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Bott-Samelson varieties associated to reductive algebraic groups are much studied in rep-

resentation theory and algebraic geometry. They not only provide resolutions of singularities

for Schubert varieties but also have interesting geometric properties of their own. A distin-

guished feature of Bott-Samelson varieties is that they admit natural affine coordinate charts,

which allow explicit computations of geometric quantities in coordinates.

Poisson geometry dates back to 19th century mechanics, and the more recent theory of

quantum groups provides a large class of Poisson structures associated to reductive algebraic

groups. A holomorphic Poisson structure Π on Bott-Samelson varieties associated to com-

plex semisimple Lie groups, referred to as the standard Poisson structure on Bott-Samelson

varieties in this thesis, was introduced and studied by J. H. Lu. In particular, it was shown

by Lu that the Poisson structure Π was algebraic and gave rise to an iterated Poisson poly-

nomial algebra associated to each affine chart of the Bott-Samelson variety. The formula by

Lu, however, was in terms of certain holomorphic vector fields on the Bott-Samelson variety,

and it is much desirable to have explicit formulas for these vector fields in coordinates.

In this thesis, the holomorphic vector fields in Lu’s formula for the Poisson structure Π

were computed explicitly in coordinates in every affine chart of the Bott-Samelson variety,

resulting in an explicit formula for the Poisson structure Π in coordinates. The formula

revealed the explicit relations between the Poisson structure and the root system and the

structure constants of the underlying Lie algebra in any basis. Using a Chevalley basis, it was



shown that the Poisson structure restricted to every affine chart of the Bott-Samelson variety

was defined over the integers. Consequently, one obtained a large class of iterated Poisson

polynomial algebras over any field, and in particular, over fields of positive characteristic.

Concrete examples were given at the end of the thesis.
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1 Introduction

Let G be a connected complex semisimple Lie group with a fixed Borel subgroup B and a
maximal torus T contained in B. Let g, b, and h be the Lie algebras of G and T , respectively.
The choice of (B, T ) determines a root system ∆ ⊆ h∗ and a set of simple roots Γ ⊆ ∆. Let
W = NG(T )/T be the Weyl group of G, where NG(T ) is the normalizer of T in G. It is a
Coxeter group generated by the simple reflections {sα|α ∈ Γ}.

Let w = (s1, s2, · · · , sn) be any sequence of simple reflections in W , and for 1 ≤ k ≤ n,
let Pk = B ∪ BskB be the parabolic subgroup associated sk. Consider P1 × P2 × . . . × Pn
with the right action of Bn (the n-fold product of B) by

(p1, p2 . . . pn).(b1, . . . , bn) = (p1b1, b
−1
1 p2b2, . . . , b

−1
n−1pnbn).

The quotient space Zw = P1 ×B P2 ×B . . .×B Pn/B is the Bott-Samelson variety associated
to w. For (p1, . . . , pn) ∈ P1 × . . .× Pn, let [p1, . . . , pn] ∈ Zw denote the equivalence class of
(p1, . . . pn) under the Bn-action. Multiplication in the group G gives a well-defined map

Ξ : Zw → G/B : Ξ([p1, . . . , pn]) = p1 · · · pn/B.

When w is a reduced word, Ξ is a resolution of singularities of the Schubert variety

Bs1 · · · snB/B ⊆ G/B

in the weak sense.
Bott-Samelson varieties have been studied extensively in the literature and play an im-

portant role in geometric representation theory. See, for example, [2, 3] and the references
therein.

It is well known (see Section 1.5 of [6], for example) that the choice of the pair (B, T )
gives rise to a multiplicative holomorphic Poisson structure on G (see Section 3.2 for details)
with respect to which each parabolic subgroup of G containing B is a Poisson submanifold.
The Poisson-Lie group (G, πG) is the semi-classical limit of the much studied quantum groups
associated to G (see [6]). It is shown in [12] that the restriction of the n-fold product Poisson
structure πG × . . . × πG to P1 × . . . × Pn projects to a well-defined Poisson structure Π on
Zw. We refer to Π as the standard Poisson structure on Zw.

The geometry of Π, such as the T -orbits of its symplectic leaves and Poisson divisors, is
studied in [12]. It is also shown in [12] that Π gives rise to an iterated Poisson polynomial
algebra for each of the 2n affine charts on Zw (see Section 4.1 for details). Iterated Pois-
son polynomial algebras have been studied in the context of Dixmier-Moeglin equivalences
of Poisson algebras and the theory of quantum groups (see [4], [8], [9], [14] for example).
The standard Poisson structure Π on Bott-Samelson varieties thus provides a rich source of
examples for such algebras.

The Borel subgroup B acts on the Bott-Samelson variety Zw by

b.[p1, p2, . . . , pn] = [bp1, p2, . . . , pn], b ∈ B, (p1, p2, . . . , pn) ∈ P1 × P2 × · · · × Pn.

For x ∈ b, let ex be the holomorphic vector field on Zw generating the action of B in the
direction of x. In [12], the Poisson structure Π in each affine chart on Zw is expressed in
terms of the vector fields ex for certain root vectors in b (see Lemma 4.1 for detail). While for
low dimensional examples such vector fields can be computed directly using the definition, it
is clearly desirable to have a general formula for them in each affine coordinate chart of Zw.

The main result in this thesis, which we think is of interest irrespective of the Poisson
structure, is an explicit formula for the vector field ex, where x ∈ b is any root vector, in
every affine coordinate chart on Zw. The formula, as stated in Theorem 4.5, is in terms
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of the combinatorics of the root system and the structure constants of g in any given basis
consisting of root vectors. Applying Theorem 4.5 to the Poisson structure Π, one sees the
explicit relations between the Poisson structure Π and the root system and the structure
constants of the Lie algebra g. In particular, using a Chevalley basis of g, the Poisson
structure Π is shown to be defined over Z in every affine chart (see Corollary 4.7). As a
result, associated to each affine chart, one obtains an iterated Poisson polynomial algebra
k[z1, . . . , zn] for any field k.

The thesis is organized as follows: In Section 3.2, we recall from [12] the definition of
the Poisson structure Π on Zw. Section 4.3 contains the main result on the explicit formula
for the vector fields ex in every coordinate chart on Zw, where x ∈ b is any root vector.
Examples are presented in Section 5.

