.

Admissible irreducible representations of G are parametrized by ∆(W )
conjugacy classes of pairs (λL, λR) ∈ h × h. More precisely the following
theorem holds.

Theorem. Let (λL, λR) be such that µ := λL − λR is integral. Write ν :=
λL + λR. We can view µ as a weight of T and ν as a weight of a. Let

X(λL, λR) := IndGB[Cµ ⊗ Cν ⊗ 11]K−finite.

Then the K−type with extremal weight µ occurs with multiplicity 1, so let
L(λL, λR) be the unique irreducible subquotient containing this K−type. E
very irreducible admissible (gc,K) module is of the form L(λL, λR). Two
such modules are equivalent if and only if the parameters are conjugate by
∆(W ) ⊂Wc

∼= W ×W.
The module L(λL, λR) is hermitian if and only if there is w ∈ W such

that wµ = µ, wν = −ν.

Denote by gc the complexification of the Lie algebra of G. In order to
determine the unitary dual of a group, one proceeds as follows.

(1) Reduce the problem to an algebraic one about (gc,K) modules.
(2) Determine the irreducible (gc,K) modules.
(3) Determine the hermitian irreducible (gc,K) modules.
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(4) Determine the hermitian irreducible (gc,K) modules which are uni-
tarizable.

Item (1) is dealt with by using results of Harish-Chandra. Items (2) and
(3) are addressed by the theorem above. For (4) we make the following
observation. Let p = m + n ⊂ g be a parabolic subgroup. If π is a unitary
(m,K ∩M) module, then so is every composition factor of

Π := IndGM [π].

Here Ind is normalized Harish-Chandra induction. When it is irreducible,
we say that Π is unitarily induced from π. One can tensor π with a char-
acter χt depending continuously on a parameter t ∈ R. Under appropriate
assumptions, one can conclude that Πt := IndGM [π ⊗ χt] is irreducible and
unitary for some interval [0, a). There is a version involving a multidimen-
sional parameter. Such representations are called complementary series.

Stein Complementary series. Let m̌ ⊂ ǧ be gl(n)× gl(n) ⊂ gl(2a). Let
χν(a) := | det(a)|ν . Then

Πν := Indg
m[χν ⊗ χ−ν ]

has a complementary series for 0 ≤ ν < 1/2 in the real case, 0 ≤ ν < 1 in
the complex case. This is called Stein Complementary Series.

Thus one way to organize the answer in (4) is to find a special set of basic
representations B for each reductive g. The main property, in addition to
unitarity, would be that a basic representation cannot be obtained by unitary
induction or complementary series from a unitary representation on a proper
Levi subgroup. The main result in both the split and complex case is the
following.

Theorem. A spherical representation L(χ) is unitary if and only if it is a
complementary series from a unitarily induced module

Indg
m[L(χ1)⊗ · · · ⊗ L(χk)⊗ L(χ0)]

where m = gl(a1) × · · · × gl(ak) × g(n0), and L(χ0) is basic and L(χi) are
Stein complementary series.

To make the theorem explicit, we will define basic representations case
by case, and describe the complementary series.

2.2. Unipotent Representations.

Definition (1). An irreducible (gc,K) module π is called unipotent if
(1) The annihilator of π in U(gc) is maximal
(2) π is unitary.

For a given an infinitesimal character χ, there are standard ways to de-
termine the representations satisfying (1). Condition (2) is more difficult,
usually one replaces it by a condition on the infinitesimal character. Let
Ǒ ⊂ ǧ be a nilpotent orbit in the Lie algebra dual to g. Then fix a triple
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{ě, ȟ, f̌} such that ě ∈ Ǒ. The semisimple middle element ȟ defines an in-
finitesimal character χǑ = (ȟ/2, ȟ/2).

Definition (2). An irreducible (gc,K) module π is called special unipotent
if

(1) The annihilator of π in U(gc) is maximal.
(2) The infinitesimal character is χǑ.

A significant component of the problem of determining the unitary dual
is to show that special unipotent representations are unitary. But special
unipotent representations do not contain a basic subset. The list of repre-
sentations below can be taken as a definition of unipotent representations.
It is known which have the property of not being unitarily induced or com-
plementary series. In the exceptional cases there is a similar list, but it is
only conjectured that the representations are unitary and contain a basic
set.

The basic representations are unipotent representations attached to par-
ticular nilpotent orbits.

3. Spherical dual for split groups

Let G be a split symplectic or orthogonal group over a local field F which
is either R or a p−adic field. Fix a maximal compact subgroup K. In the real
case, there is only one conjugacy class. In the p−adic case, let K = G(R)
where F ⊃ R ⊃ P, with R the ring of integers and P the maximal prime
ideal. Fix also a rational Borel subgroup B = AN. Then G = KB. A
representation (π, V ) (admissible) is called spherical if V K 6= (0).

The classification of irreducible admissible spherical modules is well known.
For every irreducible spherical π, there is a character χ ∈ Â such that
χ|A∩K = triv, and π is the unique spherical subquotient of IndGB[χ⊗11]. We
will call a character χ whose restriction to A∩K is trivial, unramified. Write
X(χ) for the induced module (principal series) and L(χ) for the irreducible
spherical subquotient. Two such modules L(χ) and L(χ′) are equivalent if
and only if there is an element in the Weyl group W such that wχ = χ′. An
L(χ) admits a nondegenerate hermitian form if and only if there is w ∈ W
such that wχ = −χ.

