Flag varieties, Bott-Samelson varieties GRT learning seminar

Balázs Elek

2019/Oct/11

1 Flag varieties

1.1 Notational conventions

Let G be a semisimple algebraic group over \mathbb{C} . Fix a Borel (maximal solvable) subgroup $B \subset G$ and a maximal torus $T \subset B$. Let $\mathfrak{h} \subset \mathfrak{b} \subset \mathfrak{g}$ denote the respective Lie algebbras. These choices determine a weight lattice $P \subset \mathfrak{h}^*$ and a root system $\Delta \subset P^*$ with a set of positive roots Δ^+ and a set of simple roots $\Pi = \{\alpha_1, \ldots, \alpha_n\}$. They also determine a Weyl group $W = N_G(T)/T$ with a given set of generators s_i and length function $l: W \to \mathbb{N}$.

Example 1.1. The main example to have in mind is $G = SL_n(\mathbb{C})$, with B upper triangular matrices, and T diagonal matrices. Here the weight lattice is $P = \{\vec{x} \in \mathbb{Z}^n | \vec{x} \cdot (1, 1, ..., 1)^T = 0\}$, the set of roots is $\{e_i - e_j | i \neq j\}$, where e_i is the i-th standard basis vector. The positive roots are $\Delta^+ = \{e_i - e_j | i < j\}$ and the simple roots are $\Pi = \{e_i - e_{i+1}\}$. The Weyl group W is the symmetric group S_n .

1.2 Introduction

We are interested in the **flag variety** G/B of G. Since B is a closed subgroup, this is a smooth variety with a transitive G-action.

Example 1.2. For $G = SL_n(\mathbb{C})$, G/B is the variety of complete flags in \mathbb{C}^n

$$\{0 = F_0 \subset F_1 \subset \ldots \subset F_{n-1} \subset F_n = \mathbb{C}^n | \dim F_i = i\}.$$

To see this, notice that G/B is isomorphic to \mathcal{B} , the variety of all Borel subgroups via

$$qB/B \mapsto qBq^{-1}$$

and the stabilizer of a complete flag is a Borel subgroup. Under this identification, the point B/B corresponds to the Borel subgroup B and to the base flag $\{0 \subset \text{Span}\{e_1, e_2\} \subset \ldots \subset \text{Span}\{e_1, \ldots, e_{n-1}\} \subset \mathbb{C}^n\}$.

The flag variety has a T-action (since $T \subset G$).

Proposition 1.3. *The* T*-fixed points in* G/B *are in bijection with the Weyl group, more precisely, we have*

$$(\mathbf{G}/\mathbf{B})^{\mathsf{T}} = \{ \dot{\mathbf{w}}\mathbf{B}/\mathbf{B} \}_{\mathbf{w}\in \mathbf{W}},$$

where \dot{w} denotes a representative of an element of $W = N_G(T)/T$ in G.

Example 1.4. For $G = SL_n(\mathbb{C})$, the T-fixed flags are precisely the coordinate flags

$$\left\{0 = \mathsf{F}_0 \subset \operatorname{Span} e_{w(1)} \subset \operatorname{Span} \{e_{w(1)}, e_{w(2)}\} \subset \ldots \subset \operatorname{Span} \{e_{w(1)}, \ldots, e_{w(n-1)}\} \subset \mathbb{C}^n\right\}.$$

The flag variety is also a projective variety, which means that we can gain a lot of leverage on it by looking at its T-moment map image (see Figure 1) which is know to be given by the convex hull of the images of the T-fixed points.

Figure 1: The moment map image of $SL_3(\mathbb{C})$'s flag manifold

1.3 The Bruhat decomposition

The sets $X_o^w = BwB/B$ are called **Bruhat cells**. They are cells in the sense of algebraic topology, i.e. $X_o^w \cong \mathbb{C}^{l(w)}$. Their closures $X^w = \overline{X_o^w}$ are called **Schubert varieties**.