2 Notation and some facts on root strings

2.1 Notation

Let G be a connected complex semisimple Lie group as in Section 1, and let g = h+
∑
α∈∆ gα

be the root decomposition of g. For α ∈ ∆, let Hα be the unique element in [gα, g−α] such
that α(Hα) = 2. Recall that Γ ⊆ ∆ determines a decomposition of ∆ = ∆+∪∆− into positive
and negative roots. For α ∈ ∆+, let Eα ∈ gα and E−α ∈ g−α be such that [Eα, E−α] = Hα.
Let 〈·, ·〉 be a fixed multiple of the Killing form of g such that the induced bilinear form on
h∗, still denoted by 〈·, ·〉, satisfies 〈β,β〉2 ∈ Z>0 for any root β.

Let β ∈ ∆+. Let θβ : sl(2,C)→ g be the Lie algebra homomorphism defined by(
1 0
0 −1

)
7→ Hβ ,

(
0 1
0 0

)
7→ Eβ ,

(
0 0
1 0

)
7→ E−β .

The induced Lie group homomorphism is denoted by σβ : SL(2,C)→ G. For t ∈ C∗, let

β∨(t) = σβ

((
t 0
0 1

t

))
.

For z ∈ C, let

uβ(z) = σβ

((
1 z
0 1

))
= exp(zEβ), u−β(z) = σβ

((
1 0
z 1

))
= exp(zE−β).

Let ṡβ = uβ(−1)u−β (1)uβ (−1) ∈ NG(T ).

Lemma 2.1. For α ∈ Γ, one has

uα(t)uα(z)ṡα = uα(t+ z)ṡα, t, z ∈ C, (1)

uα(t)u−α(z) = u−α

(
z

1 + tz

)
uα(t(1 + tz))α∨(1 + tz), t, z ∈ C, 1 + tz 6= 0, (2)

u−α(w) = uα

(
1
w

)
ṡαuα(w)α∨(w), w ∈ C∗. (3)

For α, β ∈ Γ and α 6= β, one has .

uβ(w)β∨(w)u−α(z) = u−α

(
w
−2〈α,β〉
〈β,β〉 z

)
uβ(w)β∨(w), w ∈ C∗, z ∈ C. (4)

Proof. Identities (2) and (3) follow from computations in SL(2,C), and (4) follows from the
fact that the two root subgroups corresponding to −α and β commute.

Q.E.D.
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2.2 A lemma on root strings

Let the basis {Hα, Eβ | α ∈ Γ, β ∈ ∆} for g be chosen as in Section 2.1. For α, β ∈ ∆ such
that α+ β ∈ ∆, let Nα,β 6= 0 be such that [Eα, Eβ ] = Nα,βEβ+α.

Let α and β be two linearly independent roots and let {β + jα : −p ≤ j ≤ q}, where p
and q are non-negative integers, be the α-string through β. For 0 ≤ i ≤ p+ q − 1, let

εi =
i+ 1

Nα,β−(p−i)α
. (5)

Then subspace L =
∑q
j=−p gβ+jα of g becomes an SL(2,C)-module via the group homomor-

phism σα : SL(2,C)→ G, and the adjoint representation of G on g. On the other hand, let
V p+q be the vector space of homogeneous polynomials in (x, y) of degree p+ q with the (left)
action of SL(2,C) by((

a b
c d

)
· f
)

(x, y) = f

(
(x, y)

(
a b
c d

))
= f

(
(ax+ cy)i(bx+ dy)p+q−i

)
.

Consider the basis {u0, . . . , up+q} for V p+q given by

ui = ε0ε1 · · · εi−1

(
p+ q

i

)
xiyp+q−i, i = 0, 1, . . . , p+ q,

where εj , for 0 ≤ j ≤ p+ q − 1, is defined in (5), and it is understood that ε0ε1 · · · εi−1 = 1
when i = 0.

Lemma 2.2. With the notation as above, the linear map

χ : L −→ V p+q : χ(Eβ+jα) = up+j , −p ≤ j ≤ q, (6)

is an SL(2,C)-equivariant isomorphism.

Proof. The two irreducible representations of SL(2,C) on L and on V p+q, being of the same
dimension, must be isomorphic, and by Schur’s lemma, there is a unique SL(2,C)-equivariant
isomorphism χ : L → V p+q such that χ(Eβ−pα) = u0. Straightforward calculations show
that χ must be given as in (6). See also Lemma 6.2.2 of [5].

Q.E.D.

The following Lemma 2.3 will be used in Section 4.3 to prove the main results of the
thesis.

Lemma 2.3. Let α, β be two linearly independent roots and let {β+ jα : −p ≤ j ≤ q} be the
α-string through β. Then for any t ∈ C, one has

Ad(uα(t)ṡα)−1(Eβ) =
q∑
j=0

(−1)p
ε0 · · · εp−1

ε0 · · · εq−j−1

(
p+ j

j

)
tjEβ+(q−p−j)α, (7)

Ad(u−α(t))−1(Eβ) =
p∑
j=0

(−1)jεp−1εp−2 · · · εp−j
(
q + j

j

)
tjEβ−jα. (8)

3



Proof. By Lemma 2.2, one has

χ
(
Ad(uα(t)ṡα)−1(Eβ)

)
=
(

0 1
−1 t

)
.up

= ε0 · · · εp−1

(
p+ q

p

)
(−y)p(x+ ty)q

= ε0 · · · εp−1

(
p+ q

p

)
(−y)p

 q∑
j=0

(
q

j

)
tjyjxq−j


=

q∑
j=0

(−1)p
ε0 · · · εp−1

ε0 · · · εq−j−1

(
p+ j

j

)
uq−jt

j ,

from which (7) follows. One proves (8) similarly (see also Lemma 6.2.1 in [5]).

Q.E.D.

Let α, β be as in Lemma 2.3. For notational simplicity, denote the constants appearing
in (7) and (8) by

cσ,jα,β = (−1)p
ε0 · · · εp−1

ε0 · · · εq−j−1

(
p+ j

j

)
, j = 0, . . . , q and σ = sα,

cσ,jα,β = (−1)jεp−1εp−2 · · · εp−j
(
q + j

j

)
, j = 0, . . . , p and σ = e. (9)

We also set ce,jα,α = 1.

