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Introduction

This talk is about aspects of representation theory of p−adic
groups that parallel real groups. This conforms to the Lefschetz
principle which states that what is true for real groups is also true
for p-adic gorups.

In the case of real groups, the results refer to J. Adams, P. Trapa,
M. vanLeuwen, W-L. Yee and D. Vogan on the one hand, Schmid
and Vilonen on the other hand.



A major technique that does not apply in the p-adic case, is
tensoring with finite dimensional representations. Different
geometry plays a role in the representation theory of p-adic groups,
results have been developed by Lusztig, Kazhdan-Lusztig and
Ginzburg.
This talk will not have much geometry in it, mostly using the
aforementioned results.
Many of the results are standard for p−adic groups. But as the
title indicates, the context is that of the affine graded Hecke
algebra. The aim is to develop a self contained theory for graded
affine algebras.
Most of the results presented follow [B], [BC1], [BC2], [BM3].
This is (still) work in progress.



The Unitarity Problem, P-adic Groups

NOTATION

1 G is the rational points of a linear connected reductive group
over a local field F ⊃ R ⊃ P.

2 The Hecke algebra is

H(G ) := {f : G −→ C, f compactly supported, locally constant }

3 A representation (π,U) is called hermitian if U admits a
hermitian invariant form, and unitary, if U admits a
G−invariant positive definite inner product.

4 It is called admissible if StabG (v) for any vector v ∈ U is
open, and UK is finite dimensional for any compact open
subgroup K ⊂ G .



Examples of such groups are isogeny forms of SL(2), which we
might call Sp(2) and SO(3), rational points of the simply
connected and adjoint form. Another well studied example is
GL(2).
Compact open subgroups:

Kn =

{[
a b
c d

]
: a, b, c , d ∈ R, ad − bc = 1, a, d ∈ R×, b, c ∈ $nR

}
K0(= K ) is a maximal compact open subgroup, in GL(2) unique
up to conjugacy. SL(2) has another conjugacy class of maximal

compact subgroups K ′0 =

[
$ 0
0 1

]
· K0 ·

[
$−1 0

0 1

]
.

Iwahori subgroup I ⊂ K0:

I :=

{[
a b
$c d

]
: a, b, c , d ∈ R, ad −$bc = 1

}



The prime example of an admissible representation is the principal
series X (χ) and its composition factors.

B = AN =

{[
α 0
0 α−1

]}
·
{[

1 x
0 1

]}
Let χ ∈ Â. Define (πχ,X (χ))
X (χ) = {f : G −→ C : f (gb) = χ(a)−1δ(a)−1/2f (g)} with
f locally constant and δ the modulus function, and
πχ(g)f (h) := f (g−1h).

Because G = KB, this is an admissible representation.
Special Case: χ satisfying χ |A∩K0= trivial , is called unramified.
We write χ(a) = |α|ν , and X (ν).
Representations which are factors of X (ν) are called unramified. In
particular the spherical representions, those which satisfy
V K0 6= (0) are unramified.



PROBLEM

Classify all irreducible unitary representations of G .
It is enough (Harish-Chandra) to solve an

ALGEBRAIC PROBLEM:
Classify the unitary dual for irreducible admissible H(G )−modules.
H(G ) is an algebra under convolution, and is endowed with a
conjugate linear involutive anti-automorphism ?,

(f )?(x) := f (x−1).

Hermitian: 〈π(f )v1, v2〉 = 〈v1, π(f ?)v2〉.
Unitary: Hermitian plus 〈 , 〉 >> 0 (i.e. positive definite).



A Reduction

According to results of Bernstein, the category of admissible
representations breaks up into blocks. Further results, starting with
Borel-Casselmann, Howe-Moy, Bushnell-Kutzko and many others
(J. Kim, J.-K. Yu, ... ), imply that each component is equivalent
to a category of finite dimensional representations of an
Iwahori-Hecke type algebra, or at least true for most components.



Main Example: (Borel-Casselmann)
(the prototype of the results mentioned above).

- G split, B = AN ⊂ G a Borel subgroup.

- I ⊂ G an Iwahori subgroup

- H(I\G/I) the Iwahori-Hecke algebra of I−biinvariant
functions in H(G ).

Theorem (Borel-Casselmann)

The category of admissible representations all of whose
subquotients are generated by their I−invariant vectors is
equivalent to the category of finite dimensional
H(I\G/I)−modules via the functor U 7→ UI .

