Flag varieties, Bott-Samelson varieties GRT learning seminar

Balázs Elek

2019/Oct/11

1 Flag varieties

1.1 Notational conventions

Let G be a semisimple algebraic group over \mathbb{C}. Fix a Borel (maximal solvable) subgroup $B \subset G$ and a maximal torus $T \subset B$. Let $\mathfrak{h} \subset \mathfrak{b} \subset \mathfrak{g}$ denote the respecive Lie algebbras. These choices determine a weight lattice $P \subset \mathfrak{h}^{*}$ and a root system $\Delta \subset \mathrm{P}^{*}$ with a set of positive roots Δ^{+}and a set of simple roots $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. They also determine a Weyl group $W=N_{G}(T) / T$ with a given set of generators s_{i} and length function $l: W \rightarrow \mathbb{N}$.

Example 1.1. The main example to have in mind is $\mathrm{G}=\mathrm{S}_{\boldsymbol{n}}(\mathbb{C})$, with B upper triangular matrices, and T diagonal matrices. Here the weight lattice is $\mathrm{P}=\left\{\overrightarrow{\mathrm{x}} \in \mathbb{Z}^{\mathfrak{n}} \mid \overrightarrow{\mathrm{x}} \cdot(1,1, \ldots, 1)^{\mathrm{T}}=0\right\}$, the set of roots is $\left\{e_{i}-e_{j} \mid i \neq j\right\}$, where e_{i} is the i-th standard basis vector. The positive roots are $\Delta^{+}=\left\{e_{i}-e_{j} \mid i<j\right\}$ and the simple roots are $\Pi=\left\{e_{i}-e_{i+1}\right\}$. The Weyl group W is the symmetric group S_{n}.

1.2 Introduction

We are interested in the flag variety G / B of G. Since B is a closed subgroup, this is a smooth variety with a transitive G-action.

Example 1.2. For $\mathrm{G}=S \mathrm{~L}_{\mathrm{n}}(\mathbb{C}), \mathrm{G} / \mathrm{B}$ is the variety of complete flags in \mathbb{C}^{n}

$$
\left\{0=F_{0} \subset F_{1} \subset \ldots \subset F_{n-1} \subset F_{n}=\mathbb{C}^{n} \mid \operatorname{dim} F_{i}=i\right\} .
$$

To see this, notice that G / B is isomorphic to \mathcal{B}, the variety of all Borel subgroups via

$$
\mathrm{gB} / \mathrm{B} \mapsto \mathrm{gBg}^{-1}
$$

and the stabilizer of a complete flag is a Borel subgroup. Under this identification, the point B / B corresponds to the Borel subgroup B and to the base flag $\left\{0 \subset \operatorname{Span}\left\{e_{1}\right\} \subset \operatorname{Span}\left\{e_{1}, e_{2}\right\} \subset \ldots \subset \operatorname{Span}\left\{e_{1}, \ldots, e_{n-1}\right\} \subset \mathbb{C}^{n}\right\}$.

The flag variety has a T -action (since $\mathrm{T} \subset \mathrm{G}$).
Proposition 1.3. The T -fixed points in G / B are in bijection with the Weyl group, more precisely, we have

$$
(\mathrm{G} / \mathrm{B})^{\mathrm{T}}=\{\dot{w} \mathrm{~B} / \mathrm{B}\}_{w \in \mathrm{~W}},
$$

where \dot{w} denotes a representative of an element of $\mathrm{W}=\mathrm{N}_{\mathrm{G}}(\mathrm{T}) / \mathrm{T}$ in G .
Example 1.4. For $\mathrm{G}=\mathrm{SL}_{\mathrm{n}}(\mathbb{C})$, the T -fixed flags are precisely the coordinate flags

$$
\left\{0=\mathrm{F}_{0} \subset \operatorname{Span} e_{w(1)} \subset \operatorname{Span}\left\{e_{w(1)}, e_{w(2)}\right\} \subset \ldots \subset \operatorname{Span}\left\{e_{w(1)}, \ldots, e_{w(n-1)}\right\} \subset \mathbb{C}^{n}\right\}
$$

The flag variety is also a projective variety, which means that we can gain a lot of leverage on it by looking at its T-moment map image (see Figure 1) which is know to be given by the convex hull of the images of the T-fixed points.