Remark 2.4. Recall that {Hα, Eβ | α ∈ Γ, β ∈ ∆} is said to be a Chevalley basis if for all
α, β ∈ ∆ such that α + β ∈ ∆, one has Nα,β = −N−α,−β . If {Hα, Eβ | α ∈ Γ, β ∈ ∆} is
a Chevalley basis of g, then, by Theorem 4.1.2 of [5], Nα,β = ±(p + 1) for any roots α and
β such that α + β ∈ ∆, where p is the largest non-negative integer such that β − pα ∈ ∆.
Thus, for α and β as in Lemma 2.3 and for every 0 ≤ i ≤ p + q − 1, one has εi = ±1, and
consequently all the coefficients cσ,jα,β ’s appearing in (7) and (8) are integers.

3 The Poisson structure Π on the Bott-Samelson variety

3.1 Poisson-Lie groups and Poisson actions

In this section, we review from [12] the definition of the Poisson structure Π on Zw. Recall
that a Poisson structure πP on a manifold P is a bivector field πP ∈ Γ(∧2TP ) such that the
induced bracket

{·, ·} : C∞(P )× C∞(P )→ C∞(P ) : {f, g} = (df ∧ dg)(πP ), f, g ∈ C∞(P ),

satisfies the Jacobi identity

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0, f, g, h ∈ C∞(P ).

A differentiable map F : (P, πP )→ (Q, πQ) between Poisson manifolds is said to be Poisson
if F∗(πP )(q) = πQ(q) for all q ∈ Q, where F∗ denotes the pushforward of tangent vectors by
F .

Recall from [6] that if G is a Lie group, a Poisson bivector field πG on G is said to be
multiplicative if the map (G×G, πG×πG)→ (G, πG) : (g1, g2) 7→ g1g2 is Poisson. A Poisson
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Lie group is a pair (G, πG), where G is a Lie group and πG is a multiplicative Poisson bivector
field on G. A Lie subgroup G1 of a Poisson Lie group (G, πG) is called a Poisson Lie subgroup
if G1 is a Poisson submanifold with respect to πG. In this case, (G1, πG|G1) is a Poisson Lie
group. Let (G, πG) be a Poisson-Lie group, and (P, πP ) a Poisson manifold. A smooth (right)
action of G on P is said to be a Poisson action if the action map

Θ : (P ×G, πP × πG) −→ (P, πP )

is a Poisson map. Left Poisson actions are defined similarly.
Let (B, π) be a Poisson-Lie group and assume that (P, πP ) and (Q, πQ) are two Poisson

manifolds with a right Poisson action of (B, π) on (P, πP ) and a left Poisson action of (B, π)
on (Q, πQ). Assume that the quotient space P/B is a smooth manifold and let ρ : P → P/B
be the natural projection. Let B act on P ×Q by

(p, q) · b = (pb, b−1q), p ∈ P, q ∈ Q, b ∈ B,

let P ×B Q = (P × Q)/B, and let ω : P × Q → P ×B Q be the natural projection. For
(p, q) ∈ P ×Q, let [p, q] = ω(p, q) ∈ P ×B Q. The proof of the following Lemma 3.1 can be
found in [12].

Lemma 3.1. 1) The projection ρ(πP ) is a well-defined Poisson structure on P/B;
2) The projection ω(πP × πQ) is a well-defined Poisson structure on P ×B Q.

3.2 The definition of the Poisson structure Π on Zw

Let G be a complex connected semisimple Lie group as in Section 1 and let the notation be
as in Section 2.1. Let

Λ =
∑
α∈∆+

〈α, α〉
2

Eα ∧ E−α ∈ ∧2g,

and let πG be the bivector field on G given by

πG = Λl − Λr,

where Λl and Λr are respectively the left-invariant and right-invariant bivector fields on G
with value Λ at the identity. By [6], (G, πG) is a Poisson-Lie group. Every parabolic subgroup
P containing B, being a union of Bruhat cells BwB, is a Poisson-Lie subgroup (see [10]).

Let w = (s1, . . . , sn) be any sequence of simple reflections and consider the Bott-Samelson
variety Zw = P1 ×B P2 ×B · · · ×B Pn/B. By repeatedly using Lemma 3.1, one obtains a
holomorphic Poisson structure Π on the Bott-Samelson variety Zw such that the natural
projection

(P1 × P2 × . . .× Pn, πG|P × . . .× πG|P )→ (Zw,Π)

is a Poisson map. The Poisson structure Π on Zw was first introduced in [12] and we will
refer to Π as the standard Poisson structure on Zw.

4 The Poisson structure Π in coordinate charts

4.1 Coordinate charts on Zw

Let G be as in Section 1 and let the notation be as in Section 2.1. Let w = (s1, . . . , sn) be
any sequence of simple reflections in W , and let Zw be the Bott-Samelson variety associated
to w. For 1 ≤ i ≤ n, let αi ∈ Γ be such that si = sαi . Let

Υw = {e, s1} × {e, s2} × · · · {e, sn},
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where e denotes the identity element of W . Elements in Υw will be called subexpressions of
w. For γ = (γ1, γ2, . . . , γn) ∈ Υw, let γj = γ1γ2 · · · γj ∈W for 1 ≤ j ≤ n.

The maximal torus T of G acts on Zw by

t.[p1, . . . , pn] = [tp1, . . . , pn], t ∈ T, (p1, . . . , pn) ∈ P1 × · · · × Pn.

The fixed points of this T -action are the points of the form [γ̇1, . . . , γ̇n], where (γ1, . . . , γn) ∈
Υw, and ė = e. Around each T -fixed point [γ̇1, . . . , γ̇n], one has a natural affine chart Oγ ,
defined as the image of the map

Φγ : Cn −→ Zw : Φγ(z1, . . . , zn) = [u−γ1(α1)(z1)γ̇1, u−γ2(α2)(z2)γ̇2, . . . , u−γn(αn)(zn)γ̇n].

