MATH 6670, COMPREHENSIVE

DUE FRIDAY, MAY 17

Open book, open notes, but not "open internet" or "open friends." In particular, you must work on these problems alone and not discuss them with other students until all exams are turned in. You may quote results from the lectures without proof; results from the books require proper citation (e.g. [H Prop. II.3.7(c)]).

1. (Automorphisms of $\mathbf{P}^{1}(k)$.) Assume that k is algebraically closed.
(a) (5 points) Prove that the non-constant morphisms $\mathbf{A}^{1}(k) \rightarrow \mathbf{A}^{1}(k)$ are precisely the maps $x \mapsto f(x)$, where $f(x)$ is a nonconstant polynomial. Deduce that the only automorphisms of $\mathbf{A}^{1}(k)$ are of the form $x \mapsto a x+b$ where $a \in k^{\times}$and $b \in k$.
(b) (5 points) For any $[a: b] \in \mathbf{P}^{1}(k)$, show that there is a linear change of coordinates that gives a morphism $g: \mathbf{P}^{1}(k) \rightarrow \mathbf{P}^{1}(k)$ such that $g([a: b])=[1: 0]$.
(c) (5 points) Show that if $\phi: \mathbf{P}^{1}(k) \rightarrow \mathbf{P}^{1}(k)$ is an automorphism with $\phi([1: 0])=[1: 0]$, then the restriction of ϕ to $\mathbf{P}^{1}(k)-\{[1: 0]\}=\mathbf{A}^{1}(k)$ gives an automorphism of $\mathbf{A}^{1}(k)$. Use part (a) to deduce that ϕ comes from a linear change of coordinates:

$$
\phi([x: y])=\left[\phi_{11} x+\phi_{12} y: \phi_{21} x+\phi_{22} y\right]
$$

and show moreover that $\phi_{21}=0$.
(d) (5 points) Recall that $P G L_{2}(k)=G L_{2}(k) / \sim$, where we say two invertible 2×2 matrices satisfy $A \sim B$ if $A=\lambda B$ for some $\lambda \in k^{\times}$. Show that any $\left[\begin{array}{cc}a & b \\ c & d\end{array}\right] \in P G L_{2}(k)$ gives an automorphism ϕ of $\mathbf{P}^{1}(k)$ where

$$
\phi([x: y])=[a x+b y: c x+d y] .
$$

Use parts (a)-(c) to show that any automorphism of $\mathbf{P}^{1}(k)$ is of this form and thus that the group of automorphisms of $\mathbf{P}^{1}(k)$ is $P G L_{2}(k)$.
2. (Scheme and set-theoretic intersections) Let k be a field and consider the subset

$$
\widetilde{Z}=\left\{\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right) \mid s, t \in k\right\} \subset \mathbf{A}^{4} .
$$

(a) (4 points) Show that \widetilde{Z} is the set-theoretic intersection of a quadratic and a cubic hypersurface.
(b) (4 points) Show that the minimal number of generators of $I(\widetilde{Z})$, the ideal of polynomial vanishing on \widetilde{Z}, is 3 . (Hint: Find 3 linearly independent quadratic polynomials in the standard coordinates of \mathbf{A}^{4} that vanishing on \widetilde{Z}.) (This shows that \widetilde{Z} is not a complete intersection as a scheme.)
(c) (4 points) Is the projection $f(x, y, z, w)=(x, w)$ restricted to \widetilde{Z} a finite map from \widetilde{Z} to \mathbf{A}^{2} ?
(d) (4 points) In projective coordinates, prove that

$$
g[s: t]=\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right]
$$

is an isomorphism of \mathbf{P}^{1} onto a closed subvariety $Z \subset \mathbf{P}^{3}$.
(e) (4 points) What is the relation between Z and \widetilde{Z}, and how should we interpret the fact that \widetilde{Z} is not a complete intersection as a scheme, but that it is the intersection of two hypersurfaces?
3. (The simplest projective surfaces.)
(a) (5 points) Show that $\mathbf{P}^{1} \times \mathbf{P}^{1}$ is a projective variety. In other words, give a closed subvariety $Z \subset \mathbf{P}^{N}$ for some N together with an isomorphism $\psi: \mathbf{P}^{1} \times \mathbf{P}^{1} \rightarrow Z$.
(b) (5 points) Show that $\mathbf{P}^{1} \times \mathbf{P}^{1}$ is irreducible.
(c) (5 points) Show that $\mathbf{P}^{1} \times \mathbf{P}^{1}$ and \mathbf{P}^{2} have isomorphic function fields.
(d) (5 points) Show that $\mathbf{P}^{1} \times \mathbf{P}^{1}$ and \mathbf{P}^{2} are not isomorphic.
4. (Frobenius and Divisors)
(a) (5 points) Let $k=\overline{\mathbf{F}_{q}}$, an algebraic closure of the finite field of q elements. Let $X=\mathbf{P}^{1}$ and let $F_{X}: \mathbf{P}^{1} \rightarrow \mathbf{P}^{1}$ be the q-Frobenius endomorphism of X (i.e. $x \mapsto x^{q}$). Show that F_{X} is bijective, but not an isomorphism.
(b) (5 points) State the definition of a prime divisor on a smooth irreducible projective curve over \mathbf{F}_{q} and give as elementary a description of this as possible.
(c) (10 points) Describe all the prime divisors on $\mathbf{P}_{\mathbf{F}_{q}}^{1}$ and briefly justify your answer. (A detailed proof is not required for this part.)
5. Let $X \subset \mathbf{A}^{3}$ be the surface defined by $z^{2}=x y$ and $X^{\prime}=X-\{0\}$, where $0=(0,0,0) \in \mathbf{A}^{3}$. Consider