Figure 1: The moment map image of $S L_{3}(\mathbb{C})^{\prime}$ s flag manifold

1.3 The Bruhat decomposition

The sets $X_{o}^{w}=B w B / B$ are called Bruhat cells. They are cells in the sense of algebraic topology, i.e. $X_{o}^{w} \cong \mathbb{C}^{l(w)}$. Their closures $X^{w}=\overline{X_{o}^{w}}$ are called Schubert varieties.
Theorem 1.5 (Bruhat decomposition). The Bruhat cells form a cell decomposition of G/B, i.e.

$$
\mathrm{G} / \mathrm{B}=\bigsqcup_{w \in W} \mathrm{X}_{\mathrm{o}}^{w} .
$$

Moreover, any Schubert variety is a union of Bruhat cells, and the closure relations define a partial ordering on W , called the Bruhat order

$$
X^{w}=\bigsqcup_{v \leq w} X_{o}^{v} .
$$

Example 1.6. For $\mathrm{G}=\mathrm{SL}_{\mathrm{n}}(\mathbb{C})$, the B -orbit of a standard basis vector e_{k} is

$$
\left\{c_{k} e_{k}+\sum_{i=1}^{k-1} c_{i} e_{i} \mid c_{k} \neq 0\right\},
$$

in particular, if we start at a coordinate flag $w \mathrm{~B} / \mathrm{B}$, and apply elements of B , we can get arbitrarily close to other coordinate flags where some of the inversions of the permutation w are eliminated, i.e. where instead of the standard basis $\mathrm{e}_{w(i)}$ vector occuring at step i of the flag, any of the standard basis vectors e_{k} with $\mathrm{k} \leq w(\mathfrak{i})$ occurs instead (with $\mathrm{e}_{w(\mathrm{i})}$ occuring later). See Figure 2 for an example in $\mathrm{SL}_{3}(\mathbb{C})$.

Figure 2: Two Bruhat cells in $\mathrm{SL}_{3}(\mathbb{C}) / \mathrm{B}$.
If we take closures, these points are added, and we see that the Bruhat order then has the description that $v \leq w$ if for all $i=1, \ldots, n$,

$$
\operatorname{sort}(v(1), v(2), \ldots, v(i)) \leq \operatorname{sort}(w(1), w(2), \ldots, w(i)),
$$

and the \leq stands for comparing sequences entry-wise.

If $G=S L_{n}(\mathbb{C})$, given a flag F, we can decice which Schubert cell it belongs to by looking at the $(n-1) \times$ $(n-1)$ rank matrix whose (i, j)-th entry is $\operatorname{dim}\left(F_{i} \cap \operatorname{Span}\left\{e_{1}, \ldots, e_{j}\right\}\right.$, and comparing it to the rank matrices of the coordinate flags.

Example 1.7. The flag $F=\left(0 \subset \operatorname{Span}\left\{e_{1}+e_{3}\right\} \subset \operatorname{Span}\left(e_{1}+e_{3}, e_{1}\right) \subset \mathbb{C}^{3}\right.$ has rank matrix

	$\operatorname{Span}\left\{e_{1}\right\}$	$\operatorname{Span}\left\{e_{1}, e_{2}\right\}$
$\operatorname{Span}\left\{e_{1}+e_{3}\right\}$	0	0
$\operatorname{Span}\left(e_{1}+e_{3}, e_{1}\right)$	1	1

The coordinate flag corresponding to the permutation 312 has the same rank matrix, so $\mathrm{F} \in \mathrm{X}_{\mathrm{o}}^{312}$.

2 Bott-Samelson varieties

2.1 Motivation: Desingularizations of Schubert varieties

Schubert varieties are in general singular.
Example 2.1. For $\mathrm{G}=S \mathrm{~L}_{n}(\mathbb{C})$, a Schubert variety X^{w} is singular if and only if the permutation does not contain any 4×4 permutation submatrix equal to the permutation 3412 or 4231 .