Note that the parametrization of Oγ by Cn depends on the choice of the root vectors for
the simple roots αi for 1 ≤ i ≤ n, but different choices of such root vectors only result
in re-scalings of the coordinate functions. In particular, the affine chart Oγ is canonically
defined. It is also easy to see that each Oγ is T -invariant with

t.Φγ(z1, z2, . . . , zn) = Φγ(t−γ
1(α1)z1, t

−γ2(α2)z2, . . . , t
−γn(αn)zn], (10)

where t ∈ T and (z1, z2, . . . , zn) ∈ Cn. Note also that
⋃
γ∈Υw

Oγ = Zw, i.e., Zw is covered
by the 2n T -invariant affine charts Oγ , γ ∈ Υw.

4.2 A formula for Π from [12]

Let the notation be as in Section 4.1. We recall from [12] a formula for the Poisson structure
Π in each the coordinate charts Oγ on Zw.

For 1 ≤ i ≤ n − 1, let ei be the holomorphic vector field on the Bott-Samelson variety
Z(si+1,...,sn) given by

ei(ϕ)(p) =
d

dt
|t=0ϕ ((exp tEαi)p) , (11)

where p ∈ Z(si+1,...,sn) and ϕ is any local holomorphic function on Z(si+1,...,sn).

Lemma 4.1. ([12]) Let γ ∈ Υw. In the coordinates (z1, . . . zn) on the affine chart Oγ , the
Poisson structure Π is given by,

{zi, zj} =

{
〈γi(αi), γj(αj)〉zizj , if γi = e,

−〈γi(αi), γj(αj)〉zizj − 〈αi, αi〉ei(zj) if γi = si,
1 ≤ i < j ≤ n,

where for 1 ≤ i < j ≤ n, ei(zj) denotes the action of the vector field ei on the coordinate
function zj.

Remark 4.2. Recall that a Poisson algebra is a commutative C-algebra A equipped with
a Lie bracket {·, ·} satisfying the Leibniz rule {f, gh} = {f, g}h + {f, h}g for all f, g, h ∈ A.
Recall from [9] that an iterated Poisson polynomial algebra over C is the polynomial algebra
C[z1, . . . , zn] with a Poisson bracket {·, ·} satisfying

{zi,C[zi+1, . . . , zn]} ⊆ ziC[zi+1, . . . , zn] + C[zi+1, . . . , zn], ∀ 1 ≤ i ≤ n− 1.

By Lemma 4.1, for each γ ∈ Υw, the Poisson structure Π makes C[z1, . . . , zn] into an iterated
Poisson polynomial algebra via the identification Oγ ∼= Cn.
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To derive an explicit formula for the Poisson structure Π in the coordinates (z1, z2, . . . , zn)
on the affine chart Oγ , one thus needs to compute the vector fields ei in Lemma 4.1 for each
1 ≤ i ≤ n− 1. To this end, for any positive root β, let eβ be the vector field on Zw given by

eβ(ϕ)(p) =
d

dt
|t=0ϕ ((exp tEβ)p) , p ∈ Zw, (12)

where ϕ is any local holomorphic function on Zw. In the following Section 4.3, which contains
the main result of the thesis, we give an explicit formula for the vector field eβ in the
coordinates (z1, z2, . . . , zn) in the affine chart Oγ for every γ ∈ Υw. We believe that our
formula for eβ , as will be stated in Theorem 4.5, is of independent interest in the study of
Bott-Samelson varieties.

4.3 An explicit formula for the vector field eβ

Let β ∈ ∆+. In this section, we compute the vector field eβ on Zw given in (12) in the affine
chart Oγ for every γ ∈ Υw. We will first give a recursive formula for eβ in Lemma 4.3 and
then a closed formula for eβ in Theorem 4.5.

To derive the recursive formula for eβ , we need to consider vector fields on different Bott-
Samelson varieties. To this end, introduce, for a positive root β and any sequence w′ of
simple roots in W , two vector fields on the Bott-Samelson variety Zw′ by:

hw′

β (ϕ)(p) =
d

dt
|t=0ϕ ((exp tHβ)p) ,

ew
′

β (ϕ)(p) =
d

dt
|t=0ϕ ((exp tEβ)p) ,

where p ∈ Zw′ and ϕ is any local holomorphic function on Zw′ . Note that eβ = ewβ for eβ
defined in (12).

Fix γ ∈ Υw and keep the notation from the previous sections. In particular, recall from
Section 4.1 the coordinates (z1, . . . , zn) on the affine chart Oγ . Assume that n ≥ 2 and
for 2 ≤ k ≤ n, let e(k)

β denote the restriction of the vector field e
(sk,...,sn)
β on the Bott-

Samelson variety Z(sk,...,sn) to the affine chart O(γk,...,γn) of Z(sk,...,sn), and we regard e(k)
β as

a derivation on the polynomial algebra C[zk, . . . , zn]. Similarly, one has the derivation h
(k)
β

on C[zk, . . . , zn].

Lemma 4.3. Let β ∈ ∆+. Let γ ∈ Υw and let (z1, z2, . . . , zn) be the coordinates on the
affine chart Oγ .

Case 1.1. β = α1 and γ1 = s1. In this case, eβ(z1) = 1 and eβ(zk) = 0 for all k ≥ 2;

Case 1.2. β = α1 and γ1 = e. In this case, eβ(z1) = −z2
1 and for k ≥ 2,

eβ(zk) = e
(2)
β (zk) + z1h

(2)
β (zk).

Case 2. β 6= α1. In this case, eβ(z1) = 0 and for k ≥ 2,

eβ(zk) =
∑
j≥0

γ1(β)−jα1∈∆

cγ1,jα1,β
zj1e

(2)
γ1(β)−jα1

(zk)

Proof. Cases 1.1., 1.2., and 2. follow from (1), (2), and Lemma 2.3, respectively.

Q.E.D.
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To obtain a closed formula for the vector field eβ , we introduce more notation. Let N
denote the set of non-negative integers.

