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The Borel fixed point Theorem

We’ll prove the following theorem

Theorem 1 (Borel fixed point Theorem)
Let B be a connected solvable affine algebraic group over C.
Let X be a proper variety with a B-action. Then the set of fixed
points X B is nonempty.
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Some definitions

Solvable groups

Definition 2
A group B is solvable if the derived series

B ⊃ [B,B] ⊃ [[B,B], [B,B]] ⊃ . . .

terminates in {e}.

We only need a few facts about groups:
The derived subgroup [B,B] of a solvable group B is
solvable and of strictly lower dimension.
If H ⊆ B is a subgroup such that [B,B] ⊆ H, then H is
normal (H contains all commutators).
If G is an affine algebraic group and N ⊆ G is a closed
normal subgroup, then G/N is an affine variety.



The Borel fixed point Theorem and some applications

Some definitions

Proper varieties

Our schemes are over C.

Definition 3
A variety X is proper if for every scheme Z , the map

pr2 : X × Z → Z

is closed.

This is equivalent to the statement that X (C), with the classical
topology is compact and Hausdorff.
We only need a few facts about proper varieties:

A proper affine variety is a point.
A closed subvariety of a proper variety is proper.
If V is a vector space, then the space of lines P(V ) in V is
proper.
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Proof

Reduction steps

Let B be a connected solvable group and X a proper
variety.
We will proceed by induction on dimB, the base case
being dimB = 0, in which case B = {e} and every point is a
fixed point.
The subgroup D = [B,B] is connected, solvable and its
dimension is strictly less than dimB, therefore by induction
Y = X D is nonempty.
The set of fixed points Y is closed in X , so Y is proper.
Since D is normal in B, for b ∈ B,d ∈ D, y ∈ Y , we have

d(b · y) = bd ′y = by ,

for some d ′ ∈ D, so B stabilizes Y .
We can therefore assume that D fixes X pointwise.
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Proof

Proof

Since X D = X , we have D = [B,B] ⊆ StabB(x) for all
x ∈ X .
In particular, all isotropy groups are normal in B, so for any
x ∈ X , the quotient B/StabB(x) is an affine variety.
Pick x ∈ X such that the orbit B · x is closed (these always
exist), then B · x is a proper variety.
Since B · x ∼= B/StabB(x), the orbit B · x is a proper affine
variety, hence it must be a point, so x is our fixed point.
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Applications

High weights

Let G be an affine algebraic group and V a
finite-dimensional G-representation (i.e. a homomorphism
G → GL(V )).
The variety P(V ) is proper, and since the G-action is linear,
it has a G-action.
Let B be a Borel (maximal solvable) subgroup of G. Then
B is a solvable group that acts on the proper variety P(V ),
and hence has a fixed point [v ] for some v ∈ (V \ 0).
So B stabilizes the line SpanC(v), and therefore acts on it
through a character

χV : B → C×

So v is a B-weight vector, i.e. a high weight vector.
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Applications

G/B is proper

Let B be a Borel subgroup of maximal possible dimension.
Find a representation V such that the stabilizer of the high
weight vector above is exactly B.
Repeat the previous argument on V/SpanC(v) and use a
bit of induction to obtain the Lie-Kolchin Theorem, i.e. for a
suitable choice of basis, the image of B in GL(V ) consists
of upper triangular matrices.
Therefore we have a complete flag F• ∈ Fl(V ) (a proper
variety), and StabG(F•) = B.
So the map G/B → Fl(V ) given by g 7→ g · F• is injective.
The stabilizer of any flag is solvable, so it has dimension
≤ dimB.
Therefore the orbit G · F• has smallest possible dimension,
and is therefore closed, hence proper, so G/B is proper.
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Applications

All Borels are conjugate

Let B′ be any Borel subgroup of G.
The proper variety G/B has a left G-action, hence a
B′-action.
The action has a fixed point, i.e.

B′gB/B = gB/B

or, in other words,
g−1B′g ⊆ B.

If the above containment is not an equality, then
gBg−1 ⊆ G is a solvable group strictlylarger than B′,
contradicting the maximality of B′. Therefore

g−1B′g = B

so B′ is conjugate to B.
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