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EARLY WORK ON DELAUNAY TRIANGULATIONS
OF FLAT SURFACES

• Named for Boris Delaunay (or Delone), who introduced
such triangulations in “Sur la sphère vide”, 1934

• Thurston: “Shapes of polyhedra and triangulations of the
sphere”, preprint c. 1987, published 1998

• Masur–Smillie: “Hausdorff dimension of sets of
nonergodic measured foliations”, 1991

• Rivin: “Euclidean structures on simplicial surfaces and
hyperbolic volume”, 1994

• Veech: “Delaunay partitions”, 1996

MORE RECENT WORK

• Indermitte–Liebling–Troyanov–Clémençon, 2001:
application to biological growth

• Bobenko–Springborn, 2007: application to discrete
harmonic functions and mean curvature



1. COTANGENTS AND DELAUNAY WEIGHTS

cot∠(v,w) =
〈v,w〉
|v w|

for v,w ∈ R2

If E is an edge joining two Euclidean triangles,
define the Delaunay weight of E to be

w(E) = cotα+ cotβ,

where α and β are the angles opposite E.

E is Delaunay if w(E) ≥ 0.

Prop. cotα+ cotβ ≥ 0 ⇐⇒ α+ β ≤ π
(Equality is also an iff statement.)

Cor. E is Delaunay ⇐⇒ the triangles adjacent to E have
empty circumcircles.

Observe: if the triangles form a convex quadrilateral,
let E ′ be the other diagonal. Then

w(E) = 0 ⇐⇒ w(E ′) = 0 ⇐⇒ E and E ′ are both Delaunay.



2. TRIANGULATIONS OF FLAT SURFACES

A flat surface is a triple (X, g, Z) such that:
• X is a surface;
• Z is a discrete subset of X;
• g is a metric on X:

– on X \ Z, locally isometric to R2,
– each pt of Z has a nbhd isometric to a Euclidean cone.

Examples:
• polyhedra in R3
• Riemann surface with a non-zero abelian differential
• Riemann surface with a non-zero quadratic differential
• Riemann surface with higher-order differential

We assume hereafter that X is compact. (Could also handle
“finite type” by treating punctures as points of Z.)

The curvature at a point p ∈ Z is 2π− θp.
(θp = cone angle at p)

Note that total curvature over X must be∑
p∈Z

(2π− θp) = 4π · (1− genus(X)),

following Gauss–Bonnet.



A geodesic triangulation of (X, g, Z) is a simplicial structure
on X such that:
• the vertex set is Z, and
• the edges are geodesic with respect to g.

The number of faces and edges are determined by the
Euler characteristic of X and the size of Z:

|Z| − #(edges) + #(faces) = 2− 2 · genus(X)

#(edges) =
3

2
· #(faces)

#(faces) = 4 · (genus(X) − 1) + 2 · |Z|

A geodesic triangulation of (X, g, Z) is Delaunay if all
of its edges are Delaunay.

Thm. (Masur–Smillie)
Delaunay triangulations exist and are unique, up to exchanges
of edges with Delaunay weight 0.

Thm. (Rivin, Indermitte et al., Bobenko–Springborn)
A Delaunay triangulation may be obtained from any geodesic
triangulation of (X, g, Z) by an “edge-flipping” algorithm.



3. TESSELLATIONS

Let Y be a compact Riemann surface, and let T ∗Teich(Y)
be the cotangent bundle to the Teichmüller space of Y, whose
fibers consist of quadratic differentials.

Remark: The following statements are equivalent:
• “(X, g, Z) arises from the metric defined by q, a quadratic

differential on X, and Z = zeroes(q).”

• “X is orientable and all points of Z have cone angle kπ for
some k ∈ {3, 4, 5, . . . }.”

Can partition T ∗Teich(Y) according to which edges are in the
Delaunay triangulation of (X, q, zeroes(q)) ∈ T ∗Teich(Y)
(using marking from Y).

Delaunay triangulations are unique =⇒
Thm. (Veech)
The above partition is Mod(Y)-equivariant.



Given (X, q) ∈ T ∗Teich(Y), scale to assume area(q) = 1.

Define orbit(X, q) = {[A] · (X, q) | [A] ∈ PSL2(R)}, contained in
the space of area 1 quadratic differentials.

Identify orbit(X, q) with PSL2(R) ∼= T 1H, the unit tangent
bundle to H.

The projection P : orbit(X, q) → H can be written explicitly as

[A] · (X, q) 7→ [A]−1 · i,
where the right is defined by usual action of PSL2(R) on H.

Thm. (B., Veech)
The partition of orbit(X, q) by the combinatorial types of the
points’ Delaunay triangulations projects to a tessellation of H
whose tiles have geodesics sides and finite area.

This is the iso-Delaunay tessellation Σ(X, q) of H.

For example, if X = R2/Z2 and q = dz2 (choose one point for
Z), then Σ(X, q) is the Farey tessellation of H by ideal triangles.

Other examples. . .