Notation 4.4. For 1 ≤ l ≤ n and (j1, . . . , jl) ∈ Nl, let

β(j1,...,jl) = γlγl−1 · · · γ2γ1(β)− j1γlγl−1 · · · γ2(α1)− . . .− jl−1γl(αl−1)− jlαl ∈ h∗. (13)

For 2 ≤ k ≤ n, define

Nk =
{

(j1, . . . , jk−1) ∈ Nk−1|β(n1,...,nk−1) = αk, β(n1,...,nl) ∈ ∆+,∀ 1 ≤ l ≤ k − 2
}
, (14)

and for (j1, . . . , jk−1) ∈ Nk, let

cj1,...,jk−1 = cγ1,j1α1,β
· · · cγk−1,jk−1

αk−1,β(j1,...,jk−2)
(15)

(see notation in Section 2.1). To each 1 ≤ k ≤ n, introduce two functions φβ(z1, . . . , zk−1)
and ψβ(z1, . . . , zk−1) ∈ C[z1, . . . , zk−1] as follows: for k = 1, let

φβ(z1, . . . , zk−1) =

{
1 if β = α1,

0 if β 6= α1,
and ψβ(z1, . . . , zk−1) = 0,

and for 2 ≤ k ≤ n, let

φβ(z1, . . . , zk−1) =
∑

(j1,...,jk−1)∈Nk

cj1,...,jk−1z
j1
1 z

j2
2 · · · z

jk−1
k−1 , (16)

ψβ(z1, . . . , zk−1) = −
∑
γj=e

1≤j≤k−1

2〈γj(αj), γk(αk)〉
〈γj(αj), γj(αj)〉

zjφβ(z1, . . . zj−1), (17)

where recall that γj = γ1γ2 · · · γj for 1 ≤ j ≤ n. Note that the functions φβ(z1, . . . , zk−1)
and ψβ(z1, . . . , zk−1) depend on γ.

The following Theorem 4.5, which is the first main result of the thesis, gives a purely
combinatorial formula for the vector field eβ .

Theorem 4.5. Let β ∈ ∆+ and let γ ∈ Υw. The vector field eβ acts on the coordinate
function {zk : 1 ≤ k ≤ n} on affine chart Oγ as follows:

eβ(zk) =

{
φβ(z1, . . . , zk−1) + ψβ(z1, . . . , zk−1)zk, if γk = sk,

−φβ(z1, . . . , zk−1)z2
k + ψβ(z1, . . . , zk−1)zk, if γk = e.

Proof. If k = 1, Theorem 4.5 holds by definition in this case. Assume that 2 ≤ k ≤ n. Let
N ′k = {(j1, . . . , jk−1) ∈ Nk−1 | β(j1,...,jk−1) ∈ ∆+,∀ 1 ≤ i ≤ k − 1}, and for (j1, . . . , jk−1) ∈
N ′k, let the (nonzero) constants cj1,...,jk−1 be as in Notation 15. For k = 2, one has

N ′2 =


∅ if β = α1 and γ1 = s1,

{0} if β = α1 and γ1 = e,

{j1 | j1 ∈ N, γ1(β)− j1α1 ∈ ∆+} if β 6= α1,

where, by definition, ce,0α1,α1
= 1 when β = α1 and γ1 = e. Therefore, one can combine the

cases in Lemma 4.3 to get

eβ(zk) =
∑
j1∈N ′2

cγ1,j1α1,β
zj11 e

(2)
β(j1)

(zk) +

{
z1h

(2)
α1 (zk), if β = α1 and γ1 = e,

0, otherwise.
(18)
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By repeatedly using (18), one has

eβ(zk) =
∑

(j1,...,jk−1)∈N ′k

cj1,...,jk−1z
j1
1 · · · z

jk−1
k−1 e

(k)
β(j1,...,jk−1)

(zk)+
∑
γj=e

1≤j≤k−1

φβ(z1, . . . , zj−1)zjh(j+1)
αj (zk).

Let z′k = 1 if γk = sk and z′k = −z2
k if γk = e. By Lemma 4.3, for (j1, . . . , jk−1) ∈ N ′k, one

has e(k)
(j1,...,jk−1)(zk) = 0 unless β(j1,...,jk−1) = αk, in which case e(k)

(j1,...,jk−1)(zk) = z′k. Thus

eβ(zk) =
∑

(j1,...,jk−1)∈Nk

cj1,...,jk−1z
j1
1 · · · z

jk−1
k−1 z

′
k +

∑
1≤j≤k−1
γj=e

φβ(z1, . . . , zj−1)zjh(j+1)
αj (zk)

= φβ(z1, . . . , zk−1)z′k +
∑

1≤j≤k−1
γj=e

φβ(z1, . . . , zj−1)zjh(j+1)
αj (zk).

On the other hand, for each 1 ≤ j ≤ k − 1 with γj = e,

h(j+1)
αj (zk) = −2〈αj , γj+1 · · · γk(αk)〉

〈αj , αj〉
zk = −2〈γj(αj), γk(αk)〉

〈γj(αj), γj(αj)〉
zk.

It follows that
eβ(zk) = φβ(z1, . . . , zk−1)z′k + ψβ(z1, . . . , zk−1)zk.

Q.E.D.

Remark 4.6. Recall from Section 4.1 that the while the affine chart Oγ is canonically
defined, its parametrization by Cn depends on the choice of the basis {Hα, Eβ | α ∈ Γ, β ∈ ∆}
of g. Assume that {Hα, Eβ | α ∈ Γ, β ∈ ∆} is a Chevalley basis of g. Then by Remark
2.4, for each positive root β and for every 1 ≤ k ≤ n, the polynomials φβ(z1, . . . , zk−1)
and φβ(z1, . . . , zk−1) have integral coefficients. Consequently, the polynomials eβ(zk) for
1 ≤ k ≤ n all have integral coefficients.

4.4 The Poisson structure Π is defined over Z in any chart

We now return to the holomorphic Poisson structure Π on the Bott-Samelson variety Zw

associated to a sequence w = (s1, s2, . . . , sn) of simple reflections. The following Corollary
4.7, which is the second main result of the thesis, says that the Poisson structure Π is defined
over Z in every affine chart Oγ .

Corollary 4.7. . Let γ ∈ Υw and let the coordinates (z1, z2, . . . , zn) on the affine chart Oγ
be defined by a Chevalley basis of g. Then for every 1 ≤ i < j ≤ n, the Poisson bracket
{zi, zj} is a polynomial in the variables (zi, zi+1, . . . , zj) with integral coefficients.

