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1 My interests

I am interested in the representation theory of algebraic groups and the algebraic geometry of
their homogeneous spaces, with particular emphasis on the connections to combinatorics. My
work involves turning interesting problems in geometry or representation theory into combi-
natorics, and studying them through some combinatorial gadget. Some historical examples
where this approach has been highly successful are the convexity theorem for moment maps
of Atiyah [Ati82], and independently, of Guillemin-Sternberg [GS82] and Kashiwara’s crystal
basis [Kas91], also independently discovered by Lusztig [Lus90] as the canonical basis of a rep-
resentation. These results involve turning a geometric/representation theoretic object into a
combinatorial one. In particular, the moment map image of a projective variety with a torus
action is a convex polytope, and the crystal of a representation of a semisimple Lie algebra is a
colored directed graph. Both of these results share the amazing feature that the combinatorial
gadget retains most of the information about the original object. For example, one can com-
pute the equivariant cohomology ring of a toric variety by looking at the polytope, and one can
compute tensor product decompositions and branching rules of representations by looking at
the crystals.

2 Current projects

Many of my curent projects involve crystals in some form, so we recall some background on
the subject

2.1 Some background on crystals

What is a good basis for a vector space? In a linear algebra class, we tell students that they
should not think in terms of a basis, but often the right choice of a basis makes a problem
easier. This is especially true if the vector space has some additional stucture. For example, for
a T =

(
C×
)k-representation V we can always choose a basis of V such that T acts diagonally.

Equivalently, this means that V is a direct sum of 1-dimensional subspaces, where T acts on
each summand by a character T → C×, so we can choose a basis such that T acts by rescaling
each vector.

For a semisimple Lie algebra g, the situation is more complicated. Consider, for example,
any finite-dimensional representation V of sl2(C). Then if dimV = n+ 1, the representation
V can be identified with the vector space of homogeneous polynomials of degree n in x and

y. This has a basis of monomials of the form xkyn−k, and the matrices E =

(
0 1

0 0

)
and F =

1



(
0 0

1 0

)
act as differential operators y ∂∂x and x ∂∂y , respectively, essentially permuting the basis

vectors. Also, the tensor product decompositions of sl2(C)-representations can be completely
understood in terms of the tensor products of a good choice of a basis (this is not trivial, as the
tensor product does not immediately decompose in a way that is compatible with the basis we
mentioned above). One would like to define a similar basis for a representation of an arbitrary
semisimple Lie algebra, but this naive idea does not generalize to other Lie algebras, in fact it
is already impossible to choose such a basis for the adjoint representation of sl3(C).

This is where quantum groups come to the rescue. Quantized enveloping algebras Uq(g)
were introduced by Drinfeld and Jimbo in the mid 1980s. Originally motivated by physics and
integrable systems, they have rapidly found applications in many other fields of mathematics,
for example to knot theory and representation theory. In [Kas91], Kashiwara interpreted the
deformation parameter q as a parameter for “temperature” in physics, and stated that his mo-
tivation was the belief that the representation theory of Uq(g) ought to be simple at “absolute
zero”. The work of Date, Jimbo and Miwa [DJMM90] also suggested this. Kashiwara then
introduced crystal bases for Uq(g)-representations, and proved that (due to the fact that the
representation theory of Uq(g) is very similar to that of U(g)) these fundamentally combina-
torial objects can be used to compute tensor product decompositions and branching rules for
representations of g.

2.2 Quiver variety components, heaps and minuscule combinatorics

In [KS97], Kashiwara and Saito defined a crystal structure on the set of irreducible components
of Lusztig quiver varieties. In [Sav06], Savage showed that in types A and D this coincides
with the combinatorial definition of crystals, establishing a link between the geometry of quiver
varieties and the combinatorics of crystals.

In a similar flavor, joint with Anne Dranowski, Joel Kamnitzer, Tanny Libman and Calder
Morton-Ferguson, I connected certain modules of the preprojective algebra of an ADE type
Dynkin quiver to crystals [DEKM22].

Let W denote the Weyl group and let P be a maximal parabolic subgroup corresponding to
a minuscule fundamental weight ω. Let w = wP0 denote the minimal length representative of
w0WP where WP is P’s Weyl group. Our construction works in a slightly more general setting,
the technical assumption we need on w is dominant minuscule [Ste01], but we’ll focus on the
wP0 case for simplicity.