Theorem 1.5 (Bruhat decomposition). *The Bruhat cells form a cell decomposition of* G/B, *i.e.*

$$\mathsf{G}/\mathsf{B}=\bigsqcup_{w\in W}\mathsf{X}_{\mathsf{o}}^w.$$

Moreover, any Schubert variety is a union of Bruhat cells, and the closure relations define a partial ordering on W, called the **Bruhat order**

$$X^w = \bigsqcup_{v \le w} X^v_o.$$

Example 1.6. For $G = SL_n(\mathbb{C})$, the B-orbit of a standard basis vector e_k is

$$\left\{c_k e_k + \sum_{i=1}^{k-1} c_i e_i \mid c_k \neq 0\right\},\$$

in particular, if we start at a coordinate flag wB/B, and apply elements of B, we can get arbitrarily close to other coordinate flags where some of the inversions of the permutation w are eliminated, i.e. where instead of the standard basis $e_{w(i)}$ vector occuring at step i of the flag, any of the standard basis vectors e_k with $k \le w(i)$ occurs instead (with $e_{w(i)}$ occuring later). See Figure 2 for an example in $SL_3(\mathbb{C})$.

Figure 2: Two Bruhat cells in $SL_3(\mathbb{C})/B$.

If we take closures, these points are added, and we see that the Bruhat order then has the description that $v \le w$ if for all i = 1, ..., n,

$$\operatorname{sort}(v(1), v(2), \dots, v(i)) \leq \operatorname{sort}(w(1), w(2), \dots, w(i)),$$

and the \leq stands for comparing sequences entry-wise.

If $G = SL_n(\mathbb{C})$, given a flag F, we can decice which Schubert cell it belongs to by looking at the $(n - 1) \times (n - 1)$ rank matrix whose (i, j)-th entry is dim $(F_i \cap Span\{e_1, \ldots, e_j\}$, and comparing it to the rank matrices of the coordinate flags.

Example 1.7. The flag $F = (0 \subset \text{Span}\{e_1 + e_3\} \subset \text{Span}(e_1 + e_3, e_1) \subset \mathbb{C}^3$ has rank matrix

	$Span\{e_1\}$	Span $\{e_1, e_2\}$
$Span\{e_{1} + e_{3}\}$	0	0
$Span(e_1 + e_3, e_1)$	1	1

The coordinate flag corresponding to the permutation 312 has the same rank matrix, so $F \in X_0^{312}$.

2 Bott-Samelson varieties

2.1 Motivation: Desingularizations of Schubert varieties

Schubert varieties are in general singular.

Example 2.1. For $G = SL_n(\mathbb{C})$, a Schubert variety X^w is singular if and only if the permutation does not contain any 4×4 permutation submatrix equal to the permutation 3412 or 4231.

If X and Y are varieties with a right action of B on X and a left action of B on Y, then we define the quotient

$$X \times^{B} Y = \{[x, y] \mid x \in X, y \in Y, [x, y] = [xb^{-1}, by]\}$$

Definition 2.2. Let $Q = (s_{i_1}, s_{i_2}, \dots, s_{i_k})$ be a word in the simple reflections. The **Bott-Samelson** variety is

$$BS^Q = P_{i_1} \times^B P_{i_2} \times^B \ldots \times^B P_{i_k} / B,$$

where P_j denotes the minimal parabolic containing the root subgroup for $-\alpha_j$.

Example 2.3. For $G = SL_n(\mathbb{C})$ the Bott-Samelson variety G^Q can be interpreted as the **incidence variety**, where start from the base flag and at every step of Q, we change only the subspace corresponding to the simple reflection. More concretely, for $G = SL_3(\mathbb{C})$ and $Q = (s_1, s_2, s_1)$, we have that $BS^Q = \{(L, P, L') \mid L \subset Span(e_1, e_2) \cap P, L' \subset P\}$, or, more visually

Theorem 2.4. The Bott-Samelson variety BS^Q has a map to the flag variety

$$\mathfrak{m}: \mathsf{BS}^{\mathsf{Q}} \to \mathsf{G}/\mathsf{B}$$
$$[\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_k] \mapsto \mathfrak{p}_1 \mathfrak{p}_2 \cdots \mathfrak{p}_k \mathsf{B}/\mathsf{B}.$$

Moreover, if Q is a reduced word, then the image $m(BS^Q)$ is the Schubert variety X^w (where $w = \prod Q$), and this map is generically one-to-one.

Example 2.5. For $G = SL_n(\mathbb{C})$, the map is "take the rightmost flag in the incidence variety picture".

Remark 2.6. Note that the Bott-Samelson variety is not a resolution of singularities in the strictest sense, since it is not generically one-to-one to the smooth locus of the Schubert variety. For example, G/B is smooth, but $m : BS^Q \to G/B$ is not an isomorphism.

