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1 Notation

G a real reductive group, the real points of a
linear reductive connected group G,

G = KS a Cartan decomposition corresponding to the
Cartan involution θ,

g = k + s the corresponding Lie algebras
and Cartan decomposition

P = MAN a parabolic subgroup with Lie(A) = a ⊂ s.

P0 = M0A0N0 minimal parabolic subgroup

δ ∈ M̂, ν ∈ Â characters, we identify characters of A
with elements of a∗C

IndGP [δ ⊗ ν] normalized Harish-Chandra induction,

(δ ⊗ ν trivial on N, multiplied with (det Ada |n)−1/2 ).
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2 Hermitian and Unitary Modules

Definition 2.0.1. A representation (π,X ) on a Hilbert space
X is called unitary if X admits a (nondegenerate) inner product
〈 , 〉 such that G acts by unitary transformations.

More general, let H be an algebra. In order to talk about
unitary representations of H, we need a star operation on H.

Definition 2.0.2. A star operation for an (associative) algebra
H is a complex conjugate linear anti-involution ? : H −→ H,
i.e. satisfying (ab)∗ = b∗a?, and ?2 = Id.

Example 2.0.3. Let g be a complex Lie algebra, U(g) its en-
veloping algebra. If g0 is a real form, g inherits a complex con-
jugate involution : g −→ g, which extends to a star operation
on U(g). All star operations on U(g) which preserve the natural
filtration are of this form.

Definition 2.0.4. A representation (π,X ) of H is called her-
mitian if X has a hermitian form 〈 , 〉 (usually nondegenerate)
such that

〈π(h)v1, v2〉 = 〈v1, π(h∗)v2〉.
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Unitarity Problem

Classify the unitary irreducible representations of G.

In general, in order to classify the unitary dual of a group,
one proceeds in three steps:

STEP 0. Classify admissible irreducible (g, K) modules.

A module (π,X ) of (g, K) satisfying

π(k)π(X)v = π(AdkX)π(k)v

is called admissible, if π(K)v is finite dimensional for any v,
and any K−isotypic component of X is finite dimensional.

This is due to Harish-Chandra.

STEP 1. Classify the irreducible admissible (g, K) modules.

STEP 2. Classify the irreducible admissible (g, K) modules that
admit invariant hermitian forms.

STEP 3. Classify those that admit positive definite invariant
forms.

The rest of the talk will be about the spherical case.
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3 Spherical Modules

Definition 3.0.5. A(n admissible) representation (π,X ) is called
spherical if XK 6= (0).

3.1 Principal Series

G is split. In this case P0 is a Borel subgroup, and we denote it
by B = MAN. Write X(B, δ, ν) := IndGB[δ⊗ν]. This is not only
normalized induction, but we consider the subspace of K−finite
functions, an admissible (g, K)−module.

Theorem 3.1.1.

a) Assume 〈Reν, α∨〉 ≥ 0 for all α ∈ ∆(n). Then X(B, δ, ν)
has a unique quotient X(δ, ν) which is a direct sum of irre-
ducible modules.

b) If 〈Reν, α〉 ≤ 0, then X(δ, ν) has a unique submodule X(δ, ν)
which is a direct sum of irreducible modules.

c) X(δ, ν) ∼= X(δ′, ν ′) if and only if there exists
w ∈ W := NK(a)/M such that wδ ∼= δ′, and wν = ν ′.

d) Let B := MAN be the opposite parabolic subgroup. Then
there is an intertwining operator

A(B,B, δ, ν) : X(B, δ, ν) −→ X(B, δ, ν)

whose image is X(δ, ν).

e) Any spherical irreducible module is the spherical subquotient
of an X(triv, ν).

f) X(δ, ν) is hermitian if and only if there is a w ∈ W such
that wδ ∼= δ, and wν = −ν.
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In the case of spherical modules, δ = triv, so we simplify the
notation to X(ν) and X(ν).

Remark 3.1.2 ([Kn], Chapter 16). Write ν = Reν+ iImν. Let
P = MN be the parabolic subgroup such that

∆(m) = {α | (α∨, Imν) = 0},
∆(n) = {α | (α∨, Imν) > 0}.

Then
X(ν) = IndGP [XM(Reν)⊗ iImν].

