
EXERCISES FOR 1920 SECTION, FALL 2008

* Starred exercises are intended as “challenges”. Some are more theoretical applications
of the course material; others are related to other parts of the same problem but are not
necessarily directly related to course material.

R2 denotes the plane, usually with x and y as coordinates.
R3 denotes three-dimensional space, usually with x, y, and z as coordinates.
A few of the exercises in this handout use the hyperbolic functions, which are not part of

the course material, but technically belong to the prerequisites (although I know it is rare
to encounter them in high school). The hyperbolic cosine and hyperbolic sine are defined by

cosh t =
et + e−t

2
and sinh t =

et − e−t

2
.

(The remaining hyperbolic functions are defined by analogy with the trigonometric func-
tions.) You should check that these satisfy the properties

d

dt
sinh t = cosh t and

d

dt
cosh t = sinh t

(note: no change of sign in the latter) as well as the “hyperbolic Pythagorean identity”

cosh2 t− sinh2 t = 1.

It is useful to note that cosh t is even, sinh t is odd, and cosh t ≥ 1 for all t.

0. Introduction and review

Exercise 1. Suppose you only had the formula for the circumference of a circle, C = 2πr.
How could you find a formula for the area?

Exercise 2. Suppose an infinitesimally thin circular sheet of plastic with a uniform charge
density σ is placed in the (x, y)-plane. The electric potential of a point P0 in space due to
this disk is ∫

points P in the disk

charge at P

distance from P0 to P
.

Suppose that the disk is centered at (0, 0, 0) and P0 is a point on the z-axis.

a. What is the distance from P0 to a point P of the disk?
b. Note that the points of the disk some fixed distance from P0 form a circle. The

“infinitesimal potential” due to this circle is
2πσs ds

distance from this circle to P0

, where s

is the radius of the circle. Find an integral that computes the total potential at P0,
and evaluate it.
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1. Vectors and the geometry of R3

Exercise 3 (Thomas, p. 861 #24). Consider three nonzero vectors u, v, and w in R2 such
that |u| = |v| = |w| and any two have an angle of 120◦ between them. Sketch the following:

u + v, u− v, 2u− v, u− v + w, u + v + w.

If you observe any special configurations, try to prove that your guess is right.

Exercise 4. Recall that |u|2 = u · u.

a. Prove the parallelogram law :

|u + v|2 + |u− v|2 = 2
(
|u|2 + |v|2

)
.

Use it to prove the Pythagorean theorem.
b. Prove the polarization identity :

u · v =
1

2

(
|u + v|2 − |u|2 − |v|2

)
.

Exercise 5. How would you find an equation for the plane through (0, 0, 0), (1, 1, 1), and
(−2, 0, 3)? How would you describe the line perpendicular to this plane and passing through
the origin?

Exercise 6.

a. What kinds of data can be used to determine a point in R3? a line? a plane?
b. How can we tell whether a pair of lines in R3 is parallel, intersecting, or skew?
c. How can we tell whether a pair of planes in R3 intersects or is parallel?
d. What are the possible relative positions of three planes in R3?

2. Parametrized curves

Exercise 7. We parametrize a helix by (cos at, sin at, t) for some fixed a > 0.

a. Show that this parameterization has constant speed.
b. Show that the helix makes a constant angle with the vertical direction.

Exercise 8. The twisted cubic is parametrized in R3 by (t, t2, t3) for −∞ < t <∞.

a. Sketch projections of the twisted cubic onto the (x, y)-, (x, z)-, and (y, z)-planes.
*b. Show that any four distinct points on the twisted cubic do not lie in a single plane.

(Hint: If any four points do lie in a plane, then the vectors from one of the points to
the remaining three will span a parallelepiped having zero volume.)

Exercise 9. Why does the curve y = |x| not have a smooth parameterization? Does it have
a differentiable parameterization?

Exercise 10. Using the fact that a “cusp” (or “corner”) of a differentiable path can only
occur when the velocity vector vanishes, how many cusps would you guess lie on the curve
parametrized by (cos3 t, sin3 t)? (The resulting curve is called an astroid.)