The character χ is called real if it takes only positive real values. For
real groups, χ is real if and only if L(χ) has real infinitesimal character ([K],
chapter 16). As is proved there, any unitary representation of a real re-
ductive group with nonreal infinitesimal character is unitarily induced from
a unitary representation with real infinitesimal character on a proper Levi
component. So for real groups it makes sense to consider only real infini-
tesimal character. In the p−adic case, χ is called real if the infinitesimal
character is real in the sense of [BM2]. The results in [BM1] show that the
problem of determining the unitary irreducible representations with Iwa-
hori fixed vectors is equivalent to the same problem for the Iwahori-Hecke
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algebra. In [BM2], it is shown that the problem of classifying the unitary
dual for the Hecke algebra reduces to determining the unitary dual with real
infinitesimal character of some smaller Hecke algebra (not necessarily one
for a proper Levi subgroup). So for p−adic groups as well it is sufficient to
consider only real χ.

So we start by parametrizing real unramified characters of A. Since G is
split, A ∼= (F×)n where n is the rank. Define

a∗ = X∗(A)⊗Z R, (3.0.1)

where X∗(A) is the lattice of characters of the algebraic torus A. Each
element ν ∈ a∗ defines an unramified character χν of A, characterized by
the formula

χν(τ(f)) = |f |〈τ,ν〉, f ∈ F×, (3.0.2)

where τ is an element of the lattice of one parameter subgroups X∗(A). Since
the torus is split, each element of X− ∗ (A) can be regarded as a homomor-
phism of F× into A. The pairing in the exponent in (3.0.2) corresponds to
the natural identification of a∗ with Hom[X∗(A),R]. The map ν −→ χν
from a∗ to real unramified characters of A is an isomorphism. We will often
identify the two sets writing simply χ ∈ a∗.

Let Ǧ be the (complex) dual group, and let Ǎ be the torus dual to A.
Then a∗⊗R C is canonically isomorphic to ǎ, the Lie algebra of Ǎ. So we can
regard χ as an element of ǎ. We attach to each χ a nilpotent orbit Ǒ(χ) as
follows. By the Jacobson-Morozov theorem, there is a 1-1 correspondence
between nilpotent orbits Ǒ and Ǧ-conjugacy classes of Lie triples {ě, ȟ, f̌};
the correspondence satisfies ě ∈ Ǒ. Choose the Lie triple such that ȟ ∈ ǎ.
Then there are many Ǒ such that χ can be written as wχ = ȟ/2 + ν with
ν ∈ z(ě, ȟ, f̌), the centralizer in ǧ of the triple. For example this is always
possible with Ǒ = (0). The results in [BM1] guarantee that for any χ there
is a unique Ǒ(χ) satisfying

(1) there exists w ∈W such that wχ = 1
2 ȟ+ ν with ν ∈ z(ě, ȟ, f̌),

(2) if χ satisfies property (1) for any other Ǒ′, then Ǒ′ ⊂ Ǒ(χ).

Here is another characterization of the orbit Ǒ(χ). Let

ǧ1 := { x ∈ ǧ : [χ, x] = x }, ǧ0 := {x ∈ ǧ : [χ, x] = 0 }.

Then Ǧ0, the Lie group corresponding to the Lie algebra ǧ0 has an open
dense orbit in ǧ1. Its Ǧ saturation in ǧ is Ǒ(χ).

3.1. Nilpotent orbits. In this section we attach a set of parameters to
each nilpotent orbit Ǒ ⊂ ǧ. Let {ě, ȟ, f̌} be a Lie triple so that ě ∈ Ǒ, and
let z(Ǒ) be its centralizer. In order for χ to be a parameter attached to Ǒ
we require that

χ = ȟ/2 + ν, ν ∈ z(Ǒ), semisimple, (3.1.1)
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but also that if

χ = ȟ′/2 + ν ′, ν ′ ∈ z(Ǒ′), semisimple (3.1.2)

for another nilpotent orbit Ǒ′ ⊂ ǧ, then Ǒ′ ⊂ Ǒ. In [BM1], it is shown that
the orbit of χ, uniquely determines Ǒ and the conjugacy class of ν ∈ z(Ǒ).
We describe the pairs (Ǒ, ν) explicitly in the classical cases.

Nilpotent orbits are parametrized by partitions

(1, . . . , 1︸ ︷︷ ︸
r1

, 2, . . . , 2︸ ︷︷ ︸
r2

, . . . , j, . . . , j︸ ︷︷ ︸
rj

, . . . ), (3.1.3)

satisfying the following constraints.
An−1: gl(n), partitions of n.
Bn: so(2n+ 1), partitions of 2n+ 1 such that every even part occurs

an even number of times.
Cn: sp(2n), partitions of 2n such that every odd part occurs an even

number of times.
Dn: so(2n), partitions of 2n such that every even part occurs an even

number of times. In the case when every part of the partition is even,
there are two conjugacy classes of nilpotent orbits with the same
Jordan blocks, labelled (I) and (II). The two orbits are conjugate
under the action of O(2n).

