The Borel fixed point Theorem and some applications

Balázs Elek

University of Toronto, Department of Mathematics

May 10, 2020

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Borel fixed point Theorem

We'll prove the following theorem

Theorem 1 (Borel fixed point Theorem)

Let B be a connected solvable affine algebraic group over \mathbb{C} . Let X be a proper variety with a B-action. Then the set of fixed points X^B is nonempty.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Borel fixed point Theorem and some applications

Some definitions

Solvable groups

Definition 2

A group *B* is **solvable** if the derived series

```
B \supset [B, B] \supset [[B, B], [B, B]] \supset \ldots
```

terminates in {*e*}.

We only need a few facts about groups:

- The derived subgroup [*B*, *B*] of a solvable group *B* is solvable and of strictly lower dimension.
- If *H* ⊆ *B* is a subgroup such that [*B*, *B*] ⊆ *H*, then *H* is normal (*H* contains all commutators).
- If G is an affine algebraic group and N ⊆ G is a closed normal subgroup, then G/N is an affine variety.

Some definitions

Proper varieties

Our schemes are over \mathbb{C} .

Definition 3

A variety X is **proper** if for every scheme Z, the map

$$\textit{pr}_2: X imes Z
ightarrow Z$$

is closed.

This is equivalent to the statement that $X(\mathbb{C})$, with the classical topology is compact and Hausdorff.

We only need a few facts about proper varieties:

- A proper affine variety is a point.
- A closed subvariety of a proper variety is proper.
- If V is a vector space, then the space of lines $\mathbb{P}(V)$ in V is proper.

The Borel fixed point Theorem and some applications

Proof

Reduction steps

- Let *B* be a connected solvable group and *X* a proper variety.
- We will proceed by induction on dim *B*, the base case being dim *B* = 0, in which case *B* = {*e*} and every point is a fixed point.
- The subgroup D = [B, B] is connected, solvable and its dimension is strictly less than dim B, therefore by induction Y = X^D is nonempty.
- The set of fixed points *Y* is closed in *X*, so *Y* is proper.
- Since *D* is normal in *B*, for $b \in B$, $d \in D$, $y \in Y$, we have

$$d(b\cdot y)=bd'y=by,$$

for some $d' \in D$, so *B* stabilizes *Y*.

• We can therefore assume that *D* fixes *X* pointwise.

The Borel fixed point Theorem and some applications	
Proof	
Proof	

- Since $X^D = X$, we have $D = [B, B] \subseteq \operatorname{Stab}_B(x)$ for all $x \in X$.
- In particular, all isotropy groups are normal in *B*, so for any *x* ∈ *X*, the quotient *B*/Stab_{*B*}(*x*) is an affine variety.
- Pick x ∈ X such that the orbit B ⋅ x is closed (these always exist), then B ⋅ x is a proper variety.
- Since $B \cdot x \cong B/\text{Stab}_B(x)$, the orbit $B \cdot x$ is a proper affine variety, hence it must be a point, so x is our fixed point.

(日) (日) (日) (日) (日) (日) (日)

The Borel fixed point Theorem and some applications	
Applications	
High woights	

- Let *G* be an affine algebraic group and *V* a finite-dimensional *G*-representation (i.e. a homomorphism $G \rightarrow GL(V)$).
- The variety $\mathbb{P}(V)$ is proper, and since the *G*-action is linear, it has a *G*-action.
- Let *B* be a Borel (maximal solvable) subgroup of *G*. Then *B* is a solvable group that acts on the proper variety $\mathbb{P}(V)$, and hence has a fixed point [v] for some $v \in (V \setminus 0)$.
- So B stabilizes the line Span_C(v), and therefore acts on it through a character

$$\chi_V: B \to \mathbb{C}^{\times}$$

• So v is a *B*-weight vector, i.e. a high weight vector.

The Borel fixed point Theorem and some applications	
Applications	
G/B is proper	

- Let *B* be a Borel subgroup of maximal possible dimension.
- Find a representation *V* such that the stabilizer of the high weight vector above is exactly *B*.
- Repeat the previous argument on V/Span_C(v) and use a bit of induction to obtain the Lie-Kolchin Theorem, i.e. for a suitable choice of basis, the image of B in GL(V) consists of upper triangular matrices.
- Therefore we have a complete flag *F*_● ∈ *FI*(*V*) (a proper variety), and Stab_G(*F*_●) = *B*.
- So the map $G/B \rightarrow Fl(V)$ given by $g \mapsto g \cdot F_{\bullet}$ is injective. The stabilizer of any flag is solvable, so it has dimension $\leq \dim B$.
- Therefore the orbit G · F_● has smallest possible dimension, and is therefore closed, hence proper, so G/B is proper.

The Borel fixed point Theorem and some applications Applications

All Borels are conjugate

- Let B' be any Borel subgroup of G.
- The proper variety *G*/*B* has a left *G*-action, hence a *B*'-action.
- The action has a fixed point, i.e.

$$B'gB/B = gB/B$$

or, in other words,

$$g^{-1}B'g\subseteq B.$$

 If the above containment is not an equality, then *gBg*⁻¹ ⊆ *G* is a solvable group strictlylarger than *B*', contradicting the maximality of *B*'. Therefore

$$g^{-1}B'g=B$$

(日) (日) (日) (日) (日) (日) (日)

so B' is conjugate to B.