Exercise 11. Starting from the parameterization of a helix, find a parameterization of a
loxodrome (which spirals from south to north along a fixed compass direction on a sphere)
by scaling the points of the helix to lie on the unit sphere.
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3. Line integrals, work, and flux

Exercise 12.

a. What is the mass of the circular wire with equation x2 +y2 = 1 and density 3+x+y?
b. What density in the plane or in space yields a line integral that computes arclength?

Exercise 13 (Thomas, p. 1223 #4). The path (cos t+ t sin t, sin t− t cos t) traces out a curve

called an involute of the circle. Find the line integral of
√
x2 + y2 over the piece of this curve

given by 0 ≤ t ≤
√

3.

Exercise 14. Consider three wires in the plane, all having their endpoints at (−1, 1) and
(1, 1). One is a straight segment, another is an arc of a circle centered at (0, 0), and the
third is the upper half of the circle with radius 1 centered at (0, 1). The density of all three
wires is given by δ(x, y) = 1/y. Which has the most mass? the least?

Exercise 15. Let the force of gravity on a 1 kg object near the surface of the Earth be
approximated by the field F(x, y, z) = −10 k.

a. Find the work done by gravity on a 1 kg box as it is carried up one turn of the helix
(cos 10t, sin 10t, t).

b. Find the work done by gravity on a 1 kg ball dropped from 20 m and following the
parabolic path z = −5y2 + 20 until it hits the ground.

Exercise 16.

a. Sketch the field on R3 minus the origin such that the vector at each point (x, y, z)
points to the origin and whose length is the inverse of the square of the distance from
(x, y, z) to the origin.

b. Find a formula that describes this field (cf. Thomas p. 1158, #5).
c. What is the total work done by this field over one complete orbit of an object in a

circular orbit around the origin? What if the orbit is an ellipse? (Hint: You should
not need to calculate in either case; use geometric reasoning.)

Exercise 17. Consider the vector field in R2 given by F(x, y) = (x2 − y2) i + 2xy j.

a. Sketch this field.
b. Find the work done by this field along the semicircular path x2 +y2 = 1, y ≥ 0, going

right to left. What is the work along the entire unit circle?
c. Find the work done by this field along the circular path centered at (0, 1) with radius

1, moving counterclockwise.
d. Can you predict the work done along the circle centered at (1, 0) with radius 1, again

moving counterclockwise? Give a reason for your answer.
e. Find the flux of F across each of the curves in (c) and (d). Can you predict either

of them ahead of time?

Exercise 18. Consider the field F(x, y) = − x

(x2 + y2)3/2
i − y

(x2 + y2)3/2
j in R2 minus the

origin. If this represents the gravitational field of a massive body at the origin, then a
much smaller object caught in this field might follow a parabolic trajectory described by
y = 1

4
x2 − 1 (i.e., the focus of this parabola is at the origin). Find the work done by F on

such an object from the time it makes its closest approach to the origin (its perihelion) to
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a point further along its parabolic path. As the distance the object has traveled tends to
infinity, does the work done by the field also go to infinity?

Exercise 19. Let F(x, y) = x j and G(x, y) = y i.
(Each of the paths below should be parametrized to have counterclockwise motion.)

a. Compute the work done by F and G along the boundary of a unit square, with
corners at (0, 0), (1, 0), (1, 1), and (0, 1).

b. Compute the work done by F and G along the unit circle.
c. Compute the work done by F and G along the boundary of a rectangle centered at

the origin with width 2a and height 2b.
d. Compute the work done by F and G along the boundary of an ellipse centered at

the origin with major axis 2a and minor axis 2b.
e. Can you guess what

∫
F · dr and

∫
G · dr are for any closed path r in the plane?

f. How do your answers to any of the above change if you replace work with flux?

Note: If r parametrizes a curve C, then
∫

F · dr and
∫

G · dr are more commonly written∫
C
x dy and

∫
C
y dx. In this notation, what does the form 1

2
(x dy − y dx) measure when

integrated along a closed curve C?

4. Functions of several variables

Exercise 20.

a. What are the level sets of the function f(x, y, z) = x2 + y2 + z2?
b. If a, b, and c are not all zero, what are the level sets of the function g(x, y, z) =

ax+ by + cz? What if a, b, and c are all zero?
c. Give an example of a function whose level sets are spheres centered at (1,−1, 2).
d. Give an example of a function whose level sets are ellipsoids.
e. Give an example of a function whose level sets are cylinders.