Proof. Recall from Section 2.1 that the bilinear form 〈·, ·〉 on g that is used to define the
Poisson structure πG on G is such that 〈α, α〉/2 is an integer for every root α. It follows that
for any pair of roots α and β, 〈α, β〉 = 2〈α,β〉

〈α,α〉 ·
〈α,α〉

2 is an integer. Corollary 4.7 now follows
from Lemma 4.1 and Remark 4.6.

Q.E.D.
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5 Examples

5.1 The vector field eβ in the affine chart O(e,e,...,e)

Let the notation be as in Section 4.3 and assume that β is a simple root. In this section, we
compute the vector field eβ defined in (12) on the affine chart Oγ for γ = (e, e, . . . , e).

Recall from Section 4.1 that one has the coordinates (z1, z2, . . . , zn) on O(e,e,...,e) via

(z1, z2, . . . , zn) 7−→ [u−α1(z1), u−α2(z2), . . . , u−αn(zn)] ∈ O(e,e,...,e).

Lemma 5.1. In the affine chart O(e,e,...,e) the vector field eβ for a simple root β is given by

eβ(zk) = −2〈β, αk〉
〈β, β〉

 ∑
1≤j≤k−1, αj=β

zj

 zk +

{
0, if αk 6= β,

−z2
k, if αk = β,

1 ≤ k ≤ n.

Proof. Let 1 ≤ k ≤ n. By Theorem 4.5, one has,

eβ(zk) = −φβ(z1, . . . , zk−1)z2
k + ψβ(z1, . . . , zk−1)zk.

Using the assumption that β is a simple root, one sees easily from the definition of φβ that
φβ(z1, . . . , zk−1) = 1 if αk = β and φβ(z1, . . . , zk−1) = 0 if αk 6= β. It follows from the
definition of ψβ that

ψβ(z1, . . . , zk−1) = −2〈β, αk〉
〈β, β〉

 ∑
1≤j≤k−1, αj=β

zj

 .

This proves Lemma 5.1.

Q.E.D.

Consider now the subexpression γ = (s1, e, . . . , e) of w and the affine chart O(s1,e,...,e)

with the parametrization

Cn 3 (z1, z2, . . . , zn) 7−→ [uα1(z1)ṡ1, u−α2(z2), . . . , u−αn(zn)] ∈ O(s1,e,...,e).

Corollary 5.2. In the affine chart O(s1,e,...,e), the Poisson structure Π is given by

{zi, zj} = 〈αi, αj〉zizj , if 2 ≤ i < j ≤ n,

{z1, zj} =

−〈α1, αj〉
(
z1 − 2

∑
2≤i≤j−1, αi=α1

zi

)
zj , if 2 ≤ j ≤ n and αj 6= α1,

−〈α1, α1〉
(
z1 − 2

∑
2≤i≤j−1, αi=α1

zi − zj
)
zj , if 2 ≤ j ≤ n and αj = α1.

Proof. Corollary 5.2 follows directly from Corollary 4.7 and Lemma 5.1.

Q.E.D.

Remark 5.3. The coordinates on O(s1,e,...,e) used in Lemma 5.2 are defined by any basis
of g as specified in Section 2.1 which is not necessarily a Chevalley basis. Indeed, since the
Poisson structure Π is quadratic, it is invariant under re-scalings of the coordinates.
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5.2 An example for G = G2

Let G be the connected complex semisimple Lie group with Lie algebra of type G2. Let α
and β be the two simple roots, where 〈β,β〉〈α,α〉 = 3. We fix a Chevalley basis of g2 with the
following system of structure constants Nα1,α2 for roots α1 and α2:

α β α+ β 2α+ β 3α+ β 3α+ 2β
α 0 −1 −2 −3 0 0
β 1 0 0 0 −1 0
α+ β 2 0 0 3 0 0
2α+ β 3 0 −3 0 0 0
3α+ β 0 1 0 0 0 0
3α+ 2β 0 0 0 0 0 0
−α 0 0 −3 −2 −1 0
−β 0 0 1 0 0 −1
−α− β −3 1 0 2 0 1
−2α− β −2 0 2 0 1 −1
−3α− β −1 0 0 1 0 1
−3α− 2β 0 −1 1 −1 1 0

Using Nα1,α2 = −N−α1,−α2 , we can easily find the remaining structure constants.
Consider the Bott-Samelson variety associated to the word w0 = (s1, s2, s1, s2, s1, s2),

where s1 = sα and s2 = sβ . Let γ = (s1, s2, s1, s2, s1, s2). The Poisson structure in the chart
Oγ in the coordinates (z1, . . . z6) was computed using a computer programme developed by
the author in the GAP [7] language.

{z1, z2} = −3z1z2

{z1, z3} = −z1z3 − 2z2

{z1, z4} = −6z2
3

{z1, z5} = z1z5 − 4z3

{z1, z6} = 3z1z6 − 6z5

{z2, z3} = −3z2z3

{z2, z4} = −6z3
3 − 3z2z4

{z2, z5} = −6z2
3

{z2, z6} = 3z2z6 − 18z3z5 + 6z4

{z3, z4} = −3z3z4

{z3, z5} = −z3z5 − 2z4

{z3, z6} = −6z2
5

{z4, z5} = −3z4z5

{z4, z6} = −6z3
5 − 3z4z6

{z5, z6} = −3z5z6

11



A Another proof of Corollary 5.2 by change of coordi-
nates

Lemma 4.1 expresses the Poisson structure Π on the Bott-Samelson variety Zw in different
affine coordinate charts. In particular, in the affine chart O(e,e,...,e) with coordinates

(ξ1, ξ2, . . . , ξn) 7→ [u−α1(ξ1), u−α2(ξ2), . . . , u−αn(ξn)],

the Poisson structure is especially simple, namely, {ξi, ξj} = 〈αi, αj〉ξiξj for all 1 ≤ i < j ≤ n.
In Corollary 5.2, we have also given the explicit formulas for the Poisson structure Π in the
affine chart O(s1,e,...,e) with coordinates

(z1, z2 . . . , zn) 7→ [uα1(z1)ṡ1, u−α2(z2), . . . , u−αn(zn)].