The Bala-Carter classification is particularly well suited for describing the
parameter spaces attached to the Ǒ ⊂ ǧ. An orbit is called distinguished if
it does not meet any proper Levi component. In type A, the only distin-
guished orbit is the principal nilpotent orbit, where the partition has only
one part. In the other cases, the distinguished orbits are the ones where
each part of the partition occurs at most once. In particular, these are even
nilpotent orbits, i.e. ad ȟ has even eigenvalues only. Let Ǒ ⊂ ǧ be an ar-
bitrary nilpotent orbit. We need to put it into as small as possible Levi
component m̌. In type A, if the partition is (a1, . . . , ak), the Levi component
is m̌BC = gl(a1)×· · ·×gl(ak). In the other classical types, the orbit Ǒ meets
a proper Levi component if and only if one of the rj > 1. So separate as
many pairs (a, a) from the partition as possible, and rewrite it as

((a1, a1), . . . , (ak, ak); d1, . . . , dl), (3.1.4)

with di < di+1. The Levi component m̌BC attached to this nilpotent by
Bala-Carter is

m̌BC = gl(a1)× · · · × gl(ak)× ǧ0(n0) n0 := n−
∑

ai, (3.1.5)

The distinguished nilpotent orbit is the one with partition (di) on ǧ(n0),
principal nilpotent on each gl(aj). The χ of the form ȟ/2 + ν are the ones
with ν an element of the center of m̌BC . The explicit form is

(. . . ;−ai − 1
2

+ νi, . . . ,
ai − 1

2
+ νi, . . . ; ȟ0/2), (3.1.6)
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where ȟ0 is the middle element of a triple corresponding to (di). We will
write out (di) and ȟ0/2 in sections 3.2-3.5.

We will consider more general cases where we write the partition of Ǒ in
the form (3.1.4) so that the di are not necessarily distinct, but (di) forms an
even nilpotent orbit in ǧ0(n0).

The parameter χ determines an irreducible spherical module L(χ) for G
as well as an LM (χ) for M = MBC of the form

L1(χ1)⊗ · · · ⊗ Lk(χk)⊗ L0(χ0), (3.1.7)

where the Li(χi) i = 1, . . . , k are one dimensional.

3.2. G of Type A. We write the ȟ/2 for a nilpotent Ǒ corresponding to
(a1, . . . , ak) with ai ≤ ai+1 as

(. . . ;−ai − 1
2

, . . . ,
ai − 1

2
; . . . ).

The parameters of the form χ = ȟ/2 + ν are then

(. . . ;−ai − 1
2

+ νi, . . . ,
ai − 1

2
+ νi; . . . ). (3.2.1)

Conversely, given a parameter as a concatenation of strings

χ = (. . . ;Ai, . . . , Bi; . . . ), (3.2.2)

it is of the form ȟ/2+ν where ȟ is the neutral element for the nilpotent orbit
with partition (Ai +Bi + 1) (the parts need not be in any particular order)
and νi = Ai−Bi

2 . We recall the following well known result about closures of
nilpotent orbits.

Lemma. Assume Ǒ and Ǒ′ correspond to the (increasing) partitions (a1, . . . , ak)
and (b1, . . . , bk) respectively, where some of the ai or bj may be zero in order
to have the same number k. The following are equivalent

(1) Ǒ′ ⊂ Ǒ.
(2)

∑
i≥s ai ≥

∑
i≥s bi for all k ≥ s ≥ 1.

Proposition. A parameter χ as in (3.2.1) is attached to Ǒ in the sense of
satisfying (3.1.1) and (3.1.2) if and only if it is nested.

Proof. Assume the strings are not nested. There must be two strings

(A, . . . , B), (C, . . . ,D) (3.2.3)

such that A − C ∈ Z, and A < C ≤ B < D, or C = B + 1. Then by
conjugating χ by the Weyl group to a χ′, we can rearrange the coordinates
of the two strings in (3.2.3) so that the strings

(A, . . . ,D), (C, . . . B), or (A, . . . ,D). (3.2.4)

appear. Then by the lemma, χ′ = ȟ′/2 + ν ′ for a strictly larger nilpotent
Ǒ′.
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Conversely, assume χ = ȟ/2 + ν, so it is written as strings, and they
are nested. The nilpotent orbit for which the neutral element is ȟ/2 has
partition given by the lengths of the strings, say (a1, . . . ak) in increasing
order. If χ is nested, then ak is the length of the longest string of entries we
can extract from the coordinates of χ, ak−1 the longest string we can extract
from the remaining coordinates and so on. Then (2) of lemma 3.2 precludes
the possibility that some conjugate χ′ equals ȟ′/2 + ν ′ for a strictly larger
nilpotent orbit. �

3.3. G of Type B. Rearrange the parts of the partition of Ǒ ⊂ sp(2n,C),
in the form (3.1.4),

((a1, a1), . . . , (ak, ak); 2x0, . . . , 2x2m) (3.3.1)

The di have been relabeled as 2xi and a 2x0 = 0 is added if necessary, to
insure that there is an odd number. The xi are integers, because all the
odd parts of the partition of Ǒ occur an even number of times, and were
therefore extracted as (ai, ai). The χ of the form ȟ/2 + ν are

(. . . ;−ai − 1
2

+ νi, . . . ,
ai − 1

2
+ νi; . . . ;

1/2, . . . , 1/2︸ ︷︷ ︸
n1/2

, . . . , x2m − 1/2, . . . , x2m − 1/2︸ ︷︷ ︸
nx2m−1/2

). (3.3.2)

where
nl−1/2 = #{xi ≥ l}. (3.3.3)

Lemma 3.2 holds for this type verbatim. So the following proposition holds.