Exercise 21 (cf. examples in §14.2 of Thomas). In this exercise, all functions are extended
to be defined on all of R2 by setting their value to 0 at (0, 0).

a. Show that the function f(x, y) =
xy

x2 + y2
is not continuous at (0, 0).

*b. Show that the function g(x, y) =
x2y

x2 + y2
is continuous at (0, 0).

c. Let h be the function h(x, y) =
x2y

x4 + y2
. Show that all lines approaching (0, 0) give

the same limiting value for h. Show that approaching along a curve of the form
y = mx2 gives a limiting value that depends on m. What can you conclude about
the continuity of h at (0, 0)?

*d. Define F on R2 by F (x, y) =
xdy

x2d + y2
. Show that the limit of F at (0, 0) along any

path y = p(x), where p is a polynomial of degree less than d, is zero. Show that F is
not continuous at (0, 0).

*e. Suppose p(x, y) is any polynomial such that every term has degree at least d. Show

that G(x, y) =
p(x, y)

(x2 + y2)d/2
is continuous at (0, 0). (Recall: the degree of a term is

the sum of the powers of x and y in that term.)
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Note: Parts (d) and (e) are direct generalizations of (c) and (b). It’s worth thinking about
why they’re important as illustrations of what can happen, even if you don’t work them out
fully. Hint for these: in both cases, you can assume p is a monomial. Why?

Exercise 22. Define f(x, y) = xy.

a. Sketch the graph of f . Sketch the level curves of f .
b. Find the partial derivatives of f .
c. At what points (x, y) is f increasing in the x-direction? in the y-direction? When is

it increasing faster in the x-direction than in the y-direction?

Exercise 23. Define F (x, y, z) = xyz.

a. Sketch or describe the level sets of F .
b. In which of the three cardinal directions (positive x-, positive y-, and positive z-) is

F increasing fastest at the point (1,−2, 3)?
c. Can F ever be increasing in two of these directions and decreasing in the third?
d. Verify the chain rule for the functions from R to R given by evaluating F at each

point of the twisted cubic c(t) = t i+t2j+t3k and the helix h(t) = cos t i+sin t j+tk.

5. Tangent planes, differentials, and extreme values

Exercise 24.

a. Find an equation of the tangent line to the curve y2 = x3 + 1 at (1,
√

2).
b. Find an equation of the tangent plane to the unit sphere in R3 at a point (x0, y0, z0).
c. Find an equation of the tangent plane to the hyperboloid z2 = 1 +x2 +y2 at (2, 2, 3).

Exercise 25. Suppose α, β, and γ are the three angles in a Euclidean triangle T .

*a. Show that the point P = (cotα, cot β, cot γ) lies on the hyperboloid H defined by
xy + yz + zx = 1.

b. Find an equation of the tangent plane to H at P .
*c. Can you find a way to relate the side lengths of the triangle T to the coordinates of

a normal vector to H at P?

Exercise 26 (cf. Thomas pp. 1019–1020). Consider the function f(x, y) = x2−xy+ 1
2
y2 +3.

a. Compute the total differential df .
b. What range of values does the linearization of f take for |x− 3| ≤ 0.1, |y− 2| ≤ 0.1?
c. What is an upper bound for the error introduced by replacing f with its linearization

over these values of x and y?

Exercise 27. Compute the Hessians of f(x, y) = x2 − y2 and g(x, y) = 2xy at the origin.
How do the shapes of the graphs of these functions relate to each other? Can you glean
anything from the observation that f(x, y) = (x + y)(x − y)? How does the shape of the
graph of f change, locally and globally, by adding a y3 term?

Exercise 28 (Thomas, p. 1034 #41). Consider a flat circular plate having the shape of the
region x2 + y2 ≤ 1. The plate, including the boundary where x2 + y2 = 1, is heated so that
the temperature at the point (x, y) is T (x, y) = x2 + 2y2 − x. Find the temperatures at the
hottest and coldest points on the plate.
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Exercise 29. Define f on R2 by

f(x, y) = x3 − 3xy2 − 3x.