X(ν) is unitary if and only if X(Reν) is unitary.

So assume from now on that ν is real.
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4 The Shape of the Unitary Dual

The following pictures describe the spherical unitary dual of the
two classical rank two split groups, SO(2, 3) and Sp(4,R). The
reducibility hyperplanes divide the dominant cone in regions of
constant signature; the unitary dual is the union of the simplicial
complexes with positive signature.
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4.1 Complementary Series

The set of spherical irreducible representations of G with real
infinitesimal character can be partitioned into series attached
to the nilpotent orbits in g∨. Connected reductive groups are
classified by root data, and they come in pairs, groups and their
duals. Let G∨ be the (complex) dual group, and let A∨ be
the torus dual to A. Then a∗ ⊗R C is canonically isomorphic
to a∨, the Lie algebra of A∨. So we can regard χ as an ele-
ment of a∨. We attach to each χ a nilpotent orbit O∨(χ) as
follows. By the Jacobson-Morozov theorem, there is a 1-1 cor-
respondence between nilpotent orbits O∨ and G∨−conjugacy
classes of Lie triples {e∨, h∨, f∨}; the correspondence satisfies
e∨ ∈ O∨. Choose the Lie triple such that h∨ ∈ a∨. Then there
are many O∨ such that χ can be written as wχ = h∨/2 + ν
with ν ∈ z(e∨, h∨, f∨), the centralizer in g∨ of the triple. For ex-
ample this is always possible with O∨ = (0). Results of B-Moy
guarantee that for any χ there is a unique O∨(χ) satisfying

1. there exists w ∈ W such that wχ = 1
2h
∨ + ν with

ν ∈ z(e∨, h∨, f∨),

2. if χ satisfies property (1) for any other O∨′, then
O∨′ ⊂ O∨(χ).

Definition 4.1.1. Let O∨ be a nilpotent orbit and let χ = 1
2h
∨+

ν be a spherical parameter attached to O∨. Then χ is in the
complementary series of O∨ if and only if X(χ) is unitary.

If the nilpotent orbit O∨ is distinguished in g∨ (i.e. O∨
does not meet any proper Levi subalgebra of ǧ), then the only
spherical parameter attached to O∨ is χ = 1

2ȟ.
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Here are the deconstructed pictures for SO(2, 3)o and Sp(4,R)..
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4.2 Main Result

Definition 4.2.1. The complementary series attached to the
trivial nilpotent orbit is called the 0-complementary series.

Theorem 4.2.2. The parameter χ = 1
2h
∨ + ν is in the comple-

mentary series of O∨ if and only if ν is in the 0-complementary
series of z(O∨), with the following exceptions. For

F4 : A1 + Ã1

E7 : A2 + 3A1

E8 : A4 + A2 + A1, A4 + A2, D4(a1) + A2, A3 + 2A1, A2 + 3A1

the complementary series of O∨ is smaller than 0-complementary
series of z(O∨), and for

E8 : 4A1

the complementary series of O∨ is bigger than 0-complementary
series of z(O∨).

The labeling of the nilpotent orbits is from the Bala-Carter
classification.

This theorem is due to [B] and [B-Ciubotaru], and holds as
stated for p-adic split groups. It holds due to [B] for split classi-
cal real groups. For exceptional split real groups, [B-Ciubotaru]
prove that the unitary dual is contained in this set.

The 0-complementary series are known, and have a simple
description in terms of hyperplane arrangements (given by the
roots). They are unions of simplices.
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4.3 Complementary Series for the Classical Cases

Theorem 4.3.1. The complementary series attached to O∨ co-
incides with the one attached to the trivial orbit in z(O∨). For the
trivial orbit (0) in each of the classical cases, the complementary
series are

G of type B
0 ≤ ν1 ≤ · · · ≤ νk < 1/2.

G of type C, D

0 ≤ ν1 ≤ · · · ≤ νk ≤ 1/2 < νk+1 < · · · < νk+l < 1

so that νi + νj ≤ 1. There are

1. an even number of νi such that 1− νk+1 < νi ≤ 1/2,

2. for every 1 ≤ j ≤ l, there is an odd number of νi such
that 1− νk+j+1 < νi < 1− νk+j.

