Heaps, Crystals and Preprojective algebra modules

Balázs Elek
(joint with Anne Dranowski, Joel Kamnitzer, Tanny Libman and Calder Morton-Ferguson)

Cornell University,
Department of Mathematics

September 24, 2020
Let \(g = \mathfrak{sl}_n(\mathbb{C}) \) be the Lie algebra of trace 0 matrices and \(V = \mathbb{C}^n \). The standard basis vectors \(v_1, \ldots, v_n \) form a basis for \(V \) that has several favorable properties:

1. Each basis vector is an eigenvector for the action of the subalgebra \(\mathfrak{h} \) of diagonal matrices, i.e.
 \[
 \text{diag}(t_1, \ldots, t_n) \cdot v_k = t_k v_k
 \]

2. The matrices \(E_{i,j} = (e_{mn}) \) s.t. \(e_{mn} = \begin{cases} 1 & \text{if } (m,n) = (i,j) \\ 0 & \text{else} \end{cases} \) for \(i \neq j \) “almost permute” these vectors, i.e. \(E_{i,j} \cdot v_j = v_i \) and \(E_{i,j} \cdot v_k = 0 \) for \(k \neq j \).

3. We only need to use the matrices \(F_i = E_{i+1,i} \) to reach any basis vector from \(v_1 \).
Thus we can encode the representation as a colored directed graph, for example, \(\mathfrak{sl}_3 \) acting on \(\mathbb{C}^3 \) could be represented like this:

\[
\begin{align*}
\mathbf{v}_1 & \xrightarrow{F_1} \mathbf{v}_2 \xrightarrow{F_2} \mathbf{v}_3
\end{align*}
\]

Our aim is to generalize this idea and we’d hope that the nice basis we found is compatible with things we want to do with \(g \)-representations, like tensor product decompositions and branching.
This works only as long as each weight space is one-dimensional. We already run into trouble with the adjoint representation of \mathfrak{sl}_3, as $\ker F_1$, $\ker F_2$, $\mathrm{im} F_1$, $\mathrm{im} F_2$ are all different subspaces of \mathfrak{h}.
Fortunately, thanks to Kashiwara [Kas91], there is a way of fixing this problem: by going first to the quantized universal enveloping algebra $U_q(g)$ and then taking a limit as $q \to 0$ in a suitable sense. It turns out that in this setting, choosing a good basis is always possible. This object, the directed graph with vertices the basis elements and edges labeled by the action of the lowering operators is called a crystal. Since the representation theory of $U_q(g)$ is very similar to that of $U(g)$, we can use this combinatorial gadget to study representations.
Why do we like crystals? Because the rules for tensoring and branching are purely combinatorial. For $\mathfrak{g} = \mathfrak{sl}_2$-crystals, tensor product decompositions are given by:
We know that for an irreducible \mathfrak{sl}_n-representation V_λ of highest weight λ, $\dim(V_\lambda) = \#SSYT(\lambda)$ with entries up to n. The crystal of the adjoint representation of \mathfrak{sl}_3 is

Figure: The crystal $B(\omega_1 + \omega_2)$ for A_2
Definition 1 (Stembridge [Ste96])

Let W be a Coxeter group. An element w is **fully commutative** if any reduced word for w can be obtained from any other by using only the Coxeter relations that involve commuting generators.

Example 2

If $W = S_n$, then w is fully commutative if and only if it is 321-avoiding.
We will mainly be interested in fully commutative elements associated to minuscule representations. Recall that a fundamental weight ω_p is minuscule if W acts transitively on the set of weights appearing in the representation $V(\omega_p)$. Let P_p be the maximal parabolic subgroup associated to ω_p, then the (unique) minimal length representative w_0^P for $w_0 W_{P_p}$ in W/W_{P_p} is fully commutative.

Example 3

Let $g = sl_4$. All fundamental weights are minuscule, and $V(\omega_2) \cong \wedge^2 \mathbb{C}^4$. Then $w_0^P = s_2 s_1 s_3 s_2$, which is indeed fully commutative.
Following Stembridge [Ste96], given a word \(w = r_1 r_2 \cdots r_k \) in \(W \), we define the **heap** \(H(w) \) of \(w \) to be the pair consisting of:

1. The poset on \(\{1, \ldots, k\} \), where we declare \(i \preceq j \) if \(i > j \) and the corresponding entry of the Cartan matrix \(a_{ij} \neq 0 \) and we take transitive closure of this relation.

