APPLICATIONS OF DELAUNAY TRIANGULATIONS TO TEICHMÜLLER THEORY

Joshua P. Bowman Cornell University

Ahlfors–Bers Colloquium 8 May 2008

EARLY WORK ON DELAUNAY TRIANGULATIONS OF FLAT SURFACES

- Named for Boris Delaunay (or Delone), who introduced such triangulations in "Sur la sphère vide", 1934
- Thurston: "Shapes of polyhedra and triangulations of the sphere", preprint c. 1987, published 1998
- Masur–Smillie: "Hausdorff dimension of sets of nonergodic measured foliations", 1991
- Rivin: "Euclidean structures on simplicial surfaces and hyperbolic volume", 1994
- Veech: "Delaunay partitions", 1996

MORE RECENT WORK

- Indermitte–Liebling–Troyanov–Clémençon, 2001: application to biological growth
- Bobenko–Springborn, 2007: application to discrete harmonic functions and mean curvature

1. COTANGENTS AND DELAUNAY WEIGHTS

$$\cot \angle (v, w) = \frac{\langle v, w \rangle}{|v w|} \text{ for } v, w \in \mathbb{R}^2$$

If E is an edge joining two Euclidean triangles, define the **Delaunay weight** of E to be

 $w(E) = \cot \alpha + \cot \beta$,

where α and β are the angles opposite E.

E is **Delaunay** if $w(E) \ge 0$.

Prop. $\cot \alpha + \cot \beta \ge 0 \iff \alpha + \beta \le \pi$ *(Equality is also an iff statement.)*

Cor. E is Delaunay \iff the triangles adjacent to E have empty circumcircles.

Observe: if the triangles form a convex quadrilateral, let E' be the other diagonal. Then

 $w(E) = 0 \iff w(E') = 0 \iff E \text{ and } E' \text{ are both Delaunay.}$

2. TRIANGULATIONS OF FLAT SURFACES

A flat surface is a triple (X, g, Z) such that:

- X is a surface;
- Z is a discrete subset of X;
- g is a metric on X:
 - on $X \setminus Z$, locally isometric to \mathbb{R}^2 ,
 - each pt of Z has a nbhd isometric to a Euclidean cone.

Examples:

- polyhedra in \mathbb{R}^3
- Riemann surface with a non-zero abelian differential
- Riemann surface with a non-zero quadratic differential
- Riemann surface with higher-order differential

We assume hereafter that X is compact. (Could also handle "finite type" by treating punctures as points of Z.)

The **curvature** at a point $p \in Z$ is $2\pi - \theta_p$. (θ_p = cone angle at p)

Note that total curvature over X must be

$$\sum_{p \in Z} (2\pi - \theta_p) = 4\pi \cdot (1 - \operatorname{genus}(X)),$$

following Gauss–Bonnet.

A **geodesic triangulation** of (X, g, Z) is a simplicial structure on X such that:

- the vertex set is Z, and
- the edges are geodesic with respect to g.

The number of faces and edges are determined by the Euler characteristic of X and the size of Z:

$$Z| - #(edges) + #(faces) = 2 - 2 \cdot genus(X)$$
$$#(edges) = \frac{3}{2} \cdot #(faces)$$
$$#(faces) = 4 \cdot (genus(X) - 1) + 2 \cdot |Z|$$

A geodesic triangulation of (X, g, Z) is **Delaunay** if all of its edges are Delaunay.

Thm. (Masur–Smillie) Delaunay triangulations exist and are unique, up to exchanges of edges with Delaunay weight 0.

Thm. (Rivin, Indermitte et al., Bobenko–Springborn) A Delaunay triangulation may be obtained from any geodesic triangulation of (X, g, Z) by an "edge-flipping" algorithm.

3. TESSELLATIONS

Let Y be a compact Riemann surface, and let $T^{*}Teich(Y)$ be the cotangent bundle to the Teichmüller space of Y, whose fibers consist of quadratic differentials.