3. In type D of odd rank, ν1 = 0 or else the parameter is
not hermitian.
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4.4 Exceptional Cases

The centralizers are listed in [Car]. In most cases the centralizers
are products of classical groups. Here are some pictures for the
exceptions (courtesy of Dan Ciubotaru).
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Figure 1: Spherical unitary parameters for the nilpotent orbit A4A2 in E8
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5 Intertwining Operators

5.1

Formally the intertwining operator A(B,B, ν) is given by

A(B,B, ν)f(x) =

∫
N

f(xn) dn. (1)

It is more convenient for our purpose to modify the definition
to I(w0, ν) : X(B, ν) −→ X(B,w0ν),

I(w0, ν)f(x) =

∫
N

f(xnw0) dn,

where w0 is the long Weyl group element. This definition im-
mediately extends to any w ∈ W,

I(w, ν)f(x) =

∫
N/(N∩w−1Nw)

f(xnw) dn. (2)

The convergence of the integrals is a nontrivial matter.
If (µ, V ) is a K-type, then I induces a map

IV (w, ν) : HomK [V,X(ν)] −→ HomK [V,X(wν)]. (3)

By Frobenius reciprocity, we get a map

RV (w, ν) : (V ∗)M −→ (V ∗)M . (4)

In case (µ, V ) is trivial the spaces are 1-dimensional and
IV (w, ν) is a scalar. We normalize I(w, ν) so that this scalar
is 1. The RV (w, ν) are meromorphic functions in ν, and the
I(w, ν) have the following additional properties.

1. If w = w1 · w2 with `(w) = `(w1) + `(w2), then I(w, ν) =
I(w1, w2ν) ◦ I(w2, ν). In particular if w = sα1

· · · sαk is a
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reduced decomposition, then I(w) factors into a product of
intertwining operators Ij, one for each sαj . These operators
are

Ij : X(sαj+1
. . . sαk · ν) −→ X(sαj . . . sαk · ν) (5)

2. Let P = MN be a standard parabolic subgroup (so A ⊂
M) and w ∈ W (M,A). Write X(ν) := IndGP [XM(ν)]. The
intertwining operator

I(w, ν) : X(ν) −→ X(wν)

is of the form I(w, ν) = IndGM [IM(w, ν)].

3. If Re〈ν, α〉 ≥ 0 for all positive roots α, then RV (w0, ν) has
no poles, and the image of I(w0, ν) (w0 ∈ W is the long
element) is X(ν).

4. If there is w such that wν = −ν, (ν is assumed real), then
the hermitian dual of X(ν) is X(−ν). Letting w be the
shortest element such that wν = −ν, the hermitian form

〈v1, v2〉 :=
(
v1, I(w, ν)v2

)
(6)

is nonzero and has radical the maximal proper submodule
of X(ν), so that it descends to a nondegenerate hermitian
form on X(ν).

Let (µ, V ) be a K-type, and fix a positive definite inner prod-
uct. The map RV (w, ν) of equation (4) depends meromorphi-
cally on ν, and is normalized to be the identity on the trivial
K-type. It has no poles when ν is dominant with respect to the
positive roots for B. Via the fixed positive inner product on V,
this map induces a hermitian form r(µ, ν) on (V ∗)M , and X(ν)
is unitary if and only if r(µ, ν) is positive semidefinite for all µ.
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Example 5.1.1. In the case of G = Sl(2,R), the K-types of
the spherical principal series are parametrized by even integers.
Since K−types are 1−dimensional, the r(µ, ν) can be viewed as
scalars:

r(2m, ν) =
∏

0≤j<m

2j + 1− (ν, α̌)

2j + 1 + (ν, α̌)
. (7)

They completely determine which X(ν) are unitary. The
scalars are simplest when m ≤ 1, and they determine which
representations are not unitary. This is the motivation for
the definition of petite K−types in the next section. They were
called single petaled in [Oda], and studied independently and
for different reasons.

6 Petite K-types

Let α be a simple root and Pα = MαN be the standard parabolic
subgroup so that the Lie algebra of Mα is isomorphic to the
sl(2,R) generated by the root vectors E±α. We assume that
θEα = −E−α. Let Dα =

√
−1(Eα − E−α) and sα = e

√
−1πDα/2.