If X and Y are varieties with a right action of B on X and a left action of B on Y, then we define the quotient

$$
X \times{ }^{B} Y=\left\{[x, y] \mid x \in X, y \in Y,[x, y]=\left[x b^{-1}, b y\right]\right\}
$$

Definition 2.2. Let $\mathrm{Q}=\left(s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{k}}\right)$ be a word in the simple reflections. The Bott-Samelson variety is

$$
B S^{Q}=P_{i_{1}} \times{ }^{B} P_{i_{2}} \times{ }^{B} \ldots \times{ }^{B} P_{i_{k}} / B,
$$

where P_{j} denotes the minimal parabolic containing the root subgroup for $-\alpha_{\mathrm{j}}$.
Example 2.3. For $\mathrm{G}=\mathrm{SL}_{n}(\mathbb{C})$ the Bott-Samelson variety G^{Q} can be interpreted as the incidence variety, where start from the base flag and at every step of Q , we change only the subspace corresponding to the simple reflection. More concretely, for $\mathrm{G}=\mathrm{SL}_{3}(\mathbb{C})$ and $\mathrm{Q}=\left(s_{1}, s_{2}, s_{1}\right)$, we have that $\mathrm{BS}^{\mathrm{Q}}=\left\{\left(\mathrm{L}, \mathrm{P}, \mathrm{L}^{\prime}\right) \mid \mathrm{L} \subset \operatorname{Span}\left(e_{1}, e_{2}\right) \cap \mathrm{P}, \mathrm{L}^{\prime} \subset \mathrm{P}\right\}$, or, more visually

Theorem 2.4. The Bott-Samelson variety $B S^{Q}$ has a map to the flag variety

$$
\begin{aligned}
m: B S^{\mathrm{Q}} & \rightarrow \mathrm{G} / \mathrm{B} \\
{\left[\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{k}}\right] } & \mapsto \mathrm{p}_{1} p_{2} \cdots \mathrm{p}_{\mathrm{k}} \mathrm{~B} / \mathrm{B} .
\end{aligned}
$$

Moreover, if Q is a reduced word, then the image $\mathrm{m}\left(\mathrm{BS}^{\mathrm{Q}}\right)$ is the Schubert variety X^{w} (where $w=\prod \mathrm{Q}$), and this map is generically one-to-one.
Example 2.5. For $\mathrm{G}=\mathrm{SL}_{n}(\mathbb{C})$, the map is "take the rightmost flag in the incidence variety picture".
Remark 2.6. Note that the Bott-Samelson variety is not a resolution of singularities in the strictest sense, since it is not generically one-to-one to the smooth locus of the Schubert variety. For example, G / B is smooth, but $\mathrm{m}: \mathrm{BS}^{\mathrm{Q}} \rightarrow \mathrm{G} / \mathrm{B}$ is not an isomorphism.

2.2 Charts on Bott-Samelson varieties

The Bott-Samelson variety is an iterated \mathbb{P}^{1}-bundle because each quotient P_{k} / B is isomorphic to \mathbb{P}^{1}. Therefore it has many natural coordinate charts.

Proposition 2.7. On $P_{k} / B \cong \mathbb{P}^{1}$, we have two charts $u_{+}, u_{-}: \mathbb{C} \rightarrow P_{k} / B$ given by

$$
\begin{aligned}
u_{+}(z) & =u_{\alpha_{k}}(z) \cdot s_{k} \\
u_{-}(w) & =u_{-\alpha_{k}}(w)
\end{aligned}
$$

where $u_{\beta}: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow G$ is the root subgroup corresponding to β. The change of coordinates between the two charts is $w=\frac{1}{z}$.
Example 2.8. For $\mathrm{SL}_{3}(\mathbb{C})$, and $\mathrm{Q}=\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)$, the + --chart is given by

$$
\left[\left(\begin{array}{ccc}
z_{1} & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & w_{2} & 1
\end{array}\right)\right]
$$