Remark: The following statements are equivalent:

- "(X, g, Z) arises from the metric defined by q, a quadratic differential on X, and Z = zeroes(q)."
- "X is orientable and all points of Z have cone angle $k\pi$ for some $k \in \{3, 4, 5, ...\}$."

Can partition T*Teich(Y) according to which edges are in the Delaunay triangulation of $(X, q, zeroes(q)) \in T^*Teich(Y)$ (using marking from Y).

Delaunay triangulations are unique \implies

Thm. (Veech) *The above partition is* Mod(Y)*-equivariant.* Given $(X, q) \in T^*Teich(Y)$, scale to assume area(q) = 1.

Define $\operatorname{orbit}(X, q) = \{[A] \cdot (X, q) \mid [A] \in PSL_2(\mathbb{R})\}$, contained in the space of area 1 quadratic differentials.

Identify $\operatorname{orbit}(X, q)$ with $\operatorname{PSL}_2(\mathbb{R}) \cong T^1\mathbb{H}$, the unit tangent bundle to \mathbb{H} .

The projection $P: orbit(X,q) \to \mathbb{H}$ can be written explicitly as $[A] \cdot (X,q) \mapsto [A]^{-1} \cdot \mathfrak{i},$

where the right is defined by usual action of $PSL_2(\mathbb{R})$ on \mathbb{H} .

Thm. (B., Veech)

The partition of $\operatorname{orbit}(X, q)$ by the combinatorial types of the points' Delaunay triangulations projects to a tessellation of \mathbb{H} whose tiles have geodesics sides and finite area.

This is the **iso-Delaunay tessellation** $\Sigma(X, q)$ of \mathbb{H} .

For example, if $X = \mathbb{R}^2/\mathbb{Z}^2$ and $q = dz^2$ (choose one point for Z), then $\Sigma(X, q)$ is the Farey tessellation of \mathbb{H} by ideal triangles.

Other examples...

Proof. Let $[A] \cdot (X, q) \in orbit(X, q)$, and let τ be its Delaunay triangulation; τ is also a geodesic triangulation of (X, q).

For each edge $E \in \tau$, define

 $\mathbb{H}_{E} = \{ P([A]) \mid E \text{ is Delaunay on } [A] \cdot (X, q) \}.$

Claim: Each \mathbb{H}_{E} is either a Poincaré half-plane or all of \mathbb{H} .

If the quadrilateral with E as its diagonal is not convex, then $A \cdot E$ is Delaunay for any $A \in SL_2(\mathbb{R})$.

Otherwise, let v_1, v_2 and w_1, w_2 be the vectors forming the remaining sides of the triangles adjacent to E, ordered so that $|v_1 v_2| > 0$ and $|w_1 w_2| > 0$.

The following conditions are equivalent to $w(A \cdot E) \ge 0$:

$$\frac{\langle Av_1, Av_2 \rangle}{|v_1 v_2|} + \frac{\langle Aw_1, Aw_2 \rangle}{|w_1 w_2|} \ge 0$$
$$\langle Av_1, Av_2 \rangle |w_1 w_2| + |v_1 v_2| \langle Aw_1, Aw_2 \rangle \ge 0$$

This reduces to a quadratic inequality in the coordinates of P([A]), whose boundary set is a Poincaré geodesic.

Set $\mathbb{H}_{\tau} = \bigcap_{E \in \tau} \mathbb{H}_{E}$. \mathbb{H}_{τ} is non-empty, because it contains P([A]).

It has finitely many sides because τ has finitely many edges.

It has finite area; to assume otherwise leads to the claim that q has uncountably many saddle connections, contradicted by Vorobets.

Every point of \mathbb{H} is contained in some \mathbb{H}_{τ} .