2. The labeling function \(\pi \) that sends \(i \) to \(s_i \).

One can visualize a heap as a configuration of beads on runners arranged according to the Dynkin diagram as in Figure 2, where are dropping the beads one by one, and bead \(i \) is dropped on runner \(r_{k-i+1} \).

Figure: The heap of the element \(s_2 s_1 s_3 s_2 \) in type \(A_3 \)
If \(w \) is a fully commutative element and \(w \) is a reduced word for \(w \), then the heap \(H(w) \) is independent of \(w \), so we’ll refer to it as the heap \(H(w) \) of \(w \).
Let \(\omega_p \) be a minuscule fundamental weight, then the weights occurring in \(V(\omega_p) \) are in bijection with \(W/W_{P_p} \). In this case, all minimal length representatives for elements of \(W/W_{P_p} \) are fully commutative, moreover, they are all elements \(v \) of \(W \) such that

\[
 v \leq_I w_{0p}^P
\]

where \(\leq_I \) denotes the left weak order, i.e. \(v \leq_I w \) if some terminal substring of a reduced word for \(w \) is a reduced word for \(v \).
As an example, consider $V(\omega_2)$ for A_3. Then $w_0^{P_2} = s_2 s_1 s_3 s_2$, and the poset W/W_{P_2} is as follows:

![Diagram showing the poset W/W_{P_2}]

Note that the heaps of these elements correspond to **order ideals** in $H(w_0^{P_2})$.

Figure: The heaps corresponding to elements of W/W_{P_2}
Heaps, Crystals and Preprojective algebra modules

Heaps

Crystals from heaps

We can use these observations to describe a model for crystals of minuscule representations $B(\omega_p)$, where the underlying set is the order ideals (which are heaps themselves) $J(H(w_0^P))$ of $H(w_0^P)$ and the lowering operators have an easy description: to apply f_j to a heap ϕ, try to remove a bead from runner j. If this is not possible because another bead on a neighboring runner is blocking it, then $f_j(\phi) = 0$, otherwise, $f_j(\phi)$ is ϕ with the highest bead on runner j removed.

Figure: The crystal $B(\omega_2)$ using Young tableaux

Figure: The crystal $B(\omega_2)$ using $J(H(s_2 s_1 s_3 s_2))$
So far we only considered minuscule representations, but we can use the language of heaps to construct models of more general crystals in a type-independent way.

Theorem 4

Let \(\omega_p \) be a minuscule fundamental weight. Consider the set of \(k \)-fold tensor products of order ideals of \(H(w_0^{P_p}) \). The subset

\[
H(w_0^{P_p}) \otimes^k \leq \left\{ \phi_1 \otimes \phi_2 \otimes \cdots \otimes \phi_k \mid \phi_j \in J(H(w_0^{P_p})), \phi_i \subseteq \phi_{i+1} \right\},
\]

with lowering operators defined using the tensor product rule for crystals, is a model for the crystal \(B(k\omega_p) \).
Definition 5

The set $RPP(H(w_0^{P_p}), k)$ of order-reversing maps from the poset $H(w_0^{P_p})$ to $\{0, \ldots k\}$ (with the standard ordering) is called a reverse plane partition of shape $H(w_0^{P_p})$.

There is a bijection between elements of $H(w_0^{P_p})^{\leq k}$ and $RPP(H(w_0^{P_p}), k)$, for example

$$
\begin{pmatrix}
1 \\
1 \\
3
\end{pmatrix}
$$

corresponds to the rpp

\[\begin{array}{ccc}
& & \\
& \times & \\
& & \\
\end{array} \
\begin{array}{ccc}
& & \\
& \times & \\
& & \\
\end{array} \
\begin{array}{ccc}
& & \\
& \times & \\
& & \\
\end{array} \]
The lowering operator f_i acts on rpps by decreasing an entry on the i-th column. For example, for $RPP(H(s_2s_1s_3s_2), k)$ in type A_3, we have (as long as the resulting array is an rpp)