Consider the heap H(w) ([Ste96]) of w. This is a partially ordered set with a map to the
Dynkin quiver. Let k be a positive integer. UsingH(w) one can construct a combinatorial model
RPP(w,k) for the crystal B(kω) (elements of this model are called reverse plane partitions and
have been defined before, see [GPT18], for example) and we construct space of modules L(kω)
for the preprojective algebra of the Dynkin quiver. We use Nakajima’s tensor product varieties
([Nak01]) to establish an explicit crystal isomorphism between RPP(w,k) and the irreducible
components of the preprojective algebra modules.

2.3 Schubert Varieties

Let v and w be permutations in Sn, and let Xw◦ = BwB/B be a Bruhat cell and Xv = B−vB/B
an opposite Schubert variety. In [KL79], Kazhdan and Lusztig introduced Kazhdan-Lusztig
varieties Xwv,◦ = Xw◦ ∩ Xv. They have since found numerous applications, for example, they
can be used to study the geometry of Schubert varieties in the neighborhood of a torus-fixed
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point. Since the Bruhat cell Xw◦ is just an affine space Cl(w), it is natural to study the Kazhdan-
Lusztig ideal, the ideal defining Xwv,◦ inside Xw◦ . In [WY12], Woo and Yong gave a Gröbner
basis for Kazhdan-Lusztig ideals for the type A flag variety. Having a Gröbner basis of any
interesting ideal is desirable because it can simplify computation, but even better, for Kazhdan-
Lusztig ideals, the Gröbner basis has square-free leading terms, and therefore can be used to
degenerate the Kazhdan-Lusztig variety into a reduced union of coordinate subspaces, and this
union is described by a subword complex of Knutson and Miller [KM05].

Joint with Daoji Huang, I extended Woo and Yong’s results to affine type A. Building on
previous work of Huang [Hua19], we present a Gröbner basis for Kazhdan-Lusztig ideals. We
develop some tools that are well known in the finite type A case, including a generalization of
Fulton’s essential set [Ful92] and a linear parametrization for the Bruhat cell Xw◦ . We then adapt
the proof in [WY12] to the affine case.

We hope that our results can be used to practically compute with equations defining Kazhdan-
Lusztig varieties in affine type A using software, we have used Macaulay2 extensively. We also
hope that our result can be useful in studying singularities of Schubert varieties in affine type
A.

2.4 Toggle groups and Cactus groups

The Bender-Knuth moves ti are certain involutions defined on semistandard tableaux that act
on the i-s and i+ 1-s in the filling. They can also be interpreted as certain sequences of toggles
on the corresponding Gelfand-Tsetlin patterns (these are combinatorial objects in bijection
with seminstandard tableaux). Berenstein and Kirillov [BK96] studied the relations satisfied
by the tis and subsequently introduced the Berenstein-Kirillov group (or BK) as the the free
group generated by all the ti, i ∈ N, modulo the relations satisfied by the tis when acting on
all semistandard tableaux of all possible shapes. One feature of this definition is that while the
group is well defined, and comes with an explicit generating set, but without a specific set of
relations. As of now, there is no known presentation of BK (see Remark 1.9. in [CGP16]).

The cactus groupCactg of g, studied by Henriques and Kamnitzer [HK06] is a group closely
related to the braid group and Weyl group of g. It is generated by elements ξJ corresponding
to subsets I of the simple roots of g, and there is a surjection Cactg � Wg mapping ξI 7→ w

PI
0

where wPI0 is the longest element in the Weyl group of the parabolic subgroup PI. Halacheva
[Hal16] showed that the cactus group acts on crystals of representations of g.

Chmutov, Glick, and Pylyavksyy [CGP16] realized BK as a quotient of the type A cactus
group Cactn, using growth diagram computations. They used this to derive some previously
unknown relations of BK. They also pointed out that the only relation that does not follow
from the relations in Cactn is (t1t2)

6 = e. This relation corresponds to the result of Kashiwara
[Kas94] that the Cactus elements ξ{i} corresponding to one-element subsets of the Dynkin dia-
gram define aW-action on the crystal. Note that there is no relation (ξ{i}ξ{i+1})

6 = e in Cactn.
In other types, there is in general no clear analogue for the Gelfand-Tsetlin patterns. How-

ever, for a choice of a minuscule fundamental weight ω, as in section 2.2, one can use reverse
plane partitions as a model for crystals B(kω). In this case, one can define the sequences of
toggles that play the role of the Bender-Knuth moves in type A and define a group (called the
toggle group) generated by them. I conjecture, based on solid computational evidence, that, as
in type A, the cactus action factors through the toggle group. More precisely, for every minus-
cule fundamental weightωp and each ti defined on the corresponding minuscule reverse plane
partition, there is a cactus group element c(ti) ∈ Cactg which acts on all the crystals B(kωp)
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the same way and moreover that these elements generate the action of the cactus group (in
general, the toggle group will depend on the choice ofωp, unlike in type A).