4. Some applications

Studying isometries and affine self-maps of flat surfaces:

- Must send Delaunay cells to Delaunay cells
- Can be seen as automorphisms of $\Sigma(X,q)$

Examining properties of geodesic flow, finding invariant subsurfaces

- If a direction contains saddle connections, contracting this direction will force these saddle connections to be edges of the Delaunay triangulation
- Periodic directions correspond to points on ∂ℍ which are cusps of tiles of Σ(X, q)

Delaunay weights on edges of Delaunay triangulation can be used to define a Laplace–Beltrami operator on \mathbb{R}^Z , using intrinsic geometry of X, similar to finite-element approximation of Laplacian in the plane. Spectrum of this operator defines algebraic functions on moduli space of flat surfaces. (not much explored yet) In any Euclidean triangle with angles $(\alpha_1, \alpha_2, \alpha_3)$, the cotangents $\alpha_i = \cot \alpha_i$ satisfy the equation

 $a_1a_2 + a_2a_3 + a_3a_1 = 1.$

This equation defines a hyperboloid in \mathbb{R}^3 , hence the space of Euclidean triangles, up to scale, carries a canonical hyperbolic metric.

Prop. (B.) If F is any triangle in a triangulation of (X, q), then the hyperbolic metric on the space of triangles containing F coincides with the Teichmüller metric on the disk of (X, q). 5. The genus 3 Arnoux–Yoccoz surface

First in family of hyperelliptic surfaces, one for each genus $\gamma \ge 3$, each admitting a pseudo-Anosov diffeomorphism with an expansion constant λ whose inverse is the unique real solution to

 $x + x^2 + \dots + x^{\gamma} = 1.$

Originally constructed via interval exchange transformation:

(see P. Arnoux, "Un exemple de semi-conjugaison entre un échange d'intervalles et une translation sur le tore" for a description and images)

We find a simpler description using Delaunay cells:

Let (X_{AY}, ω_{AY}) denote this flat surface.

The pseudo-Anosov element is visible by scaling the horizontal direction by λ and the vertical direction by $1/\lambda$, then drawing the new Delaunay edges:

Now match trapezoids and squares between the two pictures.

Prop. (B.)

$$(X_{AY}, \omega_{AY})$$
 belongs to a family of pairs $(X_{t,u}, \omega_{t,u})$
with $t > 1$ and $u > 0$, where $X_{t,u}$ has the equation
 $y^2 = x(x - 1)(x - t)(x + u)(x + tu)(x^2 + tu)$
and $\omega_{t,u} = \frac{x \, dx}{y}$.

These surfaces are characterized by the following properties:

- $X_{t,u}$ is hyperelliptic (Υ = hyperelliptic involution)
- $\omega_{t,u}$ has two zeroes of order 2
- $X_{t,u}$ has two real structures ρ_1, ρ_2 :
 - each fixes 6 Weiertrass points, including zeroes of ω_{AY}
 - exchanges 2 other Weierstrass points

$$\textbf{-} \rho_1 \circ \rho_2 = \rho_2 \circ \rho_1 = \Upsilon$$

X_{t,u} has two other anti-holomorphic involutions σ₁, σ₂:
 – fixed-point free

$$-\sigma_1 \circ \sigma_2 = \sigma_2 \circ \sigma_1 = \Upsilon$$

• for $i, j \in \{1, 2\}$, $(\rho_i \circ \sigma_j)^2 = \Upsilon$

For the values (t_{AY}, u_{AY}) corresponding to (X_{AY}, ω_{AY}) , we find

 $t_{AY} \approx 1.91709843377,$ $u_{AY} \approx 2.07067976690.$

Conj. t_{AY} and u_{AY} are algebraic.

Scaling only the horizontal direction of (X_{AY}, ω_{AY}) , again by λ , we obtain another surface with additional real structures.

Prop. (B.)

This new surface belongs to a family of pairs $(X_{r,s}, \omega_{r,s})$ with r > 0 and $s \notin \mathbb{R}$, where $X_{r,s}$ has the equation

$$y^2 = x(x^2 + r)(x - \bar{s})(x + r/s)(x + r/\bar{s})$$

and $\omega_{r,s} = \frac{x \, dx}{y}$.