2.2 **Charts on Bott-Samelson varieties**

The Bott-Samelson variety is an iterated \mathbb{P}^1 -bundle because each quotient P_k/B is isomorphic to \mathbb{P}^1 . Therefore it has many natural coordinate charts.

Proposition 2.7. On $P_k/B \cong \mathbb{P}^1$, we have two charts $\mathfrak{u}_+, \mathfrak{u}_- : \mathbb{C} \to P_k/B$ given by

$$u_{+}(z) = u_{\alpha_{k}}(z) \cdot s_{k}$$
$$u_{-}(w) = u_{-\alpha_{k}}(w)$$

where u_{β} : $SL_2(\mathbb{C}) \to G$ is the root subgroup corresponding to β . The change of coordinates between the two charts is $w = \frac{1}{2}$.

Example 2.8. For $SL_3(\mathbb{C})$, and $Q = (s_1, s_2)$, the +--chart is given by

$$\left[\begin{pmatrix} z_1 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & w_2 & 1 \end{pmatrix}\right].$$

Theorem 2.9. For Q a reduced word for w, the $+^{|Q|}$ -chart of BS^Q is an isomorphism from $\mathbb{C}^{l(w)}$ to X_{α}^{w} .

Example 2.10. For $Q = (s_1, s_2)$, the image of the ++ chart in G/B is

$$\begin{pmatrix} z_1 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & z_2 & -1 \\ 0 & 1 & 0 \end{pmatrix} / B = \begin{pmatrix} z_1 & -z_2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} / B.$$

Notice that the origin $z_1 = z_2 = 0$ is mapped to the T-fixed flag 312, which is in X_0^{312} .

For us, the most important application of Bott-Samelson varieties is to give explicit coordinates to the big cell $X_{o}^{w_{0}}$.

Actions of vector fields 3

3.1 SL₂(ℂ)

For $G = SL_2(\mathbb{C})$, the Bott-Samelson variety is isomorphic to the flag variety

,

$$BS^{(s)} = G/B$$

The big cell is parametrized by

$$\begin{pmatrix} z & -1 \\ 1 & 0 \end{pmatrix} / \mathbf{B}.$$

Recall that we have a left U(g)-action on G/B generated by the vector fields corresponding to the basis e, f, h of $\mathfrak{sl}_2(\mathbb{C})$. We compute these actions in this coordinate chart.

We have

$$\exp(-te) = \begin{pmatrix} 1 & -t \\ 0 & 1 \end{pmatrix}, \qquad \exp(-tf) = \begin{pmatrix} 1 & 0 \\ -t & 1 \end{pmatrix}, \qquad \exp(-th) = \begin{pmatrix} e^{-t} & 0 \\ 0 & e^{t} \end{pmatrix},$$
$$\begin{pmatrix} e^{-t} & 0 \\ 0 & e^{t} \end{pmatrix} \begin{pmatrix} z & -1 \\ 1 & 0 \end{pmatrix} / B = \begin{pmatrix} e^{-t}z & -e^{-t} \\ e^{t} & 0 \end{pmatrix} / B = \begin{pmatrix} e^{-2t}z & -1 \\ 1 & 0 \end{pmatrix} / B,$$

and we have

Since

$$\frac{\mathrm{d}}{\mathrm{dt}}(e^{-2t}z) = -2e^{-2t}z$$
$$h \cdot z = \frac{\mathrm{d}}{\mathrm{dt}}\Big|_{t=0}(e^{-2t}z) = -2z$$
$$h \mapsto -2z\frac{\mathrm{d}}{\mathrm{dz}}.$$

Similarly, we compute the action of f: Since

$$\begin{pmatrix} 1 & 0 \\ -t & 1 \end{pmatrix} \begin{pmatrix} z & -1 \\ 1 & 0 \end{pmatrix} / B = \begin{pmatrix} z & -1 \\ -tz+1 & t \end{pmatrix} / B = \begin{pmatrix} \frac{z}{-tz+1} & tz-1 \\ 1 & -t(tz-1) \end{pmatrix} / B = \begin{pmatrix} \frac{z}{-tz+1} & -1 \\ 1 & 0 \end{pmatrix} / B,$$

and we have

$$\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{z}{-\mathrm{t}z+1}\right) = \frac{z^2}{(-\mathrm{t}z+1)^2}$$
$$f \cdot z = \frac{\mathrm{d}}{\mathrm{dt}}\Big|_{\mathrm{t}=0}\left(\frac{z}{-\mathrm{t}z+1}\right) = z^2$$
$$f \mapsto z^2 \frac{\mathrm{d}}{\mathrm{d}z}.$$

Exercise 3.1. Using this coordinate chart, verify that $e \mapsto -\frac{d}{dz}$.