Find all critical points of f . Are any of them local maxima or minima? Which ones? Does
f have global extrema? Give reasons.

Exercise 30. Find the maximum and minimum values of the function f(x, y, z) = z on the
intersection of the surface defined by xy + yz + zx = 1 and the plane x+ y + z = 3.

6. Double integrals and polar coordinates

Exercise 31. Integrate e−y2
over the triangle bounded by x = 0, y = 1, and x = y.

Exercise 32 (cf. Wikipedia, “Fubini’s Theorem”). Show that the improper integrals∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dx dy and

∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dy dx

both converge (conditionally), but not to the same value.

Exercise 33.

a. Find the integral of the function 1/y2 over the region described by −1 ≤ x ≤ 1 and
x2 + y2 ≥ 1, with y > 0. Note that this is an improper integral (the region is not
closed and bounded), so our version of Fubini’s theorem does not apply. Show that
the conclusion of Fubini’s theorem still holds by computing in the order “y, then x”
and “x, then y”.

*b. Find the center of mass of the shape described in part (a) with 1/y2 used as a density
function.

*c. Find the volume contained in the (unbounded) region of R3 described by

x ≥ 0, y ≥ 0, z ≥ 0, xy + yz + zx ≤ 1.

Exercise 34.

a. Consider a circular disk with radius R and constant thickness h. Find the moment
of inertia of this disk about its axis of symmetry.

b. Find the moment of inertia of a sphere about any axis through its center. This can
be done two ways: think of the sphere as being composed of
• either stacked infinitesimal disks perpendicular to the axis
• or nested infinitesimal cylindrical shells sharing the same axis.

Exercise 35.

a. Find an equation in rectangular coordinates for the curve given by r = cos θ in polar
coordinates.

b. Graph each of the following limaçons (cf. Thomas p. 724, #21–24):

r =
1

2
+ cos θ, r = 1 + cos θ,

r =
3

2
+ cos θ, r = 2 + cos θ.

c. Find the area contained between the two loops of the first curve in part (b).
d. How do your answers to parts (a)–(c) change when cos θ is replaced with sin θ?
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Exercise 36. Let 0 < a < 1. Integrate 1/(1− (x2 + y2))2 over the disk of radius a.

Exercise 37.

a. Find the integral of 1/x2 over the region in R2 described by

|x| ≥ |y|, 1 ≤ x2 + y2 ≤ 4, x > 0.

*b. Show that the integral of 1/x2 over the region described by

m|x| ≥ |y|, a2 ≤ x2 + y2 ≤ b2, x > 0

only depends on m > 0 and the ratio b/a.

Exercise 38 (Thomas p. 1097, #27). Find the area and centroid of the cardioid r = 1+cos θ.

Exercise 39. Use polar coordinates to show that the area of an ellipse with axes of length
2a and 2b is πab.

Exercise 40 (A proof that
∑

1/n2 = π2/6). This is an extremely challenging problem, both
computationally and conceptually, but one that is still accessible using the methods we have
developed (plus a bit of the theory of infinite series, which you should have seen before).

*a. Recall that
1

1− x
= 1 + x+ x2 + x3 + · · · =

∞∑
n=0

xn. Use this to show that

∫ 1

0

∫ 1

0

1

1− xy
dx dy =

∞∑
n=1

1

n2
.

(You will need to switch the order of an integral and an infinite series; this just
requires applying another version of Fubini’s theorem and is allowed in this case,
essentially because everything involved is positive and the integral and series both
converge.)

*b. The integrand in part (a) is symmetric in x and y. Show that the integral of this
function over the triangle T defined by 0 ≤ y ≤ x ≤ 1 is∫∫

T

1

1− xy
dx dy =

π2

12

by changing to polar coordinates. Conclude that
∞∑

n=1

1

n2
=
π2

6
.

(The usual proof of this fact uses Fourier series, which you will see in later courses.)

7. Triple integrals

Exercise 41.

a. Show that a right circular cone of height h whose base has radius r has volume 1
3
πr2h.