Then s2
α = mα is in M ∩Mα. Since the square of any element

in M is in the center and M normalizes the the root vectors,
Adm(Dα) = ±Dα. Grade V ∗ = ⊕V ∗i according to the absolute
values of the eigenvalues of Dα (which are integers). Then M

preserves this grading and

(V ∗)M =
⊕
i even

(V ∗i )M .

The map ψα : sl(2,R) −→ g determined by

ψα

[
0 1
0 0

]
= Eα, ψα

[
0 1
0 0

]
= E−α
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determines a map

Ψα : SL(2,R) −→ G (8)

with image Gα, a connected group with Lie algebra isomorphic
to sl(2,R). Let Rα be the maps (4) for Gα.

Proposition 6.0.2. On (V ∗2m)M ,

RV (sα, ν) =

{
Id if m = 0,∏

0≤j<m
2j+1−<ν,α̌>
2j+1+<ν,α̌> Id if m 6= 0.

In particular, I(w, ν) is an isomorphism unless 〈ν, α̌〉 ∈ −N.

Proof. The formula is well known for SL(2,R). The second as-
sertion follows from this and the listed properties of intertwining
operators.

Definition 6.0.3. A K-type µ is called petite or single petaled
if all the I(sα) are as in Proposition 6.0.2 with 0 ≤ m ≤ 1.

This is true whenever the eigenvalues µ(iZα) are 0,±1,±2 or
±3.

Corollary 6.0.4. For petite K-types the formula is

RV (sα, ν) =

{
Id on the +1 eigenspace of sα,
1−<ν,α̌>
1+<ν,α̌> Id on the -1 eigenspace of sα.

When restricted to (V ∗)M , the long intertwining operator is the
product of the RV (sα, ν) corresponding to the reduced decompo-
sition of w0 and depends only on the Weyl group structure of
(V ∗)M .
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Proof. The element sα acts by 1 on the zero eigenspace ofDα and
by −1 on the ±2 eigenspace. Eigenvalue ±3 does not play any
role for K-types occuring in the spherical principal series.

Definition 6.0.5. A set of K-types R is called relevant, if it is
formed of petite K-types, and a representation X(ν) is unitary
if and only the form is positive definite on all the K-types in R.

We want such a set to be rather small. The main point is for
it to give necessary onditions for unitarity. These K−types pro-
vide the link with the unitarity problem for split p-adic groups.

7 The Graded Affine Hecke Algebra

Notation:

- Φ = (V,R, V ∨, R∨) an R−root system, reduced.

- W the Weyl group.

- Π ⊂ R simple roots, R+ positive roots.

- k : Π→ R a function such that kα = kα′ whenever α, α′ ∈ Π
are W -conjugate.

Definition 7.0.6 (Graded Affine Hecke Algebra). H = H(Φ, k) ∼=
C[W ]⊗ S(VC) such that

(i) C[W ] and S(VC) have the usual algebra structure,

(ii) ωtsα = tsαsα(ω) + kα〈ω, α̌〉 for all α ∈ Π, ω ∈ VC.

Assume kα = 1 for simplicity, sufficient for split groups and
spherfical representations. The module X(ν) := H ⊗VC Cν is
called the (spherical) principal series. As a C[W ]−module it is
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isomorphic to C[W ] =
∑

µ∈Ŵ Vµ ⊗ V ∗µ . For every simple root α,

there is an element rα = (tsαα−1)(α−1)−1. One needs to extend
the definition from S(VC) to rational functions, but never mind.
These elements satisfy the braid relations, so we can define rw
for any w ∈ W. These elements define intertwining operators

Aw : X(ν) −→ X(wν)

by the formula h⊗ 11ν 7→ hrw ⊗ 11wν.

Proposition 7.0.7. If ν is dominant, the operators rw are well
defined. Since they are intertwining operators, they induce op-
erators rµ(w, ν) on each (Vµ)∗. The formulas coincide with the
ones for RV (w, ν) fdrom before whenever µ comes from a petite
K−type.

The affine graded Hecke algebra also has a star,

∗(tw) = tw−1, ∗(v) = tw0
a(v)tw0

,

where a is the isomorphism −w0 on V. In view of this, one can
look for the unitary dual of H.