The functor takes a unitary module to a unitary module. But it is
not at all clear why UI unitary should imply U unitary.



Theorem (B-Moy)

A module (π,U) is unitary if and only if (πI ,UI) is unitary.

An ingredient of the proof is the independence of tempered
characters, which is a consequence of results of Lusztig and
Kazhdan-Lusztig, which depend on geometric methods.

The algebra H(I\G/I) can be described by generators and
relations. In the case of a more general block, the analogous
algebra to the one appearing in the Borel-Casselmann result is
more complicated. Most (if not all) cases are covered by a
generalization of the B-Moy theorem in [BC1].



The spherical unitary dual for split groups is completely known,
[BM3], [B], [C], [BC], ... .

The unitary dual for p−adic GL(n) is known by work of Tadic
(much earlier). Other groups of type A are also known, e.g.
division algebras, work of Secherre.

These examples can be made to fit in the general program outlined
earlier, i.e. use the blocks to reduce the problem to the analogous
one for affine graded Hecke algebras, and solve that problem
instead.



Hecke algebra for type A1

H(I\G/I) is generated by θ,T satisfying

T 2 = (q − 1)T + q

and

Tθ = θ−1T + (q − 1)(θ + 1) (Sp(2))

Tθ = θ−1T + (q − 1)θ (SO(3))

Note: Because the category of representations breaks up
according to infinitesimal character, several affine graded algebras
are needed in order to compute the unitary dual. This involves a
reduction to real infinitesimal character; it is analogous to the real
case, but in fact more general. We will assume it at some point.



The Graded Affine Hecke Algebra

Notation:

- Φ = (V ,R,V ∨,R∨) an R−root system, reduced.

- W the Weyl group.

- Π ⊂ R simple roots, R+ positive roots.

- k : Π→ R a function such that kα = kα′ whenever α, α′ ∈ Π
are W -conjugate.

Definition (Graded Affine Hecke Algebra)

H = H(Φ, k) ∼= C[W ]⊗ S(VC) such that

(i) C[W ] and S(VC) have the usual algebra structure,

(ii) ωtsα = tsαsα(ω) + kα〈ω, α̌〉 for all α ∈ Π, ω ∈ VC.



Star Operations

In order to be able to consider hermitian and unitary modules for
an algebra H, we need a star operation; a conjugate linear
involutive algebra anti-automorphism κ.
(π,U) gives rise to (πκ,Uh) by the formula

(πκ(h)f ) (v) := f (π(κ(h))v)

(π,U) admits a κ−invariant sesquilinear form if and only if there
is a (nontrivial C−linear) equivariant map ι : (π,U) −→ (πκ,Uh).
Define

〈h1, h2〉 := ι(h1)(h2).

The form is hermitian if ιh : U ⊂
(
Uh
)h −→ Uh coincides with ι.

Note: This is already simpler than the real case because we are
dealing with finite dimensional representations (⊂ is =).



H has a natural κ which we will denote by • :

(tw )• = tw−1 , (ω)• := ω, ω ∈ VC.

(Recall that VC is the complexification of the real vector space
V ). Bullet is an involutive anti-automorphism because

(tαω)• = ω•t•α = ωtα = tαsα(ω) + 〈ω, α̌〉
while

(sα(ω)tα + 〈ω, α̌〉)• = t•αsα(ω)• + 〈ω, α̌〉 = tαsα(ω) + 〈ω, α̌〉.

However if H is obtained from a p−adic group, the star
f ?(x) := f (x−1) induces a ? on H, which is NOT •.



It is not far off though; the κ coming from the group has to satisfy

(i) κ(tw ) = tw−1 ,

(ii) κ(VC) ⊂ C[W ] · VC.

Condition (ii) is analogous to the case of a real group. κ is
required to preserve g ⊂ U(g), so it comes down to classifying real
forms of g.



Theorem (B-Ciubotaru)

Assume the root system Φ is simple. The only involutive
antiautomorphisms κ satisfying (i) and (ii) are
• from before,
and
?, determined by ω? = tw0(−w0ω)tw0 , where w0 ∈W is the long
Weyl group element.

We define a : H −→ H to be the automorphism determined by

a(tw ) := tw0ww0 , a(ω) := −w0(ω).

Then a(h•) = (a(h))• and ? = Ad tw0 ◦ a ◦ •.



In all the examples we know, ? is the star operation coming from
the group.
The underlying reason for this discrepancy is that

(δIaI)−1 6= δIa−1I for all a ∈ A.