In this appendix, we first write down the transition functions between the coordinates
(ξ1, ξ2, . . . , ξn) and the coordinates (z1, z2, . . . , zn) on the intersection O(e,e,...,e) ∩O(s1,e,...,e).
We then use the change of coordinates and the simple formulas for the Poisson structure in
O(e,e,...,e) to give another proof of Corollary 5.2.

Lemma A.1. On the intersection O(e,e,...,e) ∩ O(s1,e,...,e), one has z1 = 1/ξ1, and for 2 ≤
j ≤ n, one has

zj =



(∑
αi=α1

1≤i≤j−1
ξi

)−2〈α1,α2〉
〈α1,α1〉

if αj 6= α1,

ξj„P
αi=α1

1≤i≤j−1
ξi

«„P
αi=α1
1≤i≤j

ξi

« if αj = α1.

Proof. By (3), and the fact that uβ(w)β∨(w) ∈ B for any w ∈ C∗, one has

[u−α1(ξ1), u−α2(ξ2), . . . , u−αn(ξn)] =
[
uα1

(
1
ξ1

)
ṡ1, uα1(ξ1)α∨1 (ξ1)u−α2(ξ2), . . . , u−αn(ξn)

]
,

and the result follows from (4).

Q.E.D.

We introduce some notation to simplify the formulas in Lemma A.1. For 2 ≤ j ≤ n, let

nj,1 =
−〈αj , α1〉
〈α1, α1〉

, Σ1
<j =

 ∑
αk=α1

1≤k≤j−1

ξk


nj,1

, Σ1
≤j =

 ∑
αk=α1
1≤k≤j

ξk


nj,1

.

Then zj = Σ1
<jΣ

1
≤jξj for all j ≥ 2.

First let 2 ≤ i < j ≤ n. We now prove that {zi, zj} = 〈αi, αj〉zizj . Using {ξi, ξj} =
〈αi, αj〉ξiξj and the Leinbiz rule, one has

{zi, zj} = Σ1
<iΣ

1
≤iΣ

1
<jΣ

1
≤j{ξi, ξj}+ Σ1

<iΣ
1
≤iξj{ξi,Σ1

<jΣ
1
≤j}

+ ξiΣ1
<jΣ

1
≤j{Σ1

<iΣ
1
≤i, ξj}+ ξiξj{Σ1

<iΣ
1
≤i,Σ

1
<jΣ

1
≤j}.

It is clear that Σ1
<iΣ

1
≤iΣ

1
<jΣ

1
≤j{ξi, ξj} = 〈αi, αj〉zizj . It thus remains to prove that

Σ1
<iΣ

1
≤iξj{ξi,Σ1

<jΣ
1
≤j}+ ξiΣ1

<jΣ
1
≤j{Σ1

<iΣ
1
≤i, ξj}+ ξiξj{Σ1

<iΣ
1
≤i,Σ

1
<jΣ

1
≤j} = 0. (19)
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Since {Σ1
<iΣ

1
≤i, ξj} = Σ1

<i{Σ1
≤i, ξj}+ Σ1

≤i{Σ1
<i, ξj} = 2ni,1〈α1, αj〉Σ1

<iΣ
1
≤iξj , one has

ξiΣ1
<jΣ

1
≤j{Σ1

<iΣ
1
≤i, ξj} = 2ni,1〈α1, αj〉zizj . (20)

On the other hand,

{ξi,Σ1
<jΣ

1
≤j} = Σ1

<j{ξi,Σ1
≤j}+ Σ1

≤j{ξi,Σ1
<j} = −2nj,1〈α1, αi〉Σ1

<jΣ
1
≤jξi +O,

where, if αi 6= α1,

O = 2nj,1〈α1, αi〉Σ1
<j

 ∑
αk=α1
1<k≤j

ξk


nj,1−1 ∑

αk=α1
i≤k≤j

ξkξi



+ 2nj,1〈α1, αi〉Σ1
≤j

 ∑
αk=α1
1<k<j

ξk


nj,1−1 ∑

αk=α1
i≤k<j

ξkξi

 ,

and if αi = α1,

O = 2nj,1〈α1, αi〉Σ1
<j

 ∑
αk=α1
1<k≤j

ξk


nj,1−1 ∑

αk=α1
i≤k≤j

ξkξi



+ 2nj,1〈α1, αi〉Σ1
≤j

 ∑
αk=α1
1<k<j

ξk


nj,1−1 ∑

αk=α1
i≤k<j

ξkξi



− nj,1〈α1, αi〉

Σ1
<j

∑
αk=α1
1<k≤j

ξk


nj,1−1

ξ2
i − nj,1〈α1, αi〉Σ1

≤j

 ∑
αk=α1
1<k<j

ξk


nj,1−1

ξ2
i .

Therefore,

ξjΣ1
<iΣ

1
≤i{ξi,Σ1

<jΣ
1
≤j} = −2nj,1〈α1, αi〉(zizj) +OξjΣ1

<iΣ
1
≤i. (21)

Observe that nj,1〈α1, αi〉 = ni,1〈α1, αj〉, so we need to show that

ξiξj{Σ1
<iΣ

1
≤i,Σ

1
<jΣ

1
≤j}+OξjΣ1

<iΣ
1
≤i = 0.

Now,

{Σ1
<iΣ

1
≤i,Σ

1
<jΣ

1
≤j} = Σ1

<iΣ
1
<j{Σ1

≤i,Σ
1
≤j}+ Σ1

<iΣ
1
≤j{Σ1

≤i,Σ
1
<j}

+ Σ1
≤iΣ

1
<j{Σ1

<i,Σ
1
≤j}+ Σ1

≤iΣ
1
≤j{Σ1

<i,Σ
1
<j}.