Remark 7.0.8. The unitary dual formed of representations with
Iwahori spherical representations of a p-adic group can be com-
puted from the unitary dual of Hecke algebras as given above,
[BM1], [BM2],[BC], [C] and others.

The role of the relevant K−types is to show that the set of
parameters of spherical unitary representations embed in the set
of parameters of spherical unitary representations of the Hecke
algebra, and via the result in the remark, embed in the spherical
unitary dual of the p-adic group.
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8 Explicit Relevant K-types

Classical Cases

Type A

G = SL(n,R), and K = SO(n). A set of relevant representa-
tions is

K-type W-representation
(2, . . . , 2︸ ︷︷ ︸

k

, 0, . . . , 0) (n− k, k)

Type B

G = SO(n + 1, n), and K = S[O(n + 1) × O(n)]. We can use
O(n+ 1)×O(n) or SO(n+ 1)× SO(n) for this purpose.

A set of relevant representations is

K-type W-representation
(0, . . . , 0)⊗ (2, . . . , 2︸ ︷︷ ︸

`

, 0, . . . , 0) (n− `, `)× (0)

(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0)⊗ (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) (n− k)× (k), k ≤ [n/2],

( 1, . . . , 1︸ ︷︷ ︸
[(n+1)/2]−k

, 0, . . . , 0)⊗ (1, . . . , 1︸ ︷︷ ︸
[n/2]−k

, 0, . . . , 0) (n− k)× (k), k > [n/2],
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Type C

G = Sp(n), and K = U(n). A set of relevant representations is

K-type W-representation on (V ∗)M

(2, . . . , 2︸ ︷︷ ︸
`

, 0, . . . , 0) (n− `)× (`)

(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) (n− k, k)× (0).

Type D

G = SO(n, n), and K = S[O(n) × O(n)]. A set of relevant
representations is

K-type W-representation on (V ∗)M

(0, . . . , 0)⊗ (2, . . . , 2︸ ︷︷ ︸
`

, 0, . . . , 0) (n− `, `)× (0),

(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0)⊗ (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) (n− k)× (k).

Exceptional Cases

For these cases work of D. Ciubotaru in the case of F4 and Ciub-
otaru and myself for E6, E7 and E8, find Weyl group represen-
tations which form relevant sets for the p-adic group. If we can
find K-types in the real cases for which the W -representations
on (V ∗)M are formed of relevant W-types, then we get powerful
necessary conditions for unitarity.

8.1 Type F4

G = F4, K = Sp(1)× Sp(3)/± I. Let T be a maximal compact
Cartan subgroup. We use the standard positive system and
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roots, for K :
{2ε1, 2εk, εk ± ε`}2≤k≤`≤4. (9)

The highest weight of a K̃-type will be denoted

(a1

∣∣ a2, a3, a4, a5), ai ∈ N, a2 ≥ a3 ≥ a4 ≥ 0. (10)

The representations of the Weyl group of type F4 are parametrized
as in [L1].

Theorem 8.1.1 ([C]). A spherical representation of H of type
F4 is unitary if and only if the rσ are positive semidefinite on
the W-types

11, 23, 81, 42, 91.

The next result was obtained joint with D. Vogan.

Proposition 8.1.2. The following list consists of petite K-types
matching the relevant W representations.

K − type W-type on (V ∗)M

(0 | 0, 0, 0) 11,

(0 | 1, 1, 0) 21,

(4 | 0, 0, 0) 23,

(1 | 2, 1, 0) 81,

(1 | 1, 1, 1) 42,

(2 | 2, 0, 0) 91.

E6

G = E6, K = Sp(4)/{±I}. The W -types are parametrized as
in [L1].
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Theorem 8.1.3 ([BC]). A spherical representation of H of type
E6 is unitary if and only if the rσ are positive semidefinite on
the W-types

1p, 6p, 20p, 30p, 15q.

We denote by ωi the fundamental weights of sp(4). In coor-
dinates they are

ω1 = (1, 0, 0, 0),

ω2 = (1, 1, 0, 0),

ω3 = (1, 1, 1, 0),

ω4 = (1, 1, 1, 1).