Proposition. A parameter χ = ȟ/2 + ν cannot be conjugated to one of the
form ȟ′/2 + ν ′ for any larger nilpotent Ǒ′ if and only if

(1) the set of strings satisfying ai−1
2 + νi − aj−1

2 − νj ∈ Z are nested.
(2) the strings satisfying ai−1

2 + νi ∈ 1/2 + Z satisfy the additional con-
dition that either x2m + 1/2 < −ai−1

2 + νi or there is j such that

xj + 1/2 < −ai − 1
2

+ νi ≤
ai − 1

2
+ νi < xj+1 + 1/2. (3.3.4)

The Levi component m̌KL is obtained from m̌BC as follows. Consider the
strings for which ai is even, and νi = 0. If ai is not equal to any 2xj , then
remove one pair (ai, ai), and add two 2xj = ai to the last part of (3.3.1).
For example, if the nilpotent orbit Ǒ is

(2, 2, 2, 3, 3, 4, 4), (3.3.5)

then the parameters of the form ȟ/2 + ν are

(− 1/2 + ν1, 1/2 + ν1;−1 + ν2, ν2, 1 + ν2;

− 3/2 + ν3,−1/2 + ν3, 1/2 + ν3, 3/2 + ν3; 1/2)
(3.3.6)



8 DAN BARBASCH

The Levi component is m̌BC = gl(2)× gl(3)× gl(4)× ǧ(1). If ν3 6= 0, then
m̌BC = m̌KL. But if ν3 = 0, then m̌KL = gl(2)×gl(3)× ǧ(5). The parameter
is rewritten

Ǒ ←→ ((2, 2)(3, 3); 2, 4, 4) (3.3.7)

χ←→ (−1/2 + ν1, 1/2 + ν1;−1 + ν2, ν2, 1 + ν2; 1/2, 1/2, 1/2, 3/2, 3/2).

The explanation is as follows. For a partition (3.1.3),

z(Ǒ) = sp(r1)× so(r2)× sp(r3)× . . . (3.3.8)

and the centralizer in Ǧ is a product of Sp(r2j+1) and O(r2j), i.e. Sp for the
odd parts, O for the even parts. Thus the component group A(ȟ, ě), which
by [BV2] also equals A(ě), is a product of Z2, one for each r2j 6= 0. Then
A(χ, ě) = A(ν, ȟ, ě). In general AMBC

(χ, ě) = AMBC
(ě) embeds canonically

into A(χ, ě), but the two are not necesarily equal. In this case they are
unless one of the νi = 0 for an even ai with the additional property that
there is no 2xj = ai.

We can rewrite each of the remaining strings

(−ai − 1
2

+ νi, . . . ,
ai − 1

2
+ νi) (3.3.9)

as

χi :=(fi + τi, fi + 1 + τi, . . . , Fi + τi), (3.3.10)
satisfying

fi ∈ Z + 1/2, 0 ≤ τi ≤ 1/2, Fi = fi + ai, . (3.3.11)

|fi + τi| ≥ |Fi + τi| if τi = 1/2

This is done as follows. We can immediately get an expression like (3.3.10)
with 0 ≤ τi < 1, by defining fi to be the largest element in Z+1/2 less than or
equal to −ai−1

2 +νi. If τi ≤ 1/2 we are done. Otherwise, use the Weyl group
to change the signs of all entries of the string, and put them in increasing
order. This replaces fi by −Fi− 1, and τi by 1− τi. The presentation of the
strings subject to (3.3.11) is unique except when τi = 1/2. In this case the
argument just given provides the presentation (fi + 1/2, . . . , Fi + 1/2), but
also provides the presentation

(−Fi − 1 + 1/2, . . . ,−fi − 1 + 1/2). (3.3.12)

We choose between (3.3.10) and (3.3.12) the one whose leftmost term is
larger in absolute value. That is, we require |fi + τi| ≥ |Fi + τi| whenever
τi = 1/2.

3.4. G of Type C. Rearrange the parts of the partition of
Ǒ ⊂ so(2n+ 1,C), in the form (3.1.4),

((a1, a1), . . . , (ak, ak); 2x0 + 1, . . . , 2x2m + 1); (3.4.1)
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The di have been relabeled as 2xi + 1. In this case it is automatic that
there is an odd number of nonzero xi. The xi are integers, because all the
even parts of the partition of Ǒ occur an even number of times, and were
threrefore extracted as (ai, ai). The χ of the form ȟ/2 + ν are

(. . . ;−ai − 1
2

+ νi, . . . ,
ai − 1

2
+ νi; . . . ; 0, . . . , 0︸ ︷︷ ︸

n0

, . . . , x2m, . . . , x2m︸ ︷︷ ︸
nx2m

). (3.4.2)

where

nl =

{
m if l = 0,
#{xi ≥ l} if l 6= 0.

(3.4.3)

Lemma 3.2 holds for this type verbatim. So the following proposition holds.

Proposition. A parameter χ = ȟ/2 + ν cannot be conjugated to one of the
form ȟ′/2 + ν ′ for any larger nilpotent Ǒ′ if and only if

(1) the set of strings satisfying ai−1
2 + νi − aj−1

2 − νj ∈ Z are nested.
(2) the strings satisfying ai−1

2 + νi ∈ Z satisfy the additional condition
that either x2m + 1 < −ai−1

2 + νi or there is j such that

xj + 1 < −ai − 1
2

+ νi ≤
ai − 1

2
+ νi < xj+1 + 1. (3.4.4)

The Levi component m̌KL is obtained from m̌BC as follows. Consider the
strings for which ai is odd and νi = 0. If ai is not equal to any 2xj + 1, then
remove one pair (ai, ai), and add two 2xj + 1 = ai to the last part of (3.4.1).
For example, if the nilpotent orbit is

(1, 1, 1, 3, 3, 4, 4) = ((1, 1), (3, 3), (4, 4); 1), (3.4.5)

then the parameters of the form ȟ/2 + ν are

(ν1;−1 + ν2, ν2, 1 + ν2;

− 3/2 + ν3,−1/2 + ν3, 1/2 + ν3, 3/2 + ν3)
(3.4.6)

The Levi component is m̌BC = gl(1)× gl(3)× gl(4). If ν2 6= 0, then m̌BC =
m̌KL. But if ν2 = 0, then m̌KL = gl(1) × gl(4) × ǧ(3). The parameter is
rewritten

Ǒ ←→ ((1, 1), (4, 4); 1, 3, 3) (3.4.7)

χ←→ (ν1;−3/2 + ν3,−1/2 + ν3, 1/2 + ν3, 3/2 + ν3; 0, 1, 1).

