Spherical Unitary dual for quasisplit real groups

Dan Barbasch

(joint work with Dan Ciubotaru)

July 2009

1

Notation

NOTATION

- G is the real points of a linear connected reductive group.
- $\mathfrak{g}_0 := Lie(G)$, θ Cartan involution, $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{s}_0$, $\mathfrak{g} := (\mathfrak{g}_0)_{\mathbb{C}}$, K maximal compact subgroup, $\mathfrak{g} = \mathfrak{k} + \mathfrak{s}$,
- P = MAN minimal parabolic subgroup, $M := C_K(A)$.
- $W := N_K(A)/M$ the Weyl group.
- $\lambda \in \widehat{K}$ a K-type, then W acts on V_{λ}^{M} .

Problem

Compute the representation of W on V_{λ}^{M}

More generally if $\chi \in \widehat{M}$, compute the representation of W_{χ} (the centralizer of χ in W) on $\operatorname{Hom}_{M}[\chi, V_{\lambda}]$.

Motivation

- (1) For $G = GL(n, \mathbb{C})$, K = U(n) and M is the diagonal torus, and $W = S_n$. Kostka-Foulkes polynomials encode information about V_{λ}^{M} .
- (2) Spherical unitary dual.

Spherical unitary dual

Let $\chi \in \widehat{MA}$. The spherical principal series is

$$X(\chi) := Ind_P^G(\chi \otimes \delta_P^{-1/2} \otimes 1), \tag{1}$$

where χ is an unramified character, (i.e. $\chi \mid_{M} = triv$), and δ_{P} is the modulus function of P.

- $\operatorname{Hom}_K[Triv:X(\chi)]=1,\ L(\chi):=$ the unique irreducible subquotient containing the trivial K-type,
- Every spherical irreducible module is an $L(\chi)$ for some χ .
- $L(\chi) \cong L(\chi')$ if and only if there exists $w \in W$ such that $w\chi = \chi'.$
- $L(\chi)$ is hermitian if and only if there is $w \in W$ such that $w\chi = \overline{\chi^{-1}}.$

- For every $w \in W$ there is an intertwining operator $A_w(\chi): X(\chi) \longrightarrow X(w\chi),$
- A_w gives rise to

$$a_w(\chi, \lambda) : \operatorname{Hom}_K[V_\lambda, X(\chi)] \cong V_\lambda^M \longrightarrow \operatorname{Hom}_K[V_\lambda : X(w\chi)] \cong V_\lambda^M,$$

- A_w is normalized so that $a_w(\chi, triv) = id$; this makes A_w analytic for the region for which $\langle Re\chi, \alpha \rangle \geq 0$ for all roots of N.
- In the hermitian case $a_w(\chi, \lambda)$ gives rise to a hermitian form. $L(\chi)$ is unitary if and only if $a_w(\chi, \alpha)$ positive semidefinite for all λ .
- If $w = s_1 \dots s_k$ is a reduced decomposition,

$$a_w = a_{s_1} \cdot \dots \cdot a_{s_k},$$

and each a_{s_i} is induced from a corresponding operator on a real rank one group.

- A K-type will be called **petite**, if $a_w(\chi, \lambda)$ only depends on the Weyl group representation V_{λ}^M . More precisely we put a condition on the form of the $a_{s_i}(\chi, \lambda)$. For example when a_{s_i} comes from $SL(2, \mathbb{R})$, it has the form

$$a(2m, s_{\alpha}, \chi) = \begin{cases} Id & \text{if } m = 0, \\ \prod_{0 < j \le m} \frac{2j - 1 - \langle \chi, \check{\alpha} \rangle}{2j - 1 + \langle \chi, \check{\alpha} \rangle} Id & \text{if } m \neq 0. \end{cases}$$

(2m parametrizes a representation of SO(2)) We require that m=0,1 only. For other real rank one groups there are similar conditions motivated by formulas of Johnson and Wallach.

There are analogous results when we replace χ by an arbitrary character, or $\mathbb R$ by a p-adic field.

The p-adic case

G is assumed split, with Borel subgroup B = AN, and let $\mathbb{F} \supset \mathcal{R} \supset \mathcal{P}$ be the field with its ring of integers and maximal ideal. The character χ is assumed unramified for the moment, *i.e.* $\chi \mid_{A \cap K} = triv$. In this case $K = G(\mathcal{R})$. Let G be the complex dual group. Then $\{L(\chi) \text{ unramified}\} \longleftrightarrow \{s \in {}^{\vee}G \text{ semisimple}\}/{}^{\vee}G$. The element s decomposes into an elliptic and a hyperbolic part $s = s_e s_h$. The orbit of s will be called the infinitesimal character. We can collect the infinitesimal characters according to the elliptic part, $Unit_{sph}(G) = \coprod Unit_{sph,s_e}(G)$. An interesting result is that in the adjoint case,

$$Unit_{sph,s_e}(G) \cong Unit_{sph,1}(G(s_e)),$$

where $G(s_e)$ is the split group dual to $G(s_e)$. Related/similar results were described by A. Pantano in her talk.

