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SL(2)

What can we do with symmetries? Informally, we should
be able to compose and invert them. For this talk, we’ll be
concerned with 2× 2 matrices with determinant 1:

SL(2) =
{(

a b
c d

)∣∣∣∣ad − bc = 1
}
,

where the composition is matrix multiplication. This is
almost the set of symmetries of the Riemann sphere from
complex analysis.
Since the determinant is 1, any matrix in SL(2) is invertible,
and their inverse also lies in SL(2). These properties make
SL(2) into a group.
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Representations of SL(2)

We can multiply a vector
(

x
y

)
by a matrix in SL(2). So an

element of our group corresponds to a linear
transformation of a vector space and the collection of these
linear transformations is what we’ll call a representation.
You might think that SL(2) consists of 2× 2 matrices, so
you can only apply it to vectors in a 2-dimensional vector
space, but . . .
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Polynomial representations

We can also act on row vectors(
x y

)
·
(

a b
c d

)
=

(
ax + cy bx + dy

)
Let V (k) denote the (k -dimensional) vector space of
polynomials in x and y of degree k − 1, that is,

V (k) = Span
{

xk−1, xk−2y , . . . , yk−1
}
.

Let p(x , y) ∈ V (k). Then we can define(
a b
c d

)
· p(x , y) = p(ax + cy ,bx + dy).

This makes V (k) into a representation for SL(2).
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Polynomial representations

Our action on V (k) is(
a b
c d

)
· p(x , y) = p(ax + cy ,bx + dy).

For example,(
2 1
3 2

)
· (x2 + 2xy) = (2x + 3y)2 + (2x + 3y)(x + 2y)

= 4x2 + 12xy + 9y2 + 2x2 + 4xy + 3xy + 5y2

= 6x2 + 15xy + 14y2.

SL(2) is better than most finite groups, since it is continuous,
and even differentiable in a sense. If you know what a manifold
is, it is a good exercise to check that SL(2) is one.
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We can notice that the identity matrix fixes every
polynomial, so we might hope that matrices that are “near”
it only perturb the polynomials “a little bit”.
To make this precise, we bring in some calculus. For

example, for t small, matrices of the form
(

1 t
0 1

)
are

“close” to the identity matrix.
Let’s compute the derivative of this action at t = 0 (the
identity matrix)

d
dt

∣∣∣∣
t=0

(
1 t
0 1

)
· p(x , y) = d

dt

∣∣∣∣
t=0

p(x , tx + y).

for p(x , y) ∈ V (3).
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Since V (3) has basis {x2, xy , y2}, we compute

(
1 t
0 1

)
· x2 = x2 = x2

d
dt

∣∣∣
t=0−→ 0(

1 t
0 1

)
· xy = x(tx + y) = tx2 + xy

d
dt

∣∣∣
t=0−→ x2

(
1 t
0 1

)
· y2 = (tx + y)2 = t2x2 + 2txy + y2

d
dt

∣∣∣
t=0−→ 2xy

So we may say that (if we are thinking about the action on
V (3))

E :=
d
dt

∣∣∣∣
t=0

(
1 t
0 1

)
= x

∂

∂y
.
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Similarly we might notice that for t close to 0, matrices of

the form
(

1 0
t 1

)
or

(
et 0
0 e−t

)
are also close to the

identity matrix.
Similarly, we compute:

F := d
dt

∣∣∣
t=0

(
1 0
t 1

)
= y ∂

∂x .

H := d
dt

∣∣∣
t=0

(
et 0
0 e−t

)
= x ∂

∂x − y ∂
∂y .
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The crystal of V(3)

Using E = x ∂
∂y ,F = y ∂

∂x ,H = x ∂
∂x − y ∂

∂y , we can make a
graph:

x2

F
""

H

EE xy

H

GG

F
$$

E

aa y2

H

GG
E

dd

Notice that our basis consists of eigenvectors for H, and
that E and F are almost inverses to each other, so it
suffices to record the action of F . Then our picture of V (3)
becomes

•→ •→ •
This graph is the crystal of V (3).
Similarly, the crystal of V (k) consists of k vertices
arranged on a line with arrows going to the right.
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Direct sums

Representations are vector spaces, so we can consider
the direct sum V ⊕W of two representations V and W .
These are more interesting than before, for example, we
can decompose R3 ∼= R1 ⊕ R1 ⊕ R1 as vector spaces, but,
for example, V (3) 6∼= V (1)⊕ V (1)⊕ V (1) (Hint: what is
V (1)? How do E ,F ,H act on it?).
The above observation means that R1 is the only
indecomposable vector space, but there are are lots of
indecomposable representations of SL(2) (actually the
V (k) for k ≥ 1 are all of them).
The crystal of a direct sum of representations is the disjoint
union of their crystals.
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Tensor products

Similarly, the tensor product V ⊗ W of two representations V and W is
also a representation. It is an important question in representation
theory to write V ⊗ W as a direct sum of indecomposables.

We can answer this question using crystals! We have to define what we
mean by “tensoring” two crystals.

V (
3)
⊗ V (

4)
• // • // • // •

•

��

• • • •

•

��

• • • •

• • • • •
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Tensor products

From the picture on the previous slide, we can deduce the
Clebsch-Gordan formula (valid for k ≤ l)

V (k)⊗V (l) ∼= V (k−l+1)⊕V (k−l+3)⊕. . .⊕V (k+l−3)⊕V (k+l−1)

that arises in many contexts, even in angular momentum
coupling in quantum mechanics. For example,

V (2)⊗ V (2) = V (3)⊕ V (1)

describes the combination of two fermions into a bosonic
composite.
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Crystals for other groups

Crystals for groups larger than SL(2) will have edges of
different colors, and there are many combinatorial models for
them (these three are different crystals):

Crystals themselves have interesting symmetries, and these
lead down all sorts of rabbit holes to quantum groups, knot
theory or geometry.
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Recent work and possible projects

In a project work in progress with Anne Dranowski, Joel
Kamnitzer, Tanny Libman and Calder Morton-Ferguson, I
study the relationship between two models for crystals, one
involving dropping beads on runners, and one involving
components of Nakajima quiver varieties. It would be
interesting to compare the actions of the cactus group (this
is the natural symmetry group for crystals) on the two sides
of this equivalence.
In [CGP16], Chmutov, Glick and Pylyavskyy proved that
the action of the cactus group and the action of the
Berenstein-Kirillov group on SL(n)-crystals coincide. Using
the model for crystals involving beads on runners, we
again have two natural group actions on crystals for other
groups. Do these two actions coincide?
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Recent work and possible projects

In [AE20] work with Tair Akhmejanov, I proved a “cyclic
sieving” result about tensor products V1 ⊗ · · · ⊗ Vm of
certain representations of SL(n) where the cyclic action is
given by rotation of tensor factors, where the cyclic sieving
polynomial is given by a certain generalized Kostka
polynomial. We used the fancy technology of the
Geometric Satake equivalence to establish this, but there
should be a proof using a cyclic action on crystals.
In [ST18], Schumann and Torres prove a branching rule
(an important problem from representation theory) for
sp(2n,C) ⊂ sl(2n,C) in terms of Littelmann paths. There
are some natural candidates where one could hope to
obtain a similar result.
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