$$
Y=\{(t, 0,0) \mid t \in k\} \subset X
$$

and $Y^{\prime}=Y-\{0\}$. Let $\mathcal{I}_{Y} \subset \mathscr{O}_{X}$ be the subsheaf of functions vanishing on Y, that is, for an open set U,

$$
\mathcal{I}_{Y}(U)=\left\{f \in \mathscr{O}_{X}(U):\left.f\right|_{Y \cap U}=0\right\} .
$$

(a) (10 points) Show that $\left.\mathcal{I}_{Y}\right|_{X^{\prime}}$ is locally free of rank 1 (i.e. invertible) but \mathcal{I}_{Y} is not locally free at 0 . Conclude that $\mathscr{O}_{X, 0}$ is not a unique factorization domain.
(b) (10 points) Show that $\left.\mathcal{I}_{Y}\right|_{X^{\prime}}$ is not trivial, but that its square is trivial (i.e. isomorphic to $\left.\mathscr{O}_{X^{\prime}}\right)$.
6. (Sheaves of modules on ringed spaces) Let $\left(X, \mathscr{O}_{X}\right)$ be a ringed space, and let \mathscr{F} and \mathscr{G} be sheaves of \mathscr{O}_{X}-modules. Recall that the tensor product $\mathscr{F} \otimes_{\mathscr{O}_{X}} \mathscr{G}$ is the sheafification of the presheaf $U \mapsto \mathscr{F}(U) \otimes_{\mathscr{O}_{X}(U)} \mathscr{G}(U)$.
(a) (6 points) Prove that for any $x \in X$, we have $\left(\mathscr{F} \otimes_{\mathscr{O}_{X}} \mathscr{G}\right)_{x}=\mathscr{F}_{x} \otimes_{\mathscr{O}_{X, x}} \mathscr{G}_{x}$. Conclude that the tensor product is a right exact functor in each of the two arguments.
(b) (7 points) Assume that \mathscr{F} is locally free of finite rank, i.e. for all $x \in X$, there exists a neighborhood U of x such that $\left.\mathscr{F}\right|_{U} \simeq\left(\mathscr{O}_{X}(U)\right)^{n}$. Show that there is a natural isomorphism

$$
\mathscr{H} \operatorname{om}_{\mathscr{O}_{X}}(\mathscr{F}, \mathscr{G})=\mathscr{G} \otimes \mathscr{F}^{\vee}
$$

where \mathscr{H} om is the sheaf of homomorphisms and $\mathscr{F}^{\vee}=\mathscr{H}_{\mathrm{om}_{\mathscr{O}_{X}}\left(\mathscr{F}, \mathscr{O}_{X}\right) \text { is the dual of the }}$ locally free sheaf \mathscr{F}.
(c) (7 points) Let $f:\left(X, \mathscr{O}_{X}\right) \rightarrow\left(Y, \mathscr{O}_{Y}\right)$ be a morphism of ringed spaces. Suppose that \mathscr{F} is an \mathscr{O}_{X}-module and \mathscr{G} is a locally free \mathscr{O}_{Y}-module of finite rank. Construct a natural isomorphism $f_{*}\left(\mathscr{F} \otimes_{\mathscr{O}_{X}} f^{*} \mathscr{G}\right) \simeq f_{*}(\mathscr{F}) \otimes_{\mathscr{O}_{Y}} \mathscr{G}$.
7. (Quotients by finite groups) Let X be an affine variety and let G be a finite group. Assume that G acts on X algebraically, that is, for every $g \in G$, we are given a morphism $g: X \rightarrow X$ (which we denote by the same letter for simplicity of notation) such that

$$
(g h)(p)=g(h(p))
$$

for all $g, h \in G$ and $p \in X$.
(a) (7 points) Let $g \in G$ acts on the coordinate rings $A(X)$ via $f \mapsto f^{g}$, where

$$
f^{g}(p):=f(g(p))
$$

Let $A(X)^{G}$ be the subalgebra of $A(X)$ consisting of all G-invariant functions on X. Show that $A(X)^{G}$ is a finitely generated k-algebra.
(b) (7 points) By (a), there is an affine variety Y with coordinate ring $A(X)^{G}$, together with a morphism $\pi: X \rightarrow Y$ corresponding to the inclusion $A(X)^{G} \hookrightarrow A(X)$. Show that Y can be considered as the quotient of X by G (written X / G) in the sense that if $p, q \in X$, then $\pi(p)=\pi(q)$ if and only if there is a $g \in G$ such that $g(p)=q$.
(c) (6 points) Let $\mu_{n}=\{\exp (2 \pi i k / n): k \in \mathbf{Z}\}$ be the group of nth roots of unity. Let μ_{n} act on \mathbf{C}^{m} by multiplication in each coordinate. Describe \mathbf{C} / μ_{n} and \mathbf{C}^{2} / μ_{n} as affine algebraic sets.