(11)

Proposition 8.1.4. The following list consists of the petite K-
types which have no nontrivial M-fixed vectors, and the under-
lying Weyl group representations.

K − type W-type on (V ∗)M

(0) = (0, 0, 0, 0) 1p,

ω4 = (1, 1, 1, 1) 6p

2ω2 = (2, 2, 0, 0) 20p,

4ω1 = (4, 0, 0, 0) 15q,

2ω1 + ω4 = (3, 1, 1, 1) 30p,

ω1 + ω2 + ω3 = (3, 2, 1, 0) 64p,

3ω1 + ω3 = (4, 1, 1, 0) 60p,

2ω3 = (2, 2, 2, 0) 15p,

2ω1 + 2ω2 = (4, 2, 0, 0) 81p,

3ω2 = (3, 3, 0, 0) 24p,

6ω1 = (6, 0, 0, 0) 24′p.
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E7

K = SU(8)/{±Id}. (12)

Proposition 8.1.5. Petite K-types with M-spherical vectors,
and the corresponding Weyl group representations:

K − type W-type on (V ∗)M

(0) 1a,

ω4 7′a
2ω2, 2ω6 21′b,

ω2 + ω6 27a,

2ω1 + 2ω7 35b,

4ω1, 4ω7 15′a,

ω2 + ω3 + ω7, ω1 + ω5 + ω6 105′a,

ω1 + ω4 + ω7 56′a,

2ω1 + ω3 + ω7, ω1 + ω5 + 2ω7 189′b,

ω1 + ω3 + ω6, ω2 + ω5 + ω7 168a,

3ω1 + ω5, ω3 + 3ω7 105b,

ω3 + ω5 21a,

ω1 + ω2 + ω5, ω3 + ω6 + ω7 120a,

ω1 + ω2 + ω6 + ω7, 168a + 210a,

3ω1 + 3ω7, 84a + 105c,

ω1 + 2ω2 + ω7, ω1 + ω6 + ω7, 189′c
3ω1 + ω2 + ω7, ω1 + ω6 + 3ω7, 216′a,

3ω1 + ω6 + ω7, ω1 + ω2 + 3ω7, 280b,

5ω1 + ω7, ω1 + 5ω7, 84′b.

The Weyl group representations are parametrized as in [L1].
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Theorem 8.1.6 ([BC]). A spherical representation of H of type
E7 is unitary if and only if rσ is positive semidefinite for

1a, 7′a, 27a, 56′a, 21′b, 35b, 105b.

E8

The maximal compact subgroup of the split real form of the
simply connected complex group of type E8 is

Spin(16)/{Id, ω}, (13)

for ω the appropriate element in the center (the quotient is not

SO(16)). The group M̃ is Z8
2.

The representations of the Weyl group are parametrized as
in [L1].

Theorem 8.1.7. A spherical representation of H of type E8 is
unitary if and only if rσ is positive semidefinite for

1x, 8z, 35x, 50x, 84x, 112z, 400z, 300x, 210x.
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Proposition 8.1.8. The following list gives petite K-types and
the corresponding Weyl group representations on (V ∗)M :

K − type W-type on (V ∗)M

(0) 1x,

ω8 8z

ω4 35x,

2ω2 84x,

ω2 + ω8 112z,

4ω1 50x,

3ω1 + ω7 400z,

ω3 + ω7 160z,

ω6 28x,

ω1 + ω5 210x,

ω1 + ω2 + ω7 560x,

ω2 + ω4 567x,

2ω3 300x,

2ω1 + ω4 700x,

3ω1 + ω3 1050x,

ω1 + ω2 + ω3 1344,

3ω2 525,

2ω1 + 2ω2 972,

4ω1 + ω2 700,

6ω1 168.
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8.2 Petite K−types in the Classical Cases

Let (V, 〈 , 〉) be a finite dimensional space with a nondegenerate
symplectic or orthogonal form, G(V ) the corresponding group
with maximal compact subgroup K(V ) and Lie algebra g(V ).
Assume that G(V ) is split, the dimension of V is 2n or 2n + 1
in the orthogonal cases, 2n in the symplectic case.