An example is provided in SL(2) by a =

[
$ 0
0 $−1

]
.

It is true however that

(δIwI)−1 = (δIwI) for w =

[
0 −1
1 0

]
.



Sketch of Proof

κ an involutive automorphism, κ(tw ) = tw and (ii) as before.

1 κ(tw ) = tw , w ∈W ; κ(ω) = c0ω +
∑

y∈W gy (ω)ty , ω ∈
VC, where gy : VC → C, y ∈W , are linear.

2 tsαω − sα(ω)tsα = kα(ω, α∨) implies for all ω ∈ VC, α ∈ Π,

gsαysα(ω) =

{
gy (sα(ω)), y 6= sα,

gsα(sα(ω)) + kα(1− c0)(ω, α∨), y = sα.

3 κ2 = Id implies c2
0 = 1. If c0 = 1, gy = 0, so κ = Id ↔ •.

If c0 = −1 and a = Id , Ad tw0 ◦ κ is another κ, but has
c0 = 1. So κ = Ad tw0 ↔ ?.

If a 6= Id need another page of computations.



Strategy

In order to classify the unitary dual one needs to know first which
irreducible modules are hermitian.

Classify all admissible irreducible modules

Single out the hermitian ones

For the affine graded algebra admissible means finite dimensional.



Langlands Classification

Definition

A module (σ,U) is called tempered (modulo the center) if all the
weights η of VC satisfy Re〈$α, η〉 ≤ 0 for all α ∈ Π, $α the
corresponding fundamental weight.

Let ΠM ⊂ Π be a subset of the simple roots.

- HM := span{tα, ω}, α ∈ ΠM , ω ∈ VC.

- VM ⊂ V the kernel of the α̌ with α ∈ ΠM .

- X (M, σ0, ν) := H⊗HM
[Uσ0 ⊗ Cν ]

the standard module attached to a tempered module σ0 of
(the semisimple part of) HM and a character ν of VM .



Theorem (Langlands Classification, cf [Ev])

(i) If Re〈ν, α〉 > 0 for all α ∈ Π\ΠM , then X (M, σ0, ν) has a
unique irreducible quotient L(M, σ0, ν).

(ii) Every irreducible module is isomorphic to an L(M, σ0, ν).

(iii) L(M, σ0, ν) ∼= L(M ′, σ′0, ν
′) if and only if

M = M ′, σ0 ∼= σ′0, ν = ν ′ .

Denote by w0 the minimal element in w0aM, and w0σ0, w0ν the
transfers of σ0, ν to Hw0M

Then L(M, σ0, ν) is the image of an intertwining operator

Aw0 :X (M, σ0, ν) −→ X (aM,w0σ0,w
0ν),

h ⊗ v 7→ hRw0 ⊗ w0(v)

Rw0 ∈ H is explicit, defined as follows.



α ∈ Π, rα := tsα − kα
α ,

w = s1 · · · · · sk , Rw :=
∏

rαi .

Rw does not depend on the particular minimal decomposition of w
into simple reflections. Its main property is that
Rwω = w−1(ω)Rw .
One would like to relate the form for ? with that for • with the
expectation that • is easier. We need the classification of
hermitian modules.
Tempered modules are unitary for ?, because they come from L2 of
a group (some kα come from work of Opdam).
An essential property of Aw0 is that it is analytic for σ0 tempered
and ν satisfying (i) of the theorem.
We will use rα := tαα− kα in some later formulas.



Tempered modules and •

Recall a defined by a(ω) = −w0ω and a(tw ) = tw−1 . If (σ,U) is
tempered, so is (σ ◦ a,U). We restrict attention to Hecke algebras
of geometric type.

a) σ ∼= σ ◦ a. Tempered representations are
parametrized by G−conjugacy classes of pairs {e, ψ}
where e ∈ g is a nilpotent element, and ψ a character
of the component group A(e) of the centralizer of e
of generalized Springer type, matching it with a
W-representation σψ. The Jacobson-Morozov
theorem implies that a stabilizes the class of e. The
claim follows from the fact that a is the identity on
Ŵ .

b) The intertwining operator θ : U −→ U corresponding
to a is unique up to a constant, satisfies θ2 = Id ,
and so it can be normalized to satisfy θ∗ = θ.



