MATH 6670, COMPREHENSIVE

DUE FRIDAY, MAY 17

Open book, open notes, but not "open internet" or "open friends." In particular, you *must work* on these problems alone and not discuss them with other students until all exams are turned in. You may quote results from the lectures without proof; results from the books require proper citation (e.g. [H Prop. II.3.7(c)]).

- 1. (Automorphisms of $\mathbf{P}^{1}(k)$.) Assume that k is algebraically closed.
 - (a) (5 points) Prove that the non-constant morphisms $\mathbf{A}^1(k) \to \mathbf{A}^1(k)$ are precisely the maps $x \mapsto f(x)$, where f(x) is a nonconstant polynomial. Deduce that the only automorphisms of $\mathbf{A}^1(k)$ are of the form $x \mapsto ax + b$ where $a \in k^{\times}$ and $b \in k$.
 - (b) (5 points) For any $[a:b] \in \mathbf{P}^1(k)$, show that there is a linear change of coordinates that gives a morphism $g: \mathbf{P}^1(k) \to \mathbf{P}^1(k)$ such that g([a:b]) = [1:0].
 - (c) (5 points) Show that if $\phi : \mathbf{P}^1(k) \to \mathbf{P}^1(k)$ is an automorphism with $\phi([1:0]) = [1:0]$, then the restriction of ϕ to $\mathbf{P}^1(k) - \{[1:0]\} = \mathbf{A}^1(k)$ gives an automorphism of $\mathbf{A}^1(k)$. Use part (a) to deduce that ϕ comes from a linear change of coordinates:

$$\phi([x:y]) = [\phi_{11}x + \phi_{12}y : \phi_{21}x + \phi_{22}y]$$

and show moreover that $\phi_{21} = 0$.

(d) (5 points) Recall that $PGL_2(k) = GL_2(k) / \sim$, where we say two invertible 2×2 matrices satisfy $A \sim B$ if $A = \lambda B$ for some $\lambda \in k^{\times}$. Show that any $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in PGL_2(k)$ gives an automorphism ϕ of $\mathbf{P}^1(k)$ where

$$\phi([x:y]) = [ax + by : cx + dy].$$

Use parts (a)–(c) to show that any automorphism of $\mathbf{P}^1(k)$ is of this form and thus that the group of automorphisms of $\mathbf{P}^1(k)$ is $PGL_2(k)$.

2. (Scheme and set-theoretic intersections) Let k be a field and consider the subset

$$\widetilde{Z} = \{(s^3, s^2t, st^2, t^3) \mid s, t \in k\} \subset \mathbf{A}^4.$$

- (a) (4 points) Show that \widetilde{Z} is the set-theoretic intersection of a quadratic and a cubic hypersurface.
- (b) (4 points) Show that the minimal number of generators of $I(\widetilde{Z})$, the ideal of polynomial vanishing on \widetilde{Z} , is 3. (Hint: Find 3 linearly independent quadratic polynomials in the standard coordinates of \mathbf{A}^4 that vanishing on \widetilde{Z} .) (This shows that \widetilde{Z} is not a complete intersection as a scheme.)
- (c) (4 points) Is the projection f(x, y, z, w) = (x, w) restricted to \widetilde{Z} a finite map from \widetilde{Z} to \mathbf{A}^2 ?
- (d) (4 points) In projective coordinates, prove that

$$g[s:t] = [s^3:s^2t:st^2:t^3]$$

is an isomorphism of \mathbf{P}^1 onto a closed subvariety $Z \subset \mathbf{P}^3$.

(e) (4 points) What is the relation between Z and \tilde{Z} , and how should we interpret the fact that \tilde{Z} is not a complete intersection as a scheme, but that it is the intersection of two hypersurfaces?

- **3.** (The simplest projective surfaces.)
 - (a) (5 points) Show that $\mathbf{P}^1 \times \mathbf{P}^1$ is a projective variety. In other words, give a closed subvariety $Z \subset \mathbf{P}^N$ for some N together with an isomorphism $\psi : \mathbf{P}^1 \times \mathbf{P}^1 \to Z$.
 - (b) (5 points) Show that $\mathbf{P}^{1} \times \mathbf{P}^{1}$ is irreducible.
 - (c) (5 points) Show that $\mathbf{P}^1 \times \mathbf{P}^1$ and \mathbf{P}^2 have isomorphic function fields.
 - (d) (5 points) Show that $\mathbf{P}^1 \times \mathbf{P}^1$ and \mathbf{P}^2 are not isomorphic.
- 4. (Frobenius and Divisors)
 - (a) (5 points) Let $k = \overline{\mathbf{F}_q}$, an algebraic closure of the finite field of q elements. Let $X = \mathbf{P}^1$ and let $F_X : \mathbf{P}^1 \to \mathbf{P}^1$ be the q-Frobenius endomorphism of X (i.e. $x \mapsto x^q$). Show that F_X is bijective, but not an isomorphism.
 - (b) (5 points) State the definition of a prime divisor on a smooth irreducible projective curve over \mathbf{F}_q and give as elementary a description of this as possible.
 - (c) (10 points) Describe all the prime divisors on $\mathbf{P}_{\mathbf{F}_q}^1$ and briefly justify your answer. (A detailed proof is not required for this part.)

