MATH 6670, HOMEWORK \#1

DUE THURSDAY, JANUARY 31

In this course, all rings are commutative rings with unity.

1. (From first lecture)
(a) Show that if $f: B \rightarrow A$ is a ring homomorphism, then for every prime ideal \mathfrak{p} of A, the set $f^{-1}(\mathfrak{p})$ is a prime ideal of B.
(b) Give an example where this is not true if you replace "prime" by "maximal."
2. Let X be a topological space. Consider the category Open (X), whose objects are open sets of X, and whose morphisms are

$$
\operatorname{Mor}\left(U_{1}, U_{2}\right)= \begin{cases}\{*\}, & U_{1} \subseteq U_{2} \\ \emptyset, & \text { otherwise }\end{cases}
$$

Show that a presheaf of sets (or abelian groups, vector spaces, rings) is the same as a contravariant functor from $\operatorname{Open}(X)$ to Sets (or Ab, Vect ${ }_{k}$, Rings).
3. (Category theory review) Assume all categories are abelian and functors between them are additive.
(a) Let $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ be functors between categories such that F is left adjoint to G (equivalently, G is right adjoint to F). Show that F is right exact and G is left exact.
(b) Let $i: \mathcal{C}_{0} \rightarrow \mathcal{C}$ be the embedding of a full subcategory. Suppose that i admits a left (resp. right) adjoint s. Let L (resp. R) denote the composition $i \circ s$. Show that $X \in \mathcal{C}_{0}$ if and only if the canonical map $X \mapsto L(X)$ (resp. $R(X) \mapsto X$) is an isomorphism.
4. [EH I-5]
(a) Let X be the two-element set $\{0,1\}$, and make X into a topological space by taking each of the four subsets to be open. A sheaf on X is thus a collection of four sets with certain maps between them; describe the relations among these objects.
(b) Do the same in the case where the topology of $X=\{0,1\}$ has as open sets only $\emptyset,\{0\}$, and $\{0,1\}$.
(c) (Optional) The spaces in (a) and (b) can be realized as $\operatorname{Spec} R$ from some ring R; can you find one for each?
5. (The constant sheaf) Let A be a nontrivial Abelian group. Let X be a topological space. Define the constant presheaf of groups $A_{X}(U)=A$ for every nonempty open set U, where the restriction maps $\rho_{V}^{U}(U)=\operatorname{id}_{A}$ for all nonempty $V \subseteq U$.
(a) Show that A_{X} is not generally a sheaf. (Given an explicit example of X where the sheaf condition fails.)
(b) Show that the sheaf associated to A_{X} (i.e. its sheafification) is such that if $U \subseteq X$ is a nonempty open whose connected components are open (which is always true on a locally connected topological space), then $A_{X}(U)$ is a direct product of copies of A, one for each connected component of U.