Proposition 8.2.1 ([CT]). There is a (1−dimensional) repre-
sentation µ ∈ K̂ such that

HomM [triv, V ⊗
dimV ⊗ Vµ] ∼= C[W ].

Furthermore, the K−types contributing are single petaled.

Recall that W − types for W of type B,C are parametrized
by pairs of partitions of n = rk(G) and for type D they are
parametrized by restriction from type B to type D.

Proposition 8.2.2 ([Gu]). Each W − type is realized as V M of
a single petaled K−type as follows. In the matchup below, the
W−types have to be tensored with sgn. This has the effect of
taking the transposes of the partitions and interchanging them.

B,D: Let O(a, b) be the group. To a pair of partitions (α′ | β′) =
(α′1, . . . , α

′
q | β′1, . . . , β′n−q) associate (α1, . . . , αa | β1, . . . , βb)

where the αi, βj are the α′i, β
′
j padded by zeroes to make

a and b coordinates respectively. The K−type has highest
weight

(α1 − αa, α2 − αa−1, · · · | β1 − βb, β2 − βb−1, . . . )

with [a/2] and [b/2] coordinates respectively. The procedure
is that (α′ | β′) is an irreducible representation of U(a) ×
U(b), and we are taking the highest weight component of its
restriction to O(a)×O(b).
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C: The pair of partitions (α′, β′) arises as V M for the represen-
tation with highest weight

(α′1, . . . , α
′
q, 0, . . . , 0,−βn−q, . . . ,−β1) + (1, . . . , 1).

A sharpening of these results is the following.

Corollary 8.2.3. The component with M−fixed vectors in V ⊗
dimV⊗

Vµ] is ∑
µ

dimVσ(µ) ⊗ Vµ

where µ ←→ σ(µ) is the matching between highest weights and
partitions in Proposition 8.2.2.

Related to this is the following.

Theorem 8.2.4 ([CT]). Let X be any admissible spherical (g, K)−module.
The space HomK [X, V ⊗

dimV ⊗Vµ]] admits an action of H. In par-
ticular if X = XG(ν) a principal series , the resulting module is
the principal series, HomK [X(ν), V ⊗

dimV ⊗ Vµ] = XH(ν).
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Some Proofs

Let K̃ be a compact group, M̃ ⊂ Ñ finite groups such that
M is normal in N. Denote by W the quotient Ñ/M̃. In the
applications, Ñ is the normalizer of a in K̃, which is the sim-
ply connected cover of the maximal compact subgroup of the
rational points of the simply connected complex group E8.

Let Va, Vb be representations of K. In some cases we assume
that the restrictions of Va, Vb to M are multiples of the same
representation Vδ. We also assume that Vδ extends to a represen-
tation of K̃. This is the case for δ16 and genuine representations
of K̃.

Proposition 8.2.5. There is a natural action of W on HomM [Va, Vb].

Proof. The action on f ∈ Hom[Va, Vb] is given by

(n · f)(v) = µa(n
−1)f(µb(n)v). (14)

This is clearly an action of N. Since nm = (nmn−1)n, and M̃

is normal, nmn−1 ∈ M̃. Then the fact that the action does not
depend on the right M -coset, follows from the fact that f is an
M -homomorphism.

This action is compatible with the canonical isomorphism

HomM [Va, Vb] ∼= [V ∗a ⊗ Vb]M . (15)

It is also compatible with the isomorphism

HomM [Va, Vb]
∗ ∼= Hom[V ∗b , V

∗
a ]. (16)

This action is a generalization of the usual one on V M . We apply
it to the case of fine K-types. A K-type (µ, V ) is called fine, if

28



µ(iZα) equals 0,±1 only. Its restriction to M is formed of a

single orbit, under W, of characters of M. Every δ ∈ M̂ belongs
to (possibly several) fine K-types. Let Wδ be the centralizer
of a δ. It has the following structure. The coroots α̌ such that
δ(mα) = 1 form a roots system ∨∆δ, and the group generated
by the corresponding reflections, W 0

δ is a subgroup of Wδ. We
assume that G is simply connected. In this case, let Rδ :=
{w ∈ W | w(∨∆δ) =∨ ∆δ}. This is a product of Z′22. Then
Wδ = W 0

δ nRδ. For a fixed δ, let S(δ) be the set of fine K-types

containing it. Then R̂δ acts transitively. For each W conjugacy
class in M̂, fix a δ and a µδ. Then S(δ) is in 1-1 correspondence

with R̂δ in such a way that the trivial represntation corresponds
to µδ. Suppose τ ∈ R̂δ corresponds to µ. The representation τ

gives rise to an irreducible representation of Wδ by extending it
trivially to the stabilizer of τ in W 0

δ , and inducing up.