4 $SL_3(\mathbb{C})$

Let $G = SL_3(\mathbb{C})$ and $Q = (s_1, s_2, s_1)$. Then $BS^Q \to G/B$ is generically one-to one. Let us compute the image of the +++ chart.

$$\begin{pmatrix} z_1 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & z_2 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} z_3 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} / \mathbf{B} = \begin{pmatrix} z_1 z_3 - z_2 & -z_1 & 1 \\ z_3 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} / \mathbf{B}$$

The z_2 coordinate can be recovered by taking the top left 2 × 2 minor (this is preserved under the right action of B, if the antidiagonal entries are scaled appropriately).

We have to compute the action of the vector fields e_1 , f_1 , h_1 , e_2 , f_2 , h_2 . We have

$$\begin{split} \exp(-te_1) &= \begin{pmatrix} 1 & -t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \exp(-tf_1) = \begin{pmatrix} 1 & 0 & 0 \\ -t & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \exp(-th_1) = \begin{pmatrix} e^{-t} & 0 & 0 \\ 0 & e^{t} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\ \exp(-te_2) &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -t \\ 0 & 0 & 1 \end{pmatrix}, \quad \exp(-tf_2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -t & 1 \end{pmatrix}, \quad \exp(-th_2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & e^{t} \end{pmatrix}, \end{split}$$

Exercise 4.1. Verify that or find a sign mistake in

$$e_{1} \mapsto -\partial_{z_{1}}$$

$$f_{1} \mapsto z_{1}^{2}\partial_{z_{1}} - z_{1}z_{2}\partial_{z_{2}} + (z_{2} - z_{1}z_{3})\partial_{z_{3}}$$

$$h_{1} \mapsto -2z_{1}\partial_{z_{1}} + z_{2}\partial_{z_{2}} + z_{3}\partial_{z_{3}}$$

$$e_{2} \mapsto z_{1}\partial_{z_{2}} - \partial_{z_{3}}$$

$$f_{2} \mapsto z_{2}\partial_{z_{1}} + z_{3}^{2}\partial_{z_{3}}$$

$$h_{2} \mapsto z_{1}\partial_{z_{1}} - z_{2}\partial_{z_{2}} - 2z_{3}\partial_{z_{3}}$$

Example 4.2. *Note that* $[e_1, f_1] = h_1$

Exercise 4.3. Verify the remaining relations in $\mathfrak{sl}_3(\mathbb{C})$ or find a sign mistake in the formulas.

4.1 The principal block of category O

Similarly to the situation with \mathbb{P}^1 described by Dylan in the first lecture, we realize see the dual Verma module $M(0)^{\vee}$ as $\mathbb{C}[z_1, z_2, z_3]$. Notice that there is a highest weight vector of weight 0 (corresponding to the scalars) that is annihilated by all of the operators (this realizes the trivial representation as a submodule).

Recall that we have the BGG resolution

$$L(0) \to M(0)^{\vee} \to M(s_1.0)^{\vee} \oplus M(s_2.0)^{\vee} \to M(s_1s_2.0)^{\vee} \oplus M(s_2s_1.0)^{\vee} \to M(s_1s_2s_1.0)^{\vee} \to 0$$

Exercise 4.4. Verify that in the above resolution the highest weight vectors of $M(s_1.0)^{\vee}$ and $M(s_2.0)^{\vee}$ are z_1 and z_3 , respectively.

Note that the maps in the BGG resolution are given by taking residues with respect to some of the variables. For example, the map $M(0)^{\vee} \rightarrow M(s_1.0)^{\vee} \oplus M(s_2.0)^{\vee}$ is $\text{Res}_{z_1} \oplus \text{Res}_{z_3}$. This corresponds to sending the coordinates z_1, z_3 to ∞ , respectively.