Proof. Let [A] · (X, q) ∈ orbit(X, q), and let τ be its Delaunay
triangulation; τ is also a geodesic triangulation of (X, q).

For each edge E ∈ τ, define

HE = {P([A]) | E is Delaunay on [A] · (X, q)}.

Claim: Each HE is either a Poincaré half-plane or all of H.

If the quadrilateral with E as its diagonal is not convex,
then A · E is Delaunay for any A ∈ SL2(R).

Otherwise, let v1, v2 and w1, w2 be the vectors forming
the remaining sides of the triangles adjacent to E,
ordered so that |v1 v2| > 0 and |w1 w2| > 0.

The following conditions are equivalent to w(A · E) ≥ 0:

〈Av1, Av2〉
|v1 v2|

+
〈Aw1, Aw2〉

|w1 w2|
≥ 0

〈Av1, Av2〉|w1 w2| + |v1 v2|〈Aw1, Aw2〉 ≥ 0

This reduces to a quadratic inequality in the coordinates
of P([A]), whose boundary set is a Poincaré geodesic.

Set Hτ =
⋂
E∈τ

HE. Hτ is non-empty, because it contains P([A]).

It has finitely many sides because τ has finitely many edges.

It has finite area; to assume otherwise leads to the claim that
q has uncountably many saddle connections, contradicted by
Vorobets.

Every point of H is contained in some Hτ. �



4. SOME APPLICATIONS

Studying isometries and affine self-maps of flat surfaces:
• Must send Delaunay cells to Delaunay cells
• Can be seen as automorphisms of Σ(X, q)

Examining properties of geodesic flow,
finding invariant subsurfaces
• If a direction contains saddle connections, contracting

this direction will force these saddle connections to be
edges of the Delaunay triangulation
• Periodic directions correspond to points on ∂H which

are cusps of tiles of Σ(X, q)

Delaunay weights on edges of Delaunay triangulation
can be used to define a Laplace–Beltrami operator on RZ,
using intrinsic geometry of X, similar to finite-element
approximation of Laplacian in the plane.
Spectrum of this operator defines algebraic functions on
moduli space of flat surfaces.
(not much explored yet)



In any Euclidean triangle with angles (α1, α2, α3),
the cotangents ai = cotαi satisfy the equation

a1a2 + a2a3 + a3a1 = 1.

This equation defines a hyperboloid in R3, hence the space
of Euclidean triangles, up to scale, carries a canonical
hyperbolic metric.

Prop. (B.)
If F is any triangle in a triangulation of (X, q), then the
hyperbolic metric on the space of triangles containing F
coincides with the Teichmüller metric on the disk of (X, q).



5. THE GENUS 3 ARNOUX–YOCCOZ SURFACE

First in family of hyperelliptic surfaces, one for each genus
γ ≥ 3, each admitting a pseudo-Anosov diffeomorphism
with an expansion constant λ whose inverse is the unique
real solution to

x+ x2 + · · ·+ xγ = 1.

Originally constructed via interval exchange transformation:

(see P. Arnoux, “Un exemple de semi-conjugaison entre
un échange d’intervalles et une translation sur le tore”

for a description and images)

We find a simpler description using Delaunay cells:

Let (XAY,ωAY) denote this flat surface.



The pseudo-Anosov element is visible by scaling the
horizontal direction by λ and the vertical direction by 1/λ,
then drawing the new Delaunay edges:

Now match trapezoids and squares between the two pictures.

Prop. (B.)
(XAY,ωAY) belongs to a family of pairs (Xt,u,ωt,u)
with t > 1 and u > 0, where Xt,u has the equation

y2 = x(x− 1)(x− t)(x+ u)(x+ tu)(x2 + tu)

and ωt,u =
xdx

y
.

These surfaces are characterized by the following properties:
• Xt,u is hyperelliptic (Υ = hyperelliptic involution)
• ωt,u has two zeroes of order 2
• Xt,u has two real structures ρ1, ρ2:

– each fixes 6Weiertrass points, including zeroes ofωAY
– exchanges 2 other Weierstrass points
– ρ1 ◦ ρ2 = ρ2 ◦ ρ1 = Υ

• Xt,u has two other anti-holomorphic involutions σ1, σ2:
– fixed-point free
– σ1 ◦ σ2 = σ2 ◦ σ1 = Υ

• for i, j ∈ {1, 2}, (ρi ◦ σj)2 = Υ



For the values (tAY, uAY) corresponding to (XAY,ωAY), we find

tAY ≈ 1.91709843377,
uAY ≈ 2.07067976690.

Conj. tAY and uAY are algebraic.

Scaling only the horizontal direction of (XAY,ωAY), again by λ,
we obtain another surface with additional real structures.

Prop. (B.)
This new surface belongs to a family of pairs (Xr,s,ωr,s)
with r > 0 and s /∈ R, where Xr,s has the equation

y2 = x(x2 + r)(x− s)(x− s̄)(x+ r/s)(x+ r/s̄)

and ωr,s =
xdx

y
.