*b. Consider a cone whose base is the unit square (defined by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1)
and whose summit is (x0, y0, z0), with z0 > 0. Show that the volume of this cone is
|z0|/3. (Note that x0 and y0 can be any values.)
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*c. Let R be any shape in the (x, y)-plane of R3 that has finite area A, and let P (x0, y0, h)
be any point in R3 with h > 0. Argue (using part (b) and Riemann sums, for
example) that the volume of the cone with base R and summit P has volume 1

3
Ah.

(This includes pyramids.)
d. Find the volume of the octahedron, defined in R3 by |x|+ |y|+ |z| ≤ 1.

*e. Find the area of one of the faces of the octahedron. Use the result from part (d) and
the formula from part (c), with the distance from the origin to the center of the face
as the height of a pyramid.

f. Find the volume of the tetrahedron, with four equilateral triangles as faces.

Exercise 42. This exercise uses triple integrals to study four-dimensional volumes. Just as
a single integral can be interpreted as the area in R2 between the graph of a function f(x)
and the x-axis, and a double integral can be interpreted as the volume in R3 between the
graph of a function f(x, y) and the (x, y)-plane, a triple integral can be interpreted as the
4d volume between the graph of a function f(x, y, z) and the (x, y, z)-space in R4. (Often
we use w as a fourth coordinate, but this is not immediately relevant.)

a. We call a sphere in R4 a hypersphere. The 4d volume of a hemi-hypersphere can
be computed as the integral of

√
R2 − x2 − y2 − z2 over the interior of the sphere

of radius R in R3. Convince yourself that this is true, then find the 4d volume of
a hypersphere of radius R. (Spherical coordinates will probably be easiest.) Differ-
entiate with respect to R to find the surface area (really, “surface 3d volume”) of a
hypersphere.

b. Choose some h > 0. Integrate:
• f(x, y, z) = h(1− |x| − |y| − |z|) over the octahedron |x| + |y| + |z| ≤ 1. (Hint:

just compute in the first octant, then multiply by 8. Why does this work?)

• g(x, y, z) = h(1 −
√
x2 + y2 + z2) over the interior of the unit sphere. (This

function also makes an appearance in the homework problem #85 on p. 1128.)
*c. Make a guess at the formula for the 4d volume of a “cone” whose “base” is a solid

in (x, y, z)-space and whose “summit” has h as its fourth coordinate.
*d. In part (f) of the previous exercise you found the volume of a tetrahedron. Here’s

another way that uses less trigonometry and is analogous to finding the area of an
equilateral triangle as in part (e) of the previous exercise.

Assuming that the formula you guessed in part (c) for the 4d volume of a cone is
correct, find the 4d volume of a “pyramid” whose base is one-eighth of the octahedron:

x ≥ 0, y ≥ 0, z ≥ 0, x+ y + z ≤ 1,

and whose height is 1. The tetrahedron is the face of this pyramid with vertices at
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1). Find the distance from the origin in
R4 to the center of this face and again apply your formula from (c). By what factor
should you multiply to find the volume of a tetrahedron with unit edge lengths?
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A hypercube with edges of
length 1 provides the mea-
sure of unit volume in R4.

This picture shows a
highly symmetric projection
of a hypercube into R2 so
that all the edge lengths
are equal. Each edge has
one of only four directions.
By choosing one of these
directions and removing all
edges in that direction, you
can find a pair of 3d cubes
that are opposite “faces” of
the hypercube.

Check out these references to hypercubes (also called tesseracts) in art and literature:

• Salvador Daĺı’s painting Corpus Hypercubicus
• Madeleine L’Engle’s novel A Wrinkle in Time
• Robert Heinlein’s short story “—And He Built a Crooked House”
• the film version (2007) of Flatland

Exercise 43. This exercise introduces hyperbolic coordinates, which are a twist on spherical
coordinates. We start with spherical coordinates, but we replace the radial distance ρ and
the zenith angle ϕ with parameters τ and σ, so that

x = τ sinhσ cos θ, y = τ sinhσ sin θ, z = τ coshσ.

These coordinates are valid on the region defined by z >
√
x2 + y2. The volume form is

dV = τ 2 sinhσ dτ dσ dθ.

The parameters ρ and τ really are different: while ρ2 = x2 + y2 + z2, for τ we have instead
τ 2 = z2 − x2 − y2, i.e., τ is constant on hyperboloids rather than spheres.