Relation between ? and •

Extend H by a so that atw = tw0ww0a and aω = (−w0ω)a. The
star operations are extended by a• = a, a∗ = a.
Let π be a representation of the extended algebra. Suppose a
module (π,U) has a •−hermitian form 〈 , 〉•. We can define

(v1, v2)? := 〈π(atw0)v1, v2〉•.

Keeping in mind that atw0 = tw0a, and (atw0)tw = tw (atw0),

(π(tw )v1, v2)? =〈π(atw0)π(tw )v1, v2〉• = (v1, π(t?w )v2)?

(π(a)v1, v2)? =(v1, π(a∗)v2)?

(π(ω)v1, v2)? =(v1, π(ω∗)v2)?



Induced Hermitian Modules

- (σ,Uσ) a representation of HM , Ind(M, σ) := H⊗HM
U with

action π(h)h1 ⊗ v := hh1 ⊗ v .

- (σ•M ,Uh) and (σ?M ,Uh) the representations on the hermitian
dual space Uh.

- (π•, Ind(M, σ)h) and (π?, Ind(M, σ)h) the representations on
the hermitian dual.

- The space Ind(M, σ)h can be identified with
HomHM

[H,C]⊗ Uh so a typical element is {thx ⊗ vh} where
x ∈W /W (M) and vh ∈ Uh.



Theorem

[B-Ciubotaru] The map

Φ(thx ⊗ vh) := txw0

aM

⊗ avh

is an H−equivariant isomorphism between
(
π•σ,X (M, σ)h

)
and(

πσ,X (aM,aσh)
)

where the action on aσh is given by •a(M).
Similarly for ?, but the relation between ?G and ?M is more
complicated.



Example

ΠM = ∅. The standard module is X (ν) the full principal series.

(π•,X (ν)h) ∼= (π,X (w0ν))

(π?,X (ν)h) ∼= (π,X (−ν))

This makes it precise which irreducible modules are hermitian.

For • you need w0ν to be in the same Weyl orbit as ν, same as ν
and ν must be in the same Weyl orbit.

For ? you need −ν to be in the same Weyl orbit as ν.



We only need to consider the “intersection” of the two conditions,
ν real and w0ν = −ν.

Corollary

Assume ν is real. L(M, σ0, ν) admits a nondegenerate hermitian
form for

•: any ν ∈ V ∨M ,

?: if and only if there exists w ∈W such that
wν = −ν, and w ◦ σ0 ∼= σ0 (in this case aM = M).

Remark: It is possible to dispense with w0ν = −ν by considering
the algebra extended by a as in [BC1]. We will not do so in this
talk.
The relation between ? and • is essentially that between the
signature of a hermitian matrix A and another T0A which is also
hermitian. This is a simple relation, but rather complicated to
make explicit.



Sesquilinear Forms

A •−invariant sesquilinear form on Ind(M, σ) is equivalent to
defining an H-equivariant map

I : (π, Ind(M, σ)) −→ (π•, Ind(M, σ)h).

We call I hermitian if Ih = I or equivalently I(v)(w) = I(w)(v),
for all v ,w ∈ X (M, σ).
For the case X (M, σ0, ν) and L(M, σ0, ν) one can write down a
formula for the hermitian form. It depends on the structure of σ0
which can be highly nontrivial.



Spherical Principal Series

Assume from now on that ν is real. For ν regular,

A := S(VC)

X (ν) := H⊗A Cν .
〈h1, h2〉•,ν = εA (tw0h•2h1Rw0) (w0ν).

〈h1, h2〉?,ν = εA (h?2h1Rw0) (w0ν).

Any element h ∈ H can be written uniquely as h =
∑

twaw with
aw ∈ S(VC). Then εA(h) := a1.



For ν singular, assume it is dominant, and let M be the Levi
component for which ν is central. Let t0 be the shortest element
in the coset tw0W (M), and R0 the corresponding element.

- 〈h1, h2〉•,ν = εA
(
tw0h•2h1R0

)
(w0ν).

- 〈h1, h2〉?,ν = εA
(
h?2h1R0

)
(w0ν).

The quotient by the radical is the irreducible spherical
representation corresponding to ν.
Write R0 =

∑
twaw with aw ∈ S(V ). Then

- 〈tx , ty 〉•,ν = ax−1y(w0)−1(w0ν).

- 〈tx , ty 〉?,ν = ax−1y (w0ν).

These formulas give the matrices of the hermitian forms.
They generalize to arbitrary Langlands parameters.