\[
\begin{align*}
 f_1 \begin{pmatrix} b & a & c \\ d & \end{pmatrix} &= \begin{pmatrix} b - 1 & a & c \\ d & \end{pmatrix} \\
 f_2 \begin{pmatrix} b & a & c \\ d & \end{pmatrix} &= \begin{cases} \\
 \begin{pmatrix} a - 1 & & \\ b & c & \\ d & a & \end{pmatrix} & \text{if } a + d \leq b + c \\
 \begin{pmatrix} b & d & c \\ b & a & \\ d - 1 & & \end{pmatrix} & \text{if } a + d > b + c \\
 \end{cases} \\
 f_3 \begin{pmatrix} b & a & c \\ d & \end{pmatrix} &= \begin{pmatrix} b & a & c - 1 \\ d & \end{pmatrix}
\end{align*}
\]
To summarize our discussion up to this point, we have constructed a model for crystals of the form $B(k\omega_p)$ where ω_p is a minuscule fundamental weight using either k-fold tensor products of heaps, or as reverse plane partitions of shape $H(w_0^{P\rho})$. We found that (at least in type A_3) the lowering operators have a nice description in terms of the rpps.
Let Q be an orientation of g’s Dynkin diagram with vertex set I, and Q^* be the opposite orientation. Consider the doubled quiver $\overline{Q} = Q \cup Q^*$. Let $\mathbb{C}\overline{Q}$ be the path algebra of \overline{Q}. Consider the element

$$\rho = \sum_{e \in E(\overline{Q})} \varepsilon(e) e^* e$$

where $\varepsilon(e) = 1$ if $e \in E(Q)$ and -1 if $e \in E(Q^*)$. The algebra $\Lambda(Q) = \mathbb{C}\overline{Q}/(\rho)$ is called the preprojective algebra of Q.
Given a heap of the form $H(w_0^{P_0})$, we make the following construction:

1. Replace each element in the heap by C.
2. Replace each covering relation in $H(w_0^{P_0})$ by the identity map $1 : \mathbb{C} \to \mathbb{C}$.
3. Define an I-graded vector space $L(\omega_p)$ by letting $L(\omega_p)_j$ be the direct sum of the 1-dimensional spaces which are labeled by $j \in I$.
4. Define a map from $L(\omega_p)_j$ to $L(\omega_p)_i$ by extending the above-defined maps linearly.

The resulting quiver representation $L(\omega_p)$ is a $\Lambda(Q)$-module, and it is the projective cover of the simple quiver representation $S(p)$ supported at vertex p.
As an example, consider the heap $H(s_2 s_1 s_3 s_2)$ for A_3. Following the construction we get

and we see that this is indeed a (projective) $\Lambda(Q)$-module.
We can repeat the above steps with Weyl group elements other than $w_0^{P_p}$. We need w to be **dominant minuscule**, meaning that there is a weight λ and a reduced word $s_{i_1} \cdots s_{i_k}$ for w such that

$$s_{i_j}s_{i_{j+1}} \cdots s_{i_k}(\lambda) = \lambda - \alpha_{i_k} - \alpha_{i_{k-1}} - \cdots - \alpha_{i_j}$$

(this is stronger than fully commutative). In this case, the set $RPP(H(w), k)$ serves as the underlying set of the Demazure crystal $B_w(\lambda)$. The resulting quiver representation is still a $\Lambda(Q)$-module. For simplicity, we’ll continue to assume that $w = w_0^{P_p}$.
The construction of the module $L(\omega_p)$ from the heap $H(w_0^P)$ reveals an additional piece of structure. Consider the following map on the elements of $H(w_0^P)$: send each bead to the bead on the same runner just below it, or, if a bead is the lowest bead on the runner, send it to 0. Extend this to a nilpotent endomorphism T of $L(\omega_p)$.