Main Result

Recently, joint with Dan Ciubotaru we have extended the previous result to

- arbitrary χ for split groups of any kind, (using results of Roche)
- blocks (in the sense of Bernstein) of unipotent representations for p-adic groups studied by Lusztig,
- blocks associated to unramified characters of quasisplit groups.

Main Topic of this talk

(again, joint with Dan Ciubotaru)

Let G be quasisplit. Then associated to it there is an (outer) automorphism $^{\checkmark}\tau$ of $^{\checkmark}G$. Then form $^{L}G:=^{\lor}G\rtimes\{^{\checkmark}\tau\}$, and let $^{\checkmark}G$ $^{\checkmark}\tau$ be

the connected component of $\forall \tau$. In this case,

$$\{L(\chi) \text{ unramified }\} \leftrightarrow \{s \in {}^{\lor}G{}^{\lor}\tau \text{ semisimple }\}/{}^{\lor}G.$$

A semisimple element decomposes $s = s_h s_e$ with $s_e \in {}^{\vee}G$. Let $G(s_e)$ be as before. Then there is an inclusion

$$Unit_{sph,s_e}(G) \subset Unit_{sph,1}(G(s_e))$$

In the cases U(n+1,n), U(n,n), and O(n+2,n) this is an equality. For type E_6 the inclusion is into the spherical unitary dual for p-adic F_4 .

Sketch of some proofs

I. Need some facts for split groups, namely a set of **relevant** K—types which detect unitarity for spherical representations. We use the double cover of the real group.

Type A_{n-1}. Spherical factors of $V_{\omega} \otimes V_{\omega'}$ (ω, ω' are fundamental representations). The Weyl group representations are (kl) with k+l=n.

Type B_n, **D_n**. Spherical factors of $[V_{\omega} \otimes V_{\omega'}] \otimes [V_{\rho} \otimes V_{\rho'}]$. $\omega, \omega', \rho, \rho'$ are fundamental representations.) The Weyl group representations are $(k) \times (l)$ and $(kl) \times (0)$ with k+l=n.

Type C_n. Spherical factors of $\wedge^k \mathbb{C}^{2n} \otimes \wedge^k (\mathbb{C}^{2n})^*$. Same Weyl group representations as before.

Type F₄. The maximal compact subgroup is $Sp(2) \times Sp(6)$.

K-type	W-type
$(0\mid 0,0,0)$	$1_1,$
$(0 \mid 1, 1, 0)$	$2_1,$
$(4 \mid 0, 0, 0)$	2_3 ,
(1 2, 1, 0)	$8_{1},$
(1 1, 1, 1)	4_2 ,
(2 2, 0, 0)	9_{1} .

Combined with results of Dan Ciubotaru for F_4 , this gives an embedding of the spherical unitary dual of the split F_4 into the spherical unitary dual of the split p-adic F_4 .

With A. Pantano we have computed much larger lists, all types.

- (II). For each $\sigma \in \widehat{W}$ on the list, we need a $V_{\lambda(\sigma)}$ which is petite, and such that $V_{\lambda(\sigma)}^{M}$ contains σ . Let $\tau \in Aut(G)$ satisfy
 - τ and θ commute,
 - G_{τ} is split of type dual to $G({}^{\vee}\!\tau)$.

Then $K \supset K_{\tau}$ has a Cartan subgroup H = MT, with $T \subset K_{\tau}$ a Cartan subgroup. Let $\mu(\sigma)$ be a relevant K-type of G_{τ} such that $V_{\mu(\sigma)}^{M_{\tau}}$ contains σ . We look for a relevant V_{λ} satisfying

- $V_{\lambda} \mid_{K_{\tau}}$ contains V_{μ} , and is petite.
- $V_{\lambda} \mid_{M}$ contains triv.

 λ such that

- (1) $\lambda \mid_{M} = triv$
- (2) $\lambda \mid_T = \mu$

works for the clasical groups.

In E_6 this is not good enough. In one of the cases, a weight of V_{λ} different from the highest one satisfies property (1) above.

Papers giving more details can be found on the same web site where you found these notes, under preprints.