Proposition 8.2.6. HomM [µδ, µ] ∼= IndWWδ
[τ ].

Example 1

Consider the simply connected real form of E8 The group M̃

has size 29, and its quotient by the center in (13) is Z8
2. In this

case K = Spin(16), and denote by ωi the fundamental weights.
In all cases, Wδ = W 0

δ . The fine K-types are

K̃ − type M̃ − type
(0) δ1, trivial representation,

ω1 δ16, sixteen dimensional representation,

ω2 δ120, one hundred and twenty characters,

2ω1 δ135, one hundred thirty five characters,

(17)
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Only the second representation is genuine, and the others are
single orbits under the action of W.

Let (µ, V ) be the fine K-type ω2. Then the W-representation
is

HomM [V, V ] ∼= Ind
W (E8)
W (E7A1)[triv] = 1x + 35x + 84x. (18)

Similarly, if (µ, V ) is the fine K-type 2ω1,

HomM [V, V ] ∼= Ind
W (E8)
W (D8)[triv] = 1x + 84x + 50x. (19)

These representations are self-dual, and their tensor products
are

ω2 ⊗ ω2 = (2ω2) + (ω1 + ω3) + (2ω1) + (ω2) + (ω4) + (0),

(2ω1)⊗ (2ω1) = (4ω1) + (2ω1 + ω2) + (2ω1) + (2ω2) + (ω2) + (0).
(20)

Similarly ω3 restricts to 35δ16, and

ω1 ⊗ ω3 = (ω1 + ω3) + (ω2) + (ω4) (21)

Thus the multiplicity of δ1 in (ω1 +ω3)+(ω4) is 35. On the other
hand, dimω4 = 8020, so the multiplicity of δ1 in ω4 is nonzero.
From (20) it follows that the multiplicity is exactly 35, and in
fact

ω4 ←→ 35x, 2ω2 ←→ 84x. (22)

We also conclude that the multiplicity of δ1 in ω1 + ω3 is zero.
Consider ω1 + ω2 which restricts to 84δ16, so δ1 occurs 84

times. Then

(ω1+ω2)⊗ω1 = (2ω1+ω2)+(2ω1)+(ω1+ω3)+(2ω2)+(ω2). (23)

Thus only 2ω2 contains δ1. This also implies

ω3 ←→ 35x. (24)

Combined with (20) we get

4ω1 ←→ 50x. (25)
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Example 2

Let G = Sp(n,R). The two K-types with highest weights

µ+(k) := (1, . . . , 0︸ ︷︷ ︸
k

, 0, . . . , 0), µ−(k) := (0, . . . , 0,−1, . . . ,−1︸ ︷︷ ︸
k

)

are fine K-types containing the same orbit of a character δ ∈ M̂.
The stabilizer W 0

δ
∼= W (Dk) ×W (Cn−k), and Wδ

∼= W (Ck) ×
W (Cn−k). The two representations corresponding to µ±(k) are

[(k)× (0)]⊗ [(n− k)× (0)], [(0)× (k)]⊗ [(n− k)× (0)].

The correspnding induced modules are∑
(n− `, `)× (0), 0 ≤ ` ≤ min(k, n− k),

(n− k)× (k).

The corresponding tensor products are∑
(1, . . . , 1︸ ︷︷ ︸

a

, 0, . . . , 0︸ ︷︷ ︸
b

,−1, . . . ,−1),∑
(2, . . . , 2︸ ︷︷ ︸

a

, 1, . . . , 1︸ ︷︷ ︸
b

, 0, . . . , 0)

These K-types are automatically petite, and in fact satisfy µ(iZα) =
0,±1,±2. With some extra work it is possible to derive the re-
sult stated earlier.

In the exceptional cases, we need cases when µ(iZα) = ±3 as
well.
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