One interesting thing to point out that while in type An, there are n toggles and the typeAn
cactus group has a generating set of size n, in type Dn, there are still n toggles, but the cactus
group does not have a generating set of size n. In particular, our conjecture would imply that
the cactus action is substantially simpler on the crystals B(lωk).

2.5 Kirillov-Reshetikhin crystals and Cactus groups

For g̃ an affine type Lie algebra, Hatayama et al. introduced Kirillov-Reshetikhin (KR) mod-
ules for the quantized loop algebra U′q(g̃) [HKO+02]. These are finite-dimensional modules
that are defined for a choice of a node in the Dynkin diagram of the finite type algebra g and a
positive integer. The existence of crystal bases for these modules has only been settled recently;
see, for example [FOS09]. When the node corresponds to a cominuscule fundamental weight
ω, the KR module is irreducible even for the subalgebra Uq(g). In this case, the crystal of the
representation Vkω of g has an additional lowering operator f0 corresponding to the affine root.
So far this operator has only been defined case by case [FOS09], [HN06]. Combinatorially this
was first done for type A KR crystals by Shimozono [Shi02] by using Schützenberger’s promo-
tion operator (see [Sta09] for a survey on promotion) on Young tableaux, and in other types by
finding some analogue of the promotion operator.

In [Kwo13], Kwon used the Robinson-Schensted-Knuth correspondence to give a combina-
torial model for classically irreducible KR crystals in types A,C,D. In section 6, Kwon points
out that the lowering operator f0 can be defined in terms of the cactus action (he does not use
the language of cactus groups) as f0 = ξ[n]\{k}ekξ[n]\{k} (where [n] = {1, . . . n}).

I conjecture, based on solid computational evidence, that the formula ξ[n]\{k}ekξ[n]\{k} defines
the f0 operator for classically irreducible crystals of all types. By the uniqueness of crystals
of representations, it suffices to show that f0, as defined by the cactus action, interacts with
the other crystal operations the expected way. Using Stembridge’s [Ste03a] characterization of
crystals of representations, this comes down to checking some commutation relations between
f0 and other lowering operators already defined.

To connect this project to the one described in section 2.2, it would be interesting to see
how the cactus groups and toggle groups (defined in Section 2.4) act on the set of components
L(kω). Recently, in [GPT18], Garver, Patrias and Thomas used a similar approach to show that
the order of promotion (which is a particular element of both the toggle and Cactus groups)
equals to the Coxeter number.

3 Previous work

3.1 My thesis work

Motivated by the combinatorics of the positroid stratifications of Grassmannians in [KLS13]
and the corresponding geometry in [Sni10], He Knutson and Lu introduced Bruhat atlases in
[HKL]. A Bruhat atlas on a stratified manifold (M,Y) is a way to model the stratification Y
on the Bruhat stratification. Specifically it is an open cover of M by Schubert cells Xwo in a flag
manifold H/BH (of a Kac-Moody group H) compatible with the stratification Y and with the
opposite Schubert stratifications of the Xwo ’s. In [KLS13], Bruhat atlases are described on the
wonderful compactifications G of DeConcini-Procesi [DCP83], and on partial flag manifolds
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G/P of semisimple algebraic groups. The existence of Bruhat atlases on these two interesting
families of varieties leads one to ask the question: Can one classify manifolds with Bruhat
atlases?

I worked on the classification of toric surfaces with Bruhat atlases compatible with the torus
action, with complete results in the simply-laced case. This project is in the intersection of
combinatorics, representation theory and algebraic geometry, and the proofs involved a broad
range of methods. In [Ele16], I proved that the only smooth toric surfaces with Bruhat atlases
are CP1 ×CP1 and CP2, but there are more varieties with a so-called Kazhdan-Lusztig atlas,
defined also in [KLS13]. I classified smooth toric surfaces with simply-laced Kazhdan-Lusztig
atlases in my thesis ([Ele16]). This involved a number of steps, with surprisingly different
techniques for each one.