Use hyperbolic coordinates to find the volumes of these regions in the first octant:

• bounded by the hyperboloid z2 = 1 + x2 + y2 and the cone z2 = 4(x2 + y2);
• bounded by the hyperboloid z2 = 1 + x2 + y2 and the plane z = x+ y.

8. Divergence, curl, surface integrals,
Green’s Theorems, Stokes’ Theorem, and the Divergence Theorem

Exercise 44. For each of the following vector fields in R2, sketch the field and determine
whether or not it is conservative. Find a potential function for each conservative field, and
sketch its graph.

F1(x, y) = x i + y j F3(x, y) = (x2 − y2) i + 2xy j

F2(x, y) = −y i + x j F4(x, y) = (x2 − y2) i− 2xy j

Compute the divergence and the circulation density of each of these fields.
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Exercise 45. Let F(x, y) = (x2−y2) i+2xy j. Let C be a simple closed curve in R2, oriented
counterclockwise.

a. Using Green’s Theorem, show that the flow and the flux of F along (or across,
respectively) a simple closed curve C in R2 only depend on Mx and My, the moments
about the x-axis and y-axis of the region R enclosed by C.

b. Using your computations from part (a), find the flux and the flow when C is each of
the following curves (without doing any more calculus!):
• the rectangle with vertices (1, 2), (1,−2), (3,−2), and (3, 2);
• the circle with center (−3, 3) and radius 2.

Exercise 46. This exercise illustrates why the hypothesis of simple connectivity is necessary,
while also showing a nifty field whose flux across a curve computes an interesting geometric
property. Let Θ (that’s a capital θ) be the vector field defined by

Θ(x, y) =
x

x2 + y2
i +

y

x2 + y2
j on R2 minus the origin.

a. Find the flux of Θ across the circle x2 + y2 = R2 using an ordinary line integral.
b. Now try to apply Green’s theorem: find the divergence of Θ and integrate it over the

interior of the circle in part (a).
c. Why do the results of parts (a) and (b) not contradict Green’s theorem?
d. Show that Θ satisfies the “component test” ∂

∂y
M(x, y) = ∂

∂x
N(x, y). Does this mean

that Θ is conservative, i.e., the gradient of a function? If so, what is the function?
*e. Let C be any simple closed curve in R2 that does not pass through the origin. Show

that the flux of Θ across C is 2π if the origin lies inside C and 0 otherwise. (Hint:
make clever use of Green’s Theorem by adding to the curve you are given when it
surrounds the origin. Alternatively, you could parametrize C in polar coordinates.)

Exercise 47. Prove the following theorem, due to Archimedes: let S be the unit sphere in
R3, and let C be the infinite cylinder x2 + y2 = 1. Choose real numbers a and b such that
−1 ≤ a < b ≤ 1. Then the area of S contained between the two planes z = a and z = b
equals the area of C contained between the same two planes.

Exercise 48. The shape of the graph of coshx is called a catenary. When it is rotated
around a certain axis, the surface of revolution thus obtained is called a catenoid ; this is the
shape that soap film makes when it is stretched between two parallel circular wires.

a. Sketch the surface x2 + y2 = cosh2 z, which is a catenoid.
b. Find the surface area of the portion of the catenoid in part (a) that is contained

between the planes z = ±a.

Exercise 49.

a. Find the flux of the constant field i across the surface which is the intersection of the
plane z = −x and the filled-in cylinder y2 + z2 ≤ 4. How does the result change if
z = −x is replaced with mz = x for some constant m? Give a physical interpretation
(think of water moving through a pipe).

b. Find the flux of the axial field x i+y j across the portion of the paraboloid z = x2 +y2

beneath the plane z = 2y.
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Exercise 50.

a. Show that (sinh t cos θ, sinh t sin θ, cosh t) is a parameterization of one component of
the hyperboloid z2 − x2 − y2 = 1. Which component is it?

b. Find parameterizations of the cylinder x2+y2 = 1 and the hyperboloid x2+y2−z2 = 1.
(Hint: use hyperbolic functions for the latter.)

*c. Find an equation and a parameterization of the circular cylinder in R3 whose axis is
the line (t, t, t) and whose radius is 1.