Theorem 2.9. For Q a reduced word for w, the $+{ }^{|\mathrm{Q}|}$-chart of BS^{Q} is an isomorphism from $\mathbb{C}^{\mathrm{l}(w)}$ to $\mathrm{X}_{\mathrm{o}}^{w}$.
Example 2.10. For $\mathrm{Q}=\left(s_{1}, s_{2}\right)$, the image of the ++ chart in G / B is

$$
\left(\begin{array}{ccc}
z_{1} & -1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & z_{2} & -1 \\
0 & 1 & 0
\end{array}\right) / \mathrm{B}=\left(\begin{array}{ccc}
z_{1} & -z_{2} & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) / \mathrm{B}
$$

Notice that the origin $z_{1}=z_{2}=0$ is mapped to the T-fixed flag 312 , which is in X_{o}^{312}.
For us, the most important application of Bott-Samelson varieties is to give explicit coordinates to the big cell $X_{o}^{w_{0}}$ 。

3 Actions of vector fields

3.1 $\mathrm{SL}_{2}(\mathbb{C})$

For $G=\mathrm{SL}_{2}(\mathbb{C})$, the Bott-Samelson variety is isomorphic to the flag variety

$$
\mathrm{BS}^{(s)}=\mathrm{G} / \mathrm{B}
$$

The big cell is parametrized by

$$
\left(\begin{array}{cc}
z & -1 \\
1 & 0
\end{array}\right) / \mathrm{B}
$$

Recall that we have a left $U(\mathfrak{g})$-action on G / B generated by the vector fields corresponding to the basis e, f, h of $\mathfrak{s l}_{2}(\mathbb{C})$. We compute these actions in this coordinate chart.

We have

$$
\exp (-t e)=\left(\begin{array}{cc}
1 & -t \\
0 & 1
\end{array}\right), \quad \exp (-t f)=\left(\begin{array}{cc}
1 & 0 \\
-t & 1
\end{array}\right), \quad \exp (-t h)=\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{t}
\end{array}\right),
$$

Since

$$
\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{t}
\end{array}\right)\left(\begin{array}{cc}
z & -1 \\
1 & 0
\end{array}\right) / B=\left(\begin{array}{cc}
e^{-t} z & -e^{-t} \\
e^{t} & 0
\end{array}\right) / B=\left(\begin{array}{cc}
e^{-2 t} z & -1 \\
1 & 0
\end{array}\right) / B
$$

and we have

$$
\begin{aligned}
\frac{d}{d t}\left(e^{-2 t} z\right) & =-2 e^{-2 t} z \\
h \cdot z & =\left.\frac{d}{d t}\right|_{t=0}\left(e^{-2 t} z\right)=-2 z \\
h & \mapsto-2 z \frac{d}{d z}
\end{aligned}
$$

Similarly, we compute the action of f :
Since

$$
\left(\begin{array}{cc}
1 & 0 \\
-t & 1
\end{array}\right)\left(\begin{array}{cc}
z & -1 \\
1 & 0
\end{array}\right) / \mathrm{B}=\left(\begin{array}{cc}
z & -1 \\
-\mathrm{t} z+1 & \mathrm{t}
\end{array}\right) / \mathrm{B}=\left(\begin{array}{cc}
\frac{z}{-\mathrm{t} z+1} & \mathrm{tz}-1 \\
1 & -\mathrm{t}(\mathrm{t} z-1)
\end{array}\right) / \mathrm{B}=\left(\begin{array}{cc}
\frac{z}{-\mathrm{tz} z+1} & -1 \\
1 & 0
\end{array}\right) / \mathrm{B}
$$

and we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{z}{-t z+1}\right) & =\frac{z^{2}}{(-t z+1)^{2}} \\
\mathrm{f} \cdot z & =\left.\frac{\mathrm{d}}{\mathrm{dt}}\right|_{\mathrm{t}=0}\left(\frac{z}{-\mathrm{t} z+1}\right)=z^{2} \\
\mathrm{f} & \mapsto z^{2} \frac{d}{d z}
\end{aligned}
$$

Exercise 3.1. Using this coordinate chart, verify that $e \mapsto-\frac{d}{d z}$.