![Diagram](image)
Consider the space $L(k\omega_p) = \{ M \subseteq L(\omega_p)^{\oplus k} \}$ of $\Lambda(Q)$-submodules. $L(k\omega_p)$ has connected components indexed by possible dimension vectors of M. We’ll also denote the nilpotent endomorphism $T^{\oplus k}$ of $L(k\omega_p)$ by T. We can obtain a finer decomposition of $L(k\omega_p)$ by considering the Jordan type of T restricted to each M_i. This gives us a partition over each vertex, but there are also conditions between the Jordan types over neighboring vertices, and the Jordan type of T restricted to M_i is given by an rpp of shape $H(w_0^{P_p})$ with the sum of the entries in column i adding up to $\dim(M_i)$.
Conjecture 6

The irreducible components of $L(k\omega_p)$ are indexed by reverse plane partitions.

For example, consider $L(2\omega_2)$ in type A_3. Let M be a submodule with dimension vector $(1, 2, 1)$. Write M_i for the subspace corresponding to the i-th node of the Dynkin diagram. To choose M_2, we have to choose a 2-dimensional subspace of $\mathbb{C}^2 \oplus \mathbb{C}^2$ stable under the linear map

$$T(x, y, z, w) = (0, 0, x, y).$$
If $M_2 = \ker T$, and we can choose M_1 and M_3 arbitrarily, this corresponds to the rpp

$$
\begin{pmatrix}
0 \\
1 & 1 \\
2
\end{pmatrix}
$$

If $M_2 \neq \ker T$, then M_1 and M_3 are determined, this corresponds to the rpp

$$
\begin{pmatrix}
1 \\
1 & 1 \\
1
\end{pmatrix}
$$
Conjecture 7

The lowering operator \(f_i \) on the rpps corresponds to taking a generic submodule with quotient the simple module \(S(i) \).

Consider the case \(L(k\omega_2) \) in type \(A_3 \). Let \(\phi = \begin{pmatrix} b & a \\ c & d \end{pmatrix} \) be an rpp, and let \(M \) be a module in the component indexed by \(\phi \). Note that in this case, this just means that \(\dim(\ker T \cap M_2) = d \).

For simplicity, we identify the subspaces \(M_1 = B \) and \(M_3 = C \) with their images in \(M_2 = A + D \). Visually \(M \) looks like this:

```
A
 ↙   ↙
B   C
 ↙   ↙
D
```
We are looking for a submodule of M that fits into the SES

$$0 \rightarrow f_2(M) \rightarrow M \rightarrow S(2) \rightarrow 0$$

then we have to choose an $a + d - 1$-dimensional subspace of $M_2 = A + D$. To be a submodule of M, this subspace needs to contain B and C, and therefore $B + C$. Generically, this subspace will not contain all of D, unless $B + C = D$, in which case we are forced to contain all of D.
We claim that

$$\dim(B + C) = \min(b + c - a, d).$$

To get these upper bounds we use the rank-nullity theorem for the operators T^0 and T^1 restricted to M_2.

1. To see that $\dim(B + C) \leq b + c - a$, note that

$$\dim(B + C) = \dim(B) + \dim(C) - \dim(B \cap C) \leq b + c - a$$

2. To see that $\dim(B + C) \leq d$, note that

$$\dim(B + C) = \dim(T(B + C)) + \dim((B + C) \cap (\ker T)) \leq 0 + d$$

(in general we get an upper bound from rank-nullity applied to each operator $T^0, T^1, \ldots T^{m-1}$ where m is the number of beads on the runner in the heap $H(w_0^{P_0})$).
Therefore \(B + C = D \) if and only if \(b + c - a \geq d \), or equivalently, if
\[
a + d \leq b + c.
\]
and we see that this is the same rule as the lowering operator on the rpps (16).
In general, to compute \(f_i(M) \), we need to know which subspaces of the form \(M_i \cap \ker T^j \) must be contained in a generic submodule with quotient \(S(i) \). This coincides with the upper bound coming from the rank-nullity theorem applied to \(T^j \) being attained, and we want the largest \(j \) for which this happens. Then \(f_i(M) \) will contain \(M_i \cap \ker T^j \) but not \(M_i \cap \ker T^{j+1} \), so we know the Jordan type of \(T \) restricted to \(f_i(M) \).
On crystal bases of the Q-analogue of universal enveloping algebras.

On the fully commutative elements of Coxeter groups.