Exercise 51 (cf. Thomas, p. 1200 #53). Fix values 0 < a < b, and consider the surface
with equation

(b−
√
x2 + y2)2 + z2 = a2.

This surface is called a torus. The number a is called the cross-sectional radius ; b does not
have a special name, but it measures the distance from the axis of the torus to the center of
the (circular) cross-section.

a. Show that

T(u, v) =
(
(b+ a cosu) cos v, (b+ a cosu) sin v, a sinu

)
is a parameterization of the torus.

b. Compute the area of the torus with the above equation.
c. Compute the flux of the field

F(x, y, z) = x i + y j + z k

across the surface of the torus, from inside to outside.
d. Integrate the surface areas of the nested tori

(b−
√
x2 + y2)2 + z2 = t2,

where t ranges from 0 to a, to compute the volume of the solid torus. Compare the
result with the result of part (c).

Exercise 52. The pseudosphere is the surface in R3 parametrized by(
cos θ

coshu
,

sin θ

coshu
, u− sinhu

coshu

)
for 0 ≤ u < ∞, 0 ≤ θ < 2π. Show that the pseudosphere has surface area equal to half of
the unit sphere.

Exercise 53. Consider the field F on R3 defined by

F(x, y, z) = xz i + yz j + (z2 − x2 − y2) k.

a. Show that F is not conservative. What does F look like? (Hint: try using cylindrical
coordinates.)

b. Find ∇ · F and ∇× F. Explain the results qualitatively using the geometry of F.
c. Using Stokes’ Theorem, compute:

• the circulation of F along the boundary of square with vertices (0, 0, 0), (1, 0, 0),
(1, 0, 1), and (0, 0, 1), taken in that order.
• the circulation of F along any simple closed curve in the plane z = 2;
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Exercise 54. Let S be the closed cylindrical surface in R3 bounded by x2 + y2 = 9, z = 0,
and z = 4. Compute the outward flux of the field F(x, y, z) = −y i +x j + z k across S, both
directly and using the divergence theorem. Feel free to use geometric reasoning to simplify
calculations.

Exercise 55. Describe the “boundary” of each of the following geometric objects (some
may have no boundary).

• the curve r(t) = t i + t2 j + t3 k, −1 ≤ t ≤ 1
• the region x2 + 3y2 ≤ 9 in R2

• the curve r(θ) = 2 cos θ j + sin θ k, −π ≤ θ ≤ π
• the sphere x2 + y2 + z2 = 9
• the portion of the region 1 ≤ x2 + y2 ≤ 4 in R3 contained between z = 0 and z = 5
• the intersection of the cone z2 = x2 + y2 and the plane x+ 2z = 5

Note: the boundary of a curve is its endpoints, the boundary of a surface is a curve, and the
boundary of a solid region in space is a surface. That is, the boundary of an object, when it
exists, is something “one dimension lower”.

Exercise 56. Find the flux of F(x, y, z) = xz sin yz i + cos yz j + ex2+y2
k across the portion

of the paraboloid x2 +y2 + z = 4 satisfying z ≥ 0, oriented away from the origin. (Hint: find
the divergence of F. Use the divergence theorem to find a simpler way to compute the flux.)

Exercise 57. Take a look at the proofs in the book that ∇× (∇f) = 0 and ∇· (∇×F) = 0
(or re-derive these equalities yourself). How do the operators grad, curl, and div relate to
each other? What conditions are necessary in order to “go backwards”—i.e., under what
conditions is it true that if ∇ × F = 0 then you can always find f so that ∇f = F, or if
∇ · F = 0, then you can always find G so that ∇×G = F?

Exercise 58. Consider the field F on R3 defined by

F(x, y, z) = xz i + yz j + (x2 + y2 − z2) k.

a. Compute ∇ · F and ∇× F. Is F conservative?
b. Show that the field

G(x, y, z) = y

(
z2

2
− x2

)
i + x

(
y2 − z2

2

)
j

satisfies ∇×G = F. (G is called a vector potential for F; F is said to be solenoidal.)
Show that, if all partial derivatives of a function g are continuous, then G + ∇g is
also a vector potential for F.

c. Show that the Laplacian ∇2 = ∇ · ∇ applied to each coordinate of G yields the
corresponding coordinate of ∇× F.

12