The Levi component m̌KL is unchanged if ν1 = 0.
The explanation is as follows. For a partition (3.1.3),

z(Ǒ) = so(r1)× sp(r2)× so(r3)× . . . (3.4.8)

and the centralizer in Ǧ is a product of O(r2j+1) and Sp(r2j), i.e. O for the
odd parts, Sp for the even parts. Thus the component group is a product of
Z2, one for each r2j+1 6= 0. Then A(χ, ě) = A(ν, ȟ, ě), and so AMBC

(χ, ě) =
A(χ, ě) unless one of the νi = 0 for an odd ai with the additional property
that there is no 2xj + 1 = ai.
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We can rewrite each of the remaining strings

(−ai − 1
2

+ νi, . . . ,
ai − 1

2
+ νi) (3.4.9)

as

χi :=(fi + τi, fi + 1 + τi, . . . , Fi + τi), (3.4.10)
satisfying

fi ∈ Z, 0 ≤ τi ≤ 1/2, Fi = fi + ai (3.4.11)

|fi + τi| ≥ |Fi + τi| if τi = 1/2.

This is done as follows. We can immediately get an expression like (3.4.10)
with 0 ≤ τi < 1, by defining fi to be the largest element in Z less than or
equal to −ai−1

2 +νi. If τi ≤ 1/2 we are done. Otherwise, use the Weyl group
to change the signs of all entries of the string, and put them in increasing
order. This replaces fi by −Fi− 1, and τi by 1− τi. The presentation of the
strings subject to (3.4.11) is unique except when τi = 1/2. In this case the
argument just given also provides the presentation

(−Fi − 1 + 1/2, . . . ,−fi − 1 + 1/2). (3.4.12)

We choose between (3.4.10) and (3.4.12) the one whose leftmost term is
larger in absolute value. That is, we require |fi + τi| ≥ |Fi + τi| whenever
τi = 1/2.

3.5. G of Type D. Rearrange the parts of the partition of Ǒ ⊂ so(2n,C),
in the form (3.1.4),

((a1, a1), . . . , (ak, ak); 2x0 + 1, . . . , 2x2m−1 + 1) (3.5.1)

The di have been relabeled as 2xi+1. In this case it is automatic that there
is an even number of nonzero 2xi + 1. The xi are integers, because all the
even parts of the partition of Ǒ occur an even number of times, and were
therefore extracted as (ai, ai). The χ of the form ȟ/2 + ν are

(. . . ;−ai − 1
2

+ νi, . . . ,
ai − 1

2
+ νi; . . . ; 0, . . . , 0︸ ︷︷ ︸

n0

, . . . , x2m−1, . . . , x2m−1︸ ︷︷ ︸
nx2m−1

).

(3.5.2)
where

nl =

{
m if l = 0,
#{xi ≥ l} if l 6= 0.

(3.5.3)

Lemma 3.2 holds for this type verbatim. So the following proposition holds.

Proposition. A parameter χ = ȟ/2 + ν cannot be conjugated to one of the
form ȟ′/2 + ν ′ for any larger nilpotent Ǒ′ if and only if

(1) the set of strings satisfying ai−1
2 + νi − aj−1

2 − νj ∈ Z are nested.
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(2) the strings satisfying ai−1
2 + νi ∈ Z satisfy the additional condition

that either x2m−1 + 1 < −ai−1
2 + νi or there is j such that

xj + 1 < −ai − 1
2

+ νi ≤
ai − 1

2
+ νi < xj+1 + 1. (3.5.4)

The Levi component m̌KL is obtained from m̌BC as follows. Consider the
strings for which ai is odd and νi = 0. If ai is not equal to any 2xj + 1, then
remove one pair (ai, ai), and add two 2xj + 1 = ai to the last part of (3.5.1).
For example, if the nilpotent orbit is

(1, 1, 3, 3, 4, 4), (3.5.5)

then the parameters of the form ȟ/2 + ν are

(ν1;−1 + ν2, ν2, 1 + ν2;

− 3/2 + ν3,−1/2 + ν3, 1/2 + ν3, 3/2 + ν3)
(3.5.6)

The Levi component is m̌BC = gl(1) × gl(3) × gl(4). If ν2 6= 0 and ν1 6= 0,
then m̌BC = m̌KL. If ν2 = 0 and ν1 6= 0, then m̌KL = ǧ(3) × gl(1) × gl(4).
If ν2 6= 0 and ν1 = 0, then m̌KL = gl(3)× gl(4)× ǧ(1). If ν1 = ν2 = 0, then
m̌KL = gl(4)× ǧ(4). The parameter is rewritten

Ǒ ←→ ((1, 1), (4, 4); 3, 3) (3.5.7)

χ←→ (ν1;−3/2 + ν3,−1/2 + ν3; 1/2 + ν3, 3/2 + ν3; 0, 1, 1).