• Classifying the moment polygons of smooth Richardson surfaces in arbitrary Kac-Moody
groups. There are 10 of these, plus an infinite family.

• Assembling these into a polygon of the toric surface. I reduced this to a finite problem by
considering the abelianization map from SL(2, Z) to Z/12Z, then used Sage ([Dev15]) to
obtain the 20 possible configurations, which I called pizzas.

• Finding a Kac-Moody groupH such that a given pizza appears inH/BH. I found these by
building a root system from necessary conditions for the equivariant cohomology classes
of the 1-skeleton of the pizza, which came from the structure of Bruhat intervals of height
2 and 3.

Using the work of Dyer [Dye91], I also proved that there are at most 7543 non-simply laced
pizzas with Kazhdan-Lusztig atlases, each coming from a subdivision of a polygon with at
most 12 vertices.

3.2 Finite type multiple flag varieties

In [MWZ00] and [MWZ99] Magyar, Weyman and Zelevinsky consider G-actions on multiple
flag varieties G/P1 × . . . × G/Pk (for P1, . . . ,Pk parabolic subgroups of GL(n) or Sp(n)) and
answer the question of when such a G-action has finitely many orbits. Several special cases of
this have been considered, for instance, the spherical case (i.e. when P1 = B) in [AP13], [Lit94],
[Ste03b], and the case P = P1 = P2 = P3 in [Dev14], [Pop07].

Joint with with Dan Barbasch, Sergio Da Silva and Gautam Gopal Krishnan, I extended
the above results to exceptional groups. In [MWZ00], the authors exploit the description of
GLn/P as the variety of partial flags in Cn to transform the question to quiver representations,
and in [MWZ99], they reduce the type C cases to the type A case. This approach does not
obviously generalize to exceptional groups, so we took a more direct approach. The G2 case
is trivial, as by a crude dimension count one notices that G can have finitely many orbits only
when k = 2, in which case the question is completely answered by the Bruhat stratification
on G/P2 =

⊔
w∈P1\W/P2 P1wP2/P2. We finished the F4 case in [BDSEK17] and are currently

working on the type E cases.

3.3 The standard Poisson structure on Bott-Samelson varieties

Let G be a semisimple Lie Group over C and let Q = (s1, . . . , sk) be a word in the simple
reflections of W. Let Psi = B ∪ BsiB. We then define the Bott-Samelson variety BSQ as the
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quotient of the product manifold Ps1 × . . .× Psk by the right action of Bn by

(p1,p2, . . . ,pn) · (b1,b2, . . . ,bn) = (p1b1,b−11 p2b2, . . . ,b
−1
n−1pnbn).

Then BSQ is an iterated P1-bundle with a canonical map m to G/B, given by multiplying the
pi’s. Bott-Samelson varieties have been used as effective tools in answering important ques-
tions in representation theory and the geometry of Schubert varieties, see, for example [Bri05]
and [EW14].

A choice of a pair T ⊆ B of a maximal torus T , a Borel subgroup B and a symmetric non-
degenerate biliear form gives rise to a multiplicative holomorphic Poisson structure πst on G,
making (G,πst) into a Poisson-Lie group that is the semi-classical limit of the quantum group
associated to G [CP94]. Since B is a Poisson Lie subgroup of G, this projects to a well-defined
Poisson structure πG/B on G/B. Similarly, since all the Psi’s are Poisson subgroups, there is a
standard Poisson structure πQ on BSQ and the mapm : BSQ → G/B is Poisson.

Since BSQ is an iterated P1-bundle, it has many natural coordinate charts. Joint with Jiang-
Hua Lu, in [EL19] I explicitly computed the standard poisson structure in each of these charts.
The formulas are given in terms of root strings in the root system of G, and are entirely combi-
natorial, and I implemented their computation in GAP [GAP19].

We showed that he Poisson structure in each of the charts is a Poisson polynomial algebra,
and that in one of the charts, it is a symmetric Poisson CGL extension, studied by Goodearl
and Yakimov [GY14]. Symmetric Poisson CGL extensions have deep connections to the theory
of cluster algebras, see, for example [GSV10]. In particular, in [GY16], Goodearl and Yakimov
prove the Berenstein-Zelevinsky conjectures on the equality of the cluster algebras and upper
cluster algebras associated to double Bruhat cells using Poisson CGL extensions.