For the first term, one has

{Σ1
≤i,Σ

1
≤j} = 〈α1, α1〉nj,1ni,1Σ1

≤i

 ∑
αk=α1
1<k≤j

ξk


nj,1−1 ∑

αl=α1
i<l≤j

ξl

 .
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Hence

Σ1
<iΣ

1
<j{Σ1

≤i,Σ
1
≤j} = 〈α1, α1〉nj,1ni,1Σ1

<iΣ
1
<jΣ

1
≤i

 ∑
αk=α1
1<k≤j

ξk


nj,1−1 ∑

αl=α1
i<l≤j

ξl

 . (22)

Similarly, we have

Σ1
<iΣ

1
≤j{Σ1

≤i,Σ
1
<j} = 〈α1, α1〉nj,1ni,1Σ1

<iΣ
1
≤jΣ

1
≤i

 ∑
αk=α1
1<k<j

ξk


nj,1−1 ∑

αl=α1
i<l<j

ξl

 , (23)

Σ1
≤iΣ

1
<j{Σ1

<i,Σ
1
≤j} = 〈α1, α1〉nj,1ni,1Σ1

<iΣ
1
<jΣ

1
≤i

 ∑
αk=α1
1<k≤j

ξk


nj,1−1 ∑

αl=α1
i≤l≤j

ξl

 , (24)

Σ1
≤iΣ

1
≤j{Σ1

<i,Σ
1
<j} = 〈α1, α1〉nj,1ni,1Σ1

<iΣ
1
≤jΣ

1
≤i

 ∑
αk=α1
1<k<j

ξk


nj,1−1 ∑

αl=α1
i≤l<j

ξl

 . (25)

Noting that 〈α1, α1〉nj,1ni,1 = −〈α1, αi〉nj,1, the sum of all the terms from (20) to (25), is
equal to 0. Hence {zi, zj} = 〈αi, αj〉zizj .

We now compute {z1, zj} for 2 ≤ j ≤ n. One has

{z1, zj} =
{

1
ξ1
,Σ1

<jΣ
1
≤jξj

}
= − 1

ξ2
1

(
Σ1
<jΣ

1
≤j {ξ1, ξj}+ Σ1

<jξj{ξ1,Σ1
≤j}+ Σ1

≤jξj
{
ξ1,Σ1

<j

})

= − 1
ξ2
1

Σ1
<jΣ

1
≤j〈α1, αj〉ξ1ξj + Σ1

<jξjnj,1

 ∑
αk=α1
1≤k≤j

ξk


nj,1−1ξ1,

∑
αk=α1
1<k≤j

ξk


− 1
ξ2
1

Σ1
≤jξjnj,1

 ∑
αk=α1
1≤k<j

ξk


nj,1−1ξ1,

∑
αk=α1
1<k<j

ξk


= −〈α1, αj〉z1zj −

1
ξ2
1

Σ1
<jξjnj,1Σ1

≤j

 ∑
αk=α1
1≤k≤j

ξk


−1 ∑

αk=α1
1<k≤j

〈α1, α1〉ξ1ξk



− 1
ξ2
1

Σ1
≤jξjnj,1Σ1

<j

 ∑
αk=α1
1≤k<j

ξk


−1 ∑

αk=α1
1<k<j

〈α1, α1〉ξ1ξk



= −〈α1, αj〉z1zj + 〈α1, αj〉zj


∑

αk=α1
1<k≤j

ξk

ξ1

(∑
αk=α1
1≤k≤j

ξk

) +

∑
αk=α1
1<k<j

ξk

ξ1

(∑
αk=α1
1≤k<j

ξk

)
 .
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Recall that for 2 ≤ m ≤ n and αm = α1,

zm =
ξm(∑

αk=α1
1≤k<m

ξk

)(∑
αk=α1

1≤k≤m
ξk

) =
1∑

αk=α1
1≤k<m

ξk
− 1∑

αk=α1
1≤k≤m

ξk
.

Therefore ∑
αk=α1
1<k<j

zk =
1
ξ1
− 1(∑

αk=α1
1≤k≤j

ξk

) =

∑
αk=α1
1<k<j

ξk

ξ1

(∑
αk=α1
1≤k<j

ξk

) .
Substituting this to the last line of the equation for {z1, zj}, one has

{z1, zj} =

−〈α1, αj〉
(
z1 − 2

∑
2≤i≤j−1, αi=α1

zi

)
zj , if 2 ≤ j ≤ n and αj 6= α1,

−〈α1, α1〉
(
z1 − 2

∑
2≤i≤j−1, αi=α1

zi − zj
)
zj , if 2 ≤ j ≤ n and αj = α1,

as desired.
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Progress in Mathematics, 231. Birkhäuser Boston, Inc., Boston, MA, 2005.

[4] Brown, K. A., Goodearl, K. R., Yakimov M. Poisson structures on affine spaces and flag
varieties. I. Matrix affine Poisson space, Adv. Math. 206 (2006), no. 2, 567-629.

[5] Carter, R.W., Simple Groups of Lie Type, Wiley Classics Library. A Wiley-Interscience
Publication. John Wiley & Sons, Inc., New York, 1989.

[6] Chari, V.,Pressley, A., A Guide to Quantum Groups, Cambridge University Press, Cam-
bridge, 1994.

[7] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.5.4 ; 2012,
http://www.gap-system.org

[8] Goodearl, K.R., A Dixmier-Moeglin equivalence for Poisson algebras with torus actions,
Contemp. Math., 419, Amer. Math. Soc., Providence, RI, 2006.

[9] Goodearl, K.R., Launois, S., The Dixmier-Moeglin Equivalence and a Gel’fand-Kirillov
Problem for Poisson Polynomial algebras, Bull. Soc. Math. France 139 (2011), no. 1,
1-39.

[10] Kogan, M., Zelevinsky, A., On Symplectic Leaves and Integrable Systems in Standard
Complex Semisimple Poisson-Lie Groups, Int. Math. Res. Not. 2002, no. 32, 1685-1702.

[11] Lee, I.S., Park, K.H., Gauss sums for G2(q), Bull. Korean Math. Soc. 34 (1997), no. 2,
305-315.

[12] Lu, J.H., On a Poisson structure on Bott-Samelson varieties, 2012 preprint

[13] Lu, J.H., Weinstein, A., Poisson Lie Groups, Dressing transformations and Bruhat de-
compositions, J. Differential Geom. 31 (1990), no. 2, 501-526.

[14] Oh, S.Q., Poisson Polynomial Rings, Comm. Algebra 34 (2006), no. 4, 1265-1277.

[15] Springer, T.A., Linear Algebraic Groups, Second edition Progress in Mathematics, 9.
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