The explanation is as follows. For a partition (3.1.3),

z(Ǒ) = so(r1)× sp(r2)× so(r3)× . . . (3.5.8)

and the centralizer in Ǧ is a product of O(r2j+1) and Sp(r2j), i.e. O for the
odd parts, Sp for the even parts. Thus the component group is a product of
Z2, one for each r2j+1 6= 0. Then A(χ, ě) = A(ν, ȟ, ě), and so AMBC

(χ, ě) =
A(χ, ě) unless one of the νi = 0 for an odd ai with the additional property
that there is no 2xj + 1 = ai.

We can rewrite each of the remaining strings

(−ai − 1
2

+ νi, . . . ,
ai − 1

2
+ νi) (3.5.9)

as

χi :=(fi + τi, fi + 1 + τi, . . . , Fi + τi), (3.5.10)

satisfying fi ∈ Z, 0 ≤ τi ≤ 1/2, Fi = fi + ai (3.5.11)

|fi + τi| ≥ |Fi + τi| if τi = 1/2.

This is done as in types B and C, but see the remarks which have to do
with the fact that −Id is not in the Weyl group. We can immediately
get an expression like (3.5.10) with 0 ≤ τi < 1, by defining fi to be the
largest element in Z less than or equal to −ai−1

2 + νi. If τi ≤ 1/2 we are
done. Otherwise, use the Weyl group to change the signs of all entries of
the string, and put them in increasing order. This replaces fi by −Fi − 1,
and τi by 1− τi. The presentation of the strings subject to (3.5.11) is unique



12 DAN BARBASCH

except when τi = 1/2. In this case the argument just given also provides the
presentation

(−Fi − 1 + 1/2, . . . ,−fi − 1 + 1/2). (3.5.12)
We choose between (3.5.10) and (3.5.12) the one whose leftmost term is
larger in absolute value. That is, we require |fi + τi| ≥ |Fi + τi| whenever
τi = 1/2.
Remarks

(1) A (real) spherical parameter χ is hermitian if and only if there is
w ∈ W (Dn) such that wχ = −χ. This is the case if the parameter
has a coordinate equal to zero, or if none of the coordinates are 0,
but then n must be even.

(2) Assume the nilpotent orbit Ǒ is very even, i.e. all the parts of the
partition are even (and therefore occur an even number of times).
The nilpotent orbits labelled (I) and (II) are characterized by the
fact that m̌BC is of the form

(I)←→ gl(a1)× · · · × gl(ak−1)× gl(ak),
(II)←→ gl(a1)× · · · × gl(ak−1)× gl(ak)′.

The last gl factors differ by which extremal root of the fork at the
end of the diagram for Dn is in the Levi component. The string for
k is

(I)←→ (−ak − 1
2

+ νk, . . . ,
ak − 1

2
+ νk),

(II)←→ (−ak − 1
2

+ νk, . . .
ak − 3

2
+ νk,−

ak − 1
2
− νk).

We can put the parameter in the form (3.5.10) and (3.5.11), because
all strings are even length. In any case (I) and (II) are conjugate by
the outer automorphism, and for unitarity it is enough to consider
the case of (I).

The assignment of a nilpotent orbit (I) or (II) to a parameter is
unambiguous. If a χ has a coordinate equal to 0, it might be written
as hI/2+νI or hII/2+νII . But then it can also be written as h′/2+ν ′

for a larger nilpotent orbit. For example, in type D2, the two cases
are (2, 2)I and (2, 2)II , and we can write

(I)←→ (1/2,−1/2) + (ν, ν),

(II)←→ (1/2, 1/2) + (ν,−ν).

The two forms are not conjugate unless the parameter contains a 0.
But then it has to be (1, 0) and this corresponds to (1, 3), the larger
principal nilpotent orbit.

(3) Because we can only change an even number of signs using the Weyl
group, we might not be able to change all the signs of a string. We
can always do this if the parameter contains a coordinate equal to
0, or if the length of the string is even. If there is an odd length
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string, and none of the coordinates of χ are 0, changing all of the
signs of the string cannot be achieved unless some other coordinate
changes sign as well. However if χ = ȟ/2 + ν cannot be made to
satisfy (3.5.10) and (3.5.11), then χ′, the parameter obtained from
χ by applying the outer automorphism, can. Since L(χ) and L(χ′)
are either both unitary of both nonunitary, it is enough to consider
just the cases that can be made to satisfy (3.5.10) and (3.5.11). For
example, the parameters

(−1/3, 2/3, 5/3;−7/4,−3/4, 1/4),

(−5/3,−2/3, 1/3;−7/4,−3/4, 1/4)

in type D6 are of this kind. Both parameters are in a form satisfying
(3.5.10) but only the second one satisfies (3.5.11). The first one
cannot be conjugated by W (D6) to one satisfying (3.5.11).

4. The Main Result

4.1. Recall that Ǧ is the (complex) dual group, and Ǎ ⊂ Ǧ the maximal
torus dual to A. Assuming as we may that the parameter is real, a spherical
irreducible representation corresponds to an orbit of a hyperbolic element
χ ∈ ǎ, the Lie algebra of Ǎ. In section 2 we attached a nilpotent orbit Ǒ in ǧ
with partition (a1, . . . a1︸ ︷︷ ︸

r1

, . . . , ak, . . . , ak︸ ︷︷ ︸
rk

) to such a parameter. Let {ě, ȟ, f̌}

be a Lie triple attached to Ǒ. Let χ := ȟ/2 + ν satisfy (3.1.1)-(3.1.2).

Definition. A representation L(χ) is said to be in the complementary series
for Ǒ, if the parameter χ is attached to Ǒ in the sense of satisfying (3.1.1)
and (3.1.2), and is unitary.