Our results in [EL19] also have applications to quantum groups, integrable systems, total
positivity and toric degenerations of some Poisson varieties associated to G. See also the intro-
duction of [EL19] for some directions for future research.

3.4 Promotion and cyclic sieving on δ-semistandard tableaux

Let X be a finite set with an action of the cyclic groupCl = 〈c〉, ζ a primitive lth root of unity and
f(q) a polynomial. Then the triple (X, 〈c〉, f(q) exhibits the cyclic sieving phenomenon (CSP)
(introduced by Reiner, Stanton and White in [RSW04]) if f(ζd) = |Xc

d
| for all integers d ≥ 0

where Xc
d

denotes the fixed-point set of cd. One can show that such a polynomial always
exists, but the interest in CSP is that often the polynomial f(q) is a q-deformation of a formula
for enumerating |X|. For example, in [RSW04], Reiner, Stanton and White show that if X is the
set of all subsets of {1, 2, . . . ,n} of size k, and Cn acts on X via the long cycle (1, 2, . . . ,n) ∈ Sn,

then

(
X,Cn,

[
n

k

]
q

)
exhibits the CSP, where

[
n

k

]
q

is the q-analogue of the binomial coefficient.

Note that in this case |X| =
(
n
k

)
, the ordinary binomial coefficient.

In [Rho10], Rhoades proves several CSP results about rectangular Young tableaux. It is
well-known that on the set of Young tableaux with fixed rectangular shape with entries up to
n, promotion has order n. The cyclic sieving polynomials are again q-deformations of natural
counting formulae. In particular, Theorem 1.5. in [Rho10] establishes a cyclic sieving result
on rectangular column-strict tableaux on fixed shape and content, where the cyclic sieving
polynomial is the Kostka-Foulkes polynomial. In [FK14], Fontaine and Kamnitzer interpreted
the vector space CX spanned by these tableaux as the space of invariants in a tensor product
of minuscule representations of SLn, where the promotion on tableaux corresponds to cyclic
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rotation of the tensor factors. Using the geometric Satake correspondence and Nakajima quiver
varieties, they give a geometric proof and a generalization of Rhoades’ cyclic sieving result.

Joint with Tair Akhmejanov, in [AE20], I extended Fontaine and Kamnitzer’s results to a
case where the geometric action is on an invariant space in a tensor product

V(~λ) = V(λ1)⊗ V(λ2)⊗ . . .⊗ V(λn),

where each V(λi) is either a symmetric or alternating power of the defining representation Cn

(in this context, the result of Fontain and Kamnitzer is where all the representations are ∧kCns).
We define a new class of tableaux, called δ-semistandard tableaux, to naturally index the

basis for the invariant space V(~λ)G, where δ = (δ1, . . . , δn) is a binary string with δi specifying
whether the entries equal to i of the tableau appear as a horizontal or vertical strip. Using the
methods developed in Akhmejanov’s thesis [Akh18], we are able to prove that the δ-analogue
of the promotion operator still has order n, and we adapt the techniques of Fontaine and Kam-
nitzer to establish a CSP with the polynomial equal to the generalized Kostka polynomials
introduced in [SW99] and [KS02].

4 Potential undergraduate research projects

I believe that my area of research is particularly well suited for undergraduate research. For
example, Kashiwara crystals are concrete and tangible objects that one can draw in many inter-
esting ways:

Students can very quickly start computing with these objects without needing to internalize
all of the theoretical background. I have a large number of conjectures that are easy to state
about the symmetries that the crystals themselves satisfy (I mention these in Sections 2.5 and
2.4). I suspect that many of these could be proved by direct combinatorial methods.

Once students are engaged with a problem, they can use this to learn about the beautiful
structures that underlie the theory of crystals, and this can serve as a great entry point for
learning more about quantum groups and canonical bases, or representation theory in general.

I found that this approach worked remarkably well when I led a reading course on quiver
varieties in Fall 2019 at the University of Toronto for an undergraduate student. Through the
concrete computations and bite-sized projects I assigned to him (some of which can be found on
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the notes section of his website), he could put many of the more abstract notions in perspective,
and he finished the semester with a good understanding of aspects of for example, homological
algebra and category theory. He then participated in the research project I describe in Section
2.2 and went on to graduate school in UCSB.
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