Example

Recall the elements Rx , and assume a = Id . Then

R•x = (−1)`(x)Rx−1

R?
x = (−1)`(x)tw0Rx−1tw0 ,

If α(ν) > 0 for all α ∈ Π, then Rx ⊗ Cν is a basis of X (ν) formed
of eigenvectors for V .

〈Rx ,Ry 〉• =

{
0 if x 6= y ,

(−1)`(x)
∏

x−1α<0(1− α2)(w0ν) if x = y

This formula computes the Jantzen filtration of X (ν) explicitly.
〈Rx ,Ry 〉? is more complicated.
This illustrates how • can be much simpler than ?.



One Consequence

To determine whether an irreducible module is unitary, it has to be
hermitian, and the ∗−form must be positive definite. This is the
same as determining that the form on the standard module is
positive semidefinite. The standard module inherits a filtration
such that every successive quotient has a nondegenerate invariant
form. The form changes with respect to the continuous parameter
ν in a predictable way, and one can talk about a signature. The
problem is that a given irreducible module can have two
nondegenerate forms up to a positive constant.
Problem: Need to keep track of this ambiguity.
The next result addresses this issue.



Consider again the case of a Hecke algebra of geometric type. The
classification results of Kazhdan-Lusztig imply that standard
modules have lowest W−types.

In the case of Re〈ν, α〉 > 0 they determine the Langlands quotient
L(M, σ0, ν) (the Langlands quotient is the unique irreducible
subquotient containing all the lowest W−types with full
multiplicity occuring in X (M, σ0, ν)).

These lowest W−types can be used to single out one of the forms.
Then one can look for an explicit algorithm to write out the
singature of a module.



Proposition (B-Ciubotaru)

When L(M, σ0, ν) is hermitian, the nondegenerate form can be
normalized so that:
the •-form is positive on the lowest W−types.

More precisely, suppose a = Id so that tw0 is central. Let deg(µ)
be the lowest degree so that µ occurs in the harmonics of S(VC).
The ?−form on a lowest W−type µ is given by (−1)deg(µ).
The general formula is a little more complicated. The signature on
a lowest W−type µ is given by the trace of tw0 .



In the real case, tensoring with finite dimensional representations
plays an essential role in determining filtrations and hermitian
forms. This is not available in the case of an affine graded Hecke
algebra. There are results of Lusztig and Ginzburg, and work/ideas
of Grojnowski aimed at computing composition factors of standard
modules.
The facts about filtrations of standard modules that are necessary
for a treatment parallel to the real case are only conjectural (as far
as I know).
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Complementary Series

Bn with parameter kα = 1 for α long, kα = c > 0 for α short,
spherical generic parameter, ν real:

0 ≤ ν1 ≤ · · · ≤ νn, no νi = c , ±νi ± νj = 1.
The next slide gives the generic spherical complementary series.
The parameters are more general than the geometric ones studied
by Lusztig. Similar results hold for the other types.



Complementary Series, Type Bn/Cn

Theorem

The complementary series for type B is
0 < c ≤ 1/2 : 0 ≤ ν1, . . . , ν1 < · · · < νk , . . . , νk < c .
1/2 < c ≤ 1 :
0 ≤ ν1 ≤ · · · ≤ νk ≤ 1/2 < νk+1 < νk+2 < · · · < νk+l < c
so that νi + νj 6= 1 for i 6= j and there are an even number of νi
such that 1− νk+1 < νi < c and an odd number of νi such that
1− νk+j+1 < νi < 1− νk+j .
1 < c : (joint with D. Ciubotaru)

1 0 ≤ ν1 ≤ ν2 ≤ · · · ≤ νm < c satisfy the unitarity conditions
for the case 1/2 < c ≤ 1.

2 νj+1 − νj > 1 for all j ≥ m + 1.

3 either νm+1 − νm > 1 or, if 1− νk+1 < νm < 1− νk (k + m is
necessarily odd), then 1 + νl < νm+1 < 1 + νl+1, with
k ≥ l + 1 and m + l even.



In terms of hyperplane arrangements, the regions of unitarity are
precisely those which are adjacent to a wall for which the
parameters are unitary for a Levi component.
A region where the parameter is not unitary has a wall where a
composition factor has W−types
(1, n − 1)× (0) and (n − 1)× (1) of opposite sign.

Originally we proved the theorem by using explicit formulas for the
intertwining operator on these W−types. Using the •−form and
the Rx we can reduce to a (simpler) combinatorial argument about
the Weyl group. We expect this to be useful for the nonspherical
case.