We will describe the complementary series explicitly in coordinates.
The centralizer ZǦ(ě, ȟ, f̌) has Lie algebra z(Ǒ) which is a product of

sp(rl,C) or so(rl,C), 1 ≤ l ≤ k, according to the rule
Ǧ of type B, D: sp(rl) for al even, so(rl) for al odd,
Ǧ of type C: sp(rl) for al odd, so(rl) for al even.

The parameter ν determines a spherical irreducible module LǑ(ν) for the
split group whose dual is ZǦ(ě, ȟ, f̌)0. It is attached to the trivial orbit in
z(Ǒ).

Theorem. The complementary series attached to Ǒ coincides with the one
attached to the trivial orbit in z(Ǒ). For the trivial orbit (0) in each of the
classical cases, the complementary series are

G of type B:
0 ≤ ν1 ≤ · · · ≤ νk < 1/2.

G of type C, D:

0 ≤ ν1 ≤ · · · ≤ νk ≤ 1/2 < νk+1 < · · · < νk+l < 1

so that νi + νj ≤ 1. There are
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(1) an even number of νi such that 1− νk+1 < νi ≤ 1/2,
(2) for every 1 ≤ j ≤ l, there is an odd number of νi such that

1− νk+j+1 < νi < 1− νk+j .
(3) In type D of odd rank, ν1 = 0 or else the parameter is not

hermitian.

Remarks.

(1) The complementary series for Ǒ = (0) consists of representations
which are both spherical and generic in the sense that they have
Whittaker models.

(2) The condition that νi + νj 6= 1 implies that in types C,D there is at
most one νk = 1/2.

(3) In the case of Ǒ 6= (0), χ = ȟ/2 + ν, and each of the coordinates νi
for the parameter on z(Ǒ) comes from a string, i.e. each νi comes
from (−ai−1

2 + νi, . . . ,
ai−1

2 + νi). The parameter does not sat-
isfy (3.5.11). For (3.5.11) to hold, it suffices to change νk+j for
types C, D to 1 − νk+j . More precisely, for 1/2 < νk+j < 1 the
connection with the strings in the form (3.5.10) and (3.5.11) is as
follows. Write (−ak+j−1

2 + νk+j , . . . ,
ak+j−1

2 + νk+j) as (−ak+j−3
2 +

(νk+j − 1), . . . , ak+j+1
2 + (νk+j − 1)) and then conjugate each entry

to its negative to form (−ak+j−3
2 + ν ′k+j , . . . ,

ak+j+1
2 + ν ′k+j), with

0 < ν ′k+j = 1− νk+j < 1/2.

5. Spherical modules for complex groups

5.1. G of Type B.

I: The partition for Ǒ is labeled

(m0 ≤ m1 ≤ · · · ≤ m2p′) (5.1.1)

by adding a 0 to have an odd number. Then a given size starts at
an even or odd label.

II: From each size extract pairs

(a1, a1) . . . (ak, ak) (5.1.2)

as many as possible leaving one pair for each even size starting at
an odd label. Thus to each Ǒ we have associated

((a1a1) . . . (akak); 2x0, . . . , 2x2p). (5.1.3)

Pair up the xi

(x0x1) . . . (x2p−2x2p−1)(x2p) (5.1.4)

Note that x2i < x2i+1. Form a vector

ε = (ε1, . . . , εp), εi = ±1. (5.1.5)
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III: Define a Levi component m̌u,

m̌u := gl(a1)× · · · × gl(ak)× ǧ0(n0), n0 = n−
∑

ai. (5.1.6)

The nilpotent orbit with partition (2xi) in ǧ0 is denoted Ǒ0.
A typical parameter for a spherical representation will be (χ1, . . . , χk, χε)

with coordinates as follows:
• χi ←→ (−ai−1

2 + νi, . . . ,
ai−1

2 + νi),
• (x2p)←→ (1/2, . . . , x2p − 1/2),
• εi = 1←→ (−x2i+1 + 1/2, . . . , x2i − 1/2)
• ε = −1←→ (−x2i+1, . . . , x2i − 1).

IV: For each size nj group the corresponding νi with ai = nj into a
parameter

νj = (νj1, . . . , ν
j
kj

), 0 ≤ . . . νji ≤ ν
j
i+1 . . . . (5.1.7)

The unitarity conditions for an L(χ) are in terms of the νj as com-
plementary series for types B,C,D plus something extra:
• al even starting at an even label: type B.

• al even starting at an odd label:

{
εl = 1, type B
εl = −1 type C

• ai odd, 2x2i < al < 2x2i+1,

{
εi = 1 type C
εi = −1 type D

• al odd, not as above, type B.
V: For two adjacent sizes, any sum of coordinates νj∗ + νj+1

∗ < 3/2.
This is a restricition only if both sizes have complementary series of
type B, D.

Definition. A parameter L(χε) corresponding to a Ǒ with partition (2x0, . . . , 2x2p)
satisfying x2i < x2i+1 is called basic.

By [B1], basic parameters are unitary. This completes the statement of
theorem 2.1 in this case.

5.2. G of Type C.
I: The partition for Ǒ is labeled

(m0 ≤ m1 ≤ · · · ≤ m2p′) (5.2.1)

by adding a 0 to have an odd number. Then a given size starts at
an even or odd label.