$4 \mathrm{SL}_{3}(\mathbb{C})$

Let $G=S L_{3}(\mathbb{C})$ and $Q=\left(s_{1}, s_{2}, s_{1}\right)$. Then $B S^{Q} \rightarrow G / B$ is generically one-to one. Let us compute the image of the +++ chart.

$$
\left(\begin{array}{ccc}
z_{1} & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & z_{2} & -1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
z_{3} & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) / \mathrm{B}=\left(\begin{array}{ccc}
z_{1} z_{3}-z_{2} & -z_{1} & 1 \\
z_{3} & -1 & 0 \\
1 & 0 & 0
\end{array}\right) / \mathrm{B}
$$

The z_{2} coordinate can be recovered by taking the top left 2×2 minor (this is preserved under the right action of B, if the antidiagonal entries are scaled appropriately).

We have to compute the action of the vector fields $e_{1}, f_{1}, h_{1}, e_{2}, f_{2}, h_{2}$. We have

$$
\begin{aligned}
\exp \left(-t e_{1}\right)=\left(\begin{array}{ccc}
1 & -t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & \exp \left(-t f_{1}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-t & 1 & 0 \\
0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

Exercise 4.1. Verify that or find a sign mistake in

$$
\begin{aligned}
\mathrm{e}_{1} & \mapsto-\partial_{z_{1}} \\
\mathrm{f}_{1} & \mapsto z_{1}^{2} \partial_{z_{1}}-z_{1} z_{2} \partial_{z_{2}}+\left(z_{2}-z_{1} z_{3}\right) \partial_{z_{3}} \\
\mathrm{~h}_{1} & \mapsto-2 z_{1} \partial_{z_{1}}+z_{2} \partial_{z_{2}}+z_{3} \partial_{z_{3}} \\
\mathrm{e}_{2} & \mapsto z_{1} \partial_{z_{2}}-\partial_{z_{3}} \\
\mathrm{f}_{2} & \mapsto z_{2} \partial_{z_{1}}+z_{3}^{2} \partial_{z_{3}} \\
\mathrm{~h}_{2} & \mapsto z_{1} \partial_{z_{1}}-z_{2} \partial_{z_{2}}-2 z_{3} \partial_{z_{3}}
\end{aligned}
$$

Example 4.2. Note that $\left[e_{1}, f_{1}\right]=h_{1}$
Exercise 4.3. Verify the remaining relations in $\mathfrak{s l}_{3}(\mathbb{C})$ or find a sign mistake in the formulas.

4.1 The principal block of category \mathcal{O}

Similarly to the situation with \mathbb{P}^{1} described by Dylan in the first lecture, we realize see the dual Verma module $M(0)^{\vee}$ as $\mathbb{C}\left[z_{1}, z_{2}, z_{3}\right]$. Notice that there is a highest weight vector of weight 0 (corresponding to the scalars) that is annihilated by all of the operators (this realizes the trivial representation as a submodule).

Recall that we have the BGG resolution

$$
\mathrm{L}(0) \rightarrow \mathrm{M}(0)^{\vee} \rightarrow \mathrm{M}\left(s_{1} .0\right)^{\vee} \oplus \mathrm{M}\left(s_{2} .0\right)^{\vee} \rightarrow \mathrm{M}\left(s_{1} s_{2} .0\right)^{\vee} \oplus \mathrm{M}\left(s_{2} s_{1} .0\right)^{\vee} \rightarrow \mathrm{M}\left(s_{1} s_{2} s_{1} .0\right)^{\vee} \rightarrow 0
$$

Exercise 4.4. Verify that in the above resolution the highest weight vectors of $M\left(s_{1} .0\right)^{\vee}$ and $M\left(s_{2} .0\right)^{\vee}$ are z_{1} and z_{3}, respectively.

Note that the maps in the BGG resolution are given by taking residues with respect to some of the variables. For example, the map $M(0)^{\vee} \rightarrow M\left(s_{1} .0\right)^{\vee} \oplus M\left(s_{2} .0\right)^{\vee}$ is $\operatorname{Res}_{z_{1}} \oplus \operatorname{Res}_{z_{3}}$. This corresponds to sending the coordinates z_{1}, z_{3} to ∞, respectively.