5. Let $X \subset \mathbf{A}^3$ be the surface defined by $z^2 = xy$ and $X' = X - \{0\}$, where $0 = (0, 0, 0) \in \mathbf{A}^3$. Consider

$$Y = \{(t, 0, 0) \mid t \in k\} \subset X$$

and $Y' = Y - \{0\}$. Let $\mathcal{I}_Y \subset \mathscr{O}_X$ be the subsheaf of functions vanishing on Y, that is, for an open set U,

$$\mathcal{I}_Y(U) = \{ f \in \mathscr{O}_X(U) : f|_{Y \cap U} = 0 \}.$$

- (a) (10 points) Show that $\mathcal{I}_Y|_{X'}$ is locally free of rank 1 (i.e. invertible) but \mathcal{I}_Y is not locally free at 0. Conclude that $\mathscr{O}_{X,0}$ is not a unique factorization domain.
- (b) (10 points) Show that $\mathcal{I}_Y|_{X'}$ is not trivial, but that its square is trivial (i.e. isomorphic to $\mathscr{O}_{X'}$).

6. (Sheaves of modules on ringed spaces) Let (X, \mathcal{O}_X) be a ringed space, and let \mathscr{F} and \mathscr{G} be sheaves of \mathcal{O}_X -modules. Recall that the tensor product $\mathscr{F} \otimes_{\mathcal{O}_X} \mathscr{G}$ is the sheafification of the presheaf $U \mapsto \mathscr{F}(U) \otimes_{\mathcal{O}_X(U)} \mathscr{G}(U)$.

- (a) (6 points) Prove that for any $x \in X$, we have $(\mathscr{F} \otimes_{\mathscr{O}_X} \mathscr{G})_x = \mathscr{F}_x \otimes_{\mathscr{O}_{X,x}} \mathscr{G}_x$. Conclude that the tensor product is a right exact functor in each of the two arguments.
- (b) (7 points) Assume that \mathscr{F} is locally free of finite rank, i.e. for all $x \in X$, there exists a neighborhood U of x such that $\mathscr{F}|_U \simeq (\mathscr{O}_X(U))^n$. Show that there is a natural isomorphism

$$\mathscr{H}\mathrm{om}_{\mathscr{O}_X}(\mathscr{F},\mathscr{G}) = \mathscr{G} \otimes \mathscr{F}^{\vee},$$

where \mathscr{H} om is the sheaf of homomorphisms and $\mathscr{F}^{\vee} = \mathscr{H}$ om $\mathscr{O}_X(\mathscr{F}, \mathscr{O}_X)$ is the dual of the locally free sheaf \mathscr{F} .

(c) (7 points) Let $f : (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ be a morphism of ringed spaces. Suppose that \mathscr{F} is an \mathscr{O}_X -module and \mathscr{G} is a locally free \mathscr{O}_Y -module of finite rank. Construct a natural isomorphism $f_*(\mathscr{F} \otimes_{\mathscr{O}_X} f^*\mathscr{G}) \simeq f_*(\mathscr{F}) \otimes_{\mathscr{O}_Y} \mathscr{G}$.

7. (Quotients by finite groups) Let X be an affine variety and let G be a finite group. Assume that G acts on X algebraically, that is, for every $g \in G$, we are given a morphism $g: X \to X$ (which we denote by the same letter for simplicity of notation) such that

$$(gh)(p) = g(h(p))$$

for all $g, h \in G$ and $p \in X$.

(a) (7 points) Let $g \in G$ acts on the coordinate rings A(X) via $f \mapsto f^g$, where

$$f^g(p) := f(g(p)).$$

Let $A(X)^G$ be the subalgebra of A(X) consisting of all G-invariant functions on X. Show that $A(X)^G$ is a finitely generated k-algebra.

- (b) (7 points) By (a), there is an affine variety Y with coordinate ring $A(X)^G$, together with a morphism $\pi : X \to Y$ corresponding to the inclusion $A(X)^G \hookrightarrow A(X)$. Show that Y can be considered as the quotient of X by G (written X/G) in the sense that if $p, q \in X$, then $\pi(p) = \pi(q)$ if and only if there is a $g \in G$ such that g(p) = q.
- (c) (6 points) Let $\mu_n = \{\exp(2\pi i k/n) : k \in \mathbf{Z}\}$ be the group of *n*th roots of unity. Let μ_n act on \mathbf{C}^m by multiplication in each coordinate. Describe \mathbf{C}/μ_n and \mathbf{C}^2/μ_n as affine algebraic sets.