II: From each size extract pairs

(a1, a1) . . . (ak, ak) (5.2.2)

as many as possible leaving one pair for each odd size starting at an
even label. Thus to each Ǒ we have associated

((a1a1) . . . (akak); 2x0 + 1, . . . , 2x2p + 1). (5.2.3)
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Pair up the xi

(x0)(x1x2) . . . (x2p−1x2p) (5.2.4)

Note that x2i−1 < x2i. Form a vector

ε = (ε1, . . . , εp), εi = ±1. (5.2.5)

III: Define a Levi component m̌u,

m̌u := gl(a1)× · · · × gl(ak)× ǧ0(n0), n0 = n−
∑

ai. (5.2.6)

The nilpotent orbit with partition (2xi + 1) in ǧ0 is denoted Ǒ0.
A typical parameter for a spherical representation will be (χ1, . . . , χk, χε)

with coordinates as follows:
• χi ←→ (−ai−1

2 + νi, . . . ,
ai−1

2 + νi),
• (x0)←→ (1, . . . , x0),
• εi = 1←→ (−x2i, . . . , x2i−1)
• ε = −1←→ (−x2i − 1/2, . . . , x2i−1 − 1/2).

IV: For each size nj group the corresponding νi with ai = nj into a
parameter

νj = (νj1, . . . , ν
j
kj

), 0 ≤ . . . νji ≤ ν
j
i+1 . . . . (5.2.7)

The unitarity conditions for an L(χ) are in terms of the νj as com-
plementary series for types B,C,D plus something extra:
• al odd starting at an odd label: type B.

• al odd starting at an even label:

{
εl = 1, type B
εl = −1 type C

• al even, 2x2i−1 + 1 < al < 2x2i + 1,

{
εi = 1 type C
εi = −1 type D

• al even, not as above, type B.
V: For two adjacent sizes, any sum of coordinates νj∗ + νj+1

∗ < 3/2.
This is a restricition only if both sizes have complementary series of
type B, D.

Definition. A parameter L(χε) corresponding to a Ǒ with partition (2x0 +
1, . . . , 2x2p + 1) satisfying x2i−1 < x2i is called basic.

By [B1], basic parameters are unitary. This completes the statement of
theorem 2.1 in this case.

5.3. G of Type D.
I: The partition for Ǒ is labeled

(m0 ≤ m1 ≤ · · · ≤ m2p′−1) (5.3.1)

by adding a 0 to have an even number. Then a given size starts at
an even or odd label.
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II: From each size extract pairs

(a1, a1) . . . (ak, ak) (5.3.2)

as many as possible leaving one pair for each odd size starting at an
even label. Thus to each Ǒ we have associated

((a1a1) . . . (akak); 2x0 + 1, . . . , 2x2p−1 + 1). (5.3.3)

Pair up the xi

(x0x2p−1)(x1x2) . . . (x2p−3x2p−2) (5.3.4)

Note that x2i−1 < x2i. Form a vector

ε = (ε1, . . . , εp−1), εi = ±1. (5.3.5)

III: Define a Levi component m̌u,

m̌u := gl(a1)× · · · × gl(ak)× ǧ0(n0), n0 = n−
∑

ai. (5.3.6)

The nilpotent orbit with partition (2xi + 1) in ǧ0 is denoted Ǒ0.
A typical parameter for a spherical representation will be (χ1, . . . , χk, χε)

with coordinates as follows:
• χi ←→ (−ai−1

2 + νi, . . . ,
ai−1

2 + νi),
• (x0x2p−1)←→ (−x2p−1, . . . , x0),
• εi = 1←→ (−x2i, . . . , x2i−1)
• ε = −1←→ (−x2i − 1/2, . . . , x2i−1 − 1/2).

IV: For each size nj group the corresponding νi with ai = nj into a
parameter

νj = (νj1, . . . , ν
j
kj

), 0 ≤ . . . νji ≤ ν
j
i+1 . . . . (5.3.7)

The unitarity conditions for an L(χ) are in terms of the νj as com-
plementary series for types B,C,D plus something extra:
• al odd starting at an odd label: type B.

• al odd starting at an even label:

{
εl = 1, type B
εl = −1 type C

• al even, 2x2i−1 + 1 < al < 2x2i + 1,

{
εi = 1 type C
εi = −1 type D

• al even, not as above, type B.
V: For two adjacent sizes, any sum of coordinates νj∗ + νj+1

∗ < 3/2.
This is a restricition only if both sizes have complementary series of
type B, D.

Definition. A parameter L(χε) corresponding to a Ǒ with partition (2x0 +
1, . . . , 2x2p + 1) satisfying x2i−1 < x2i is called basic.

By [B1], basic parameters are unitary. This completes the statement of
theorem 2.1 in this case.



18 DAN BARBASCH

References

[B1] D. Barbasch, The unitary dual of complex classical groups, Inv. Math. 96 (1989),
103–176.

[B2] D. Barbasch, Unipotent representations for real reductive groups, Proceedings of ICM,
Kyoto 1990, Springer-Verlag, The Mathematical Society of Japan, 1990, pp. 769–777.

[B3] D. Barbasch, The spherical unitary dual for split classical p−adic groups, Geometry
and representation theory of real and p−adic groups (J. Tirao, D. Vogan, and J. Wolf,
eds.), Birkhauser-Boston, Boston-Basel-Berlin, 1996, pp. 1–2.

[B4] D. Barbasch, Orbital integrals of nilpotent orbits , Proceedings of Symposia in Pure
Mathematics, vol. 68, (2000) 97-110.

[B5] D. Barbasch, The associated variety of a unipotent representation preprint
[B6] D. Barbasch Relevant and petite K−types for split groups, Functional Analysis VIII,
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