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Abstract. In this article, we describe a method for computing generators of

the Veech group of a flat surface (which we define as a Riemann surface with
a non-zero holomorphic quadratic differential). The method employs a cell

structure on the (complex) Teichmüller geodesic generated by the surface, us-

ing Delaunay triangulations, which are canonically associated to flat surfaces.

Introduction

Since the late 1980s, Veech groups have been an extremely useful tool in the
study of both billiard dynamical systems and projections of “Teichmüller discs” to
moduli space. It was observed as early as the 1930s [FK] that billiard paths in a ra-
tional polygon could be lifted to geodesic paths on a compact surface with a singular
locally Euclidean structure. (In the case of simply connected polygons, “rational”
is simply the condition that the angles be rational multiples of π.) Following the
terminology of Riemann surface theory, R. Fox and R. Kerschner called this sur-
face the “Ueberlagerungsfläche” of the polygon. Indeed, such a locally Euclidean
structure is equivalent to a holomorphic quadratic differential on a Riemann surface
(this equivalence is sketched in Section 1.1), and so the field of billiard dynamics
becomes connected with the study of the moduli space of quadratic differentials.

W. Veech showed that when the group of affine automorphisms of such a flat
surface (i.e., the Veech group, defined in Section 1.3) is “sufficiently large,” then
the dynamical behavior of the geodesic flow (which projects to the billiard flow in
the case that the surface arises from a rational billiard table) satisfies the Veech
dichotomy:

Theorem 0.1 ([Ve1]). Suppose the Veech group of a flat surface is a lattice in
PSL(2,R). Then for every direction θ on the surface, one of the two following
(mutually exclusive) possibilities occurs:

• The surface decomposes in the direction θ into metric cylinders whose mod-
uli are commensurable (in particular, every geodesic either connects two
singular points or is closed);

• Every trajectory with direction θ is dense in X, and the geodesic flow in
the direction θ is uniquely ergodic.

A flat surface whose Veech group is a lattice in PSL(2,R) is called a Veech surface
(also a lattice surface). A rational polygon whose Ueberlagerungfläche is a Veech
surface is called a lattice polygon. The simplest examples of Veech surfaces are
origami : surfaces that cover the torus with its flat metric, such that the cover has
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a single branch point. G. Schmithüsen has developed an algorithm for computing
the Veech group of an origami [Sch]. She makes use of the result of E. Gutkin
and C. Judge that origamis are precisely the flat surfaces whose Veech groups are
finite index subgroups of PSL(2,Z [GJ]. Veech produced the first examples of flat
surfaces to have Veech groups that are lattices but not commensurable to PSL(2,Z);
his examples arise from billiards in right triangles that tile regular polygons [Ve1].

There have been concerted efforts both to demonstrate the existence of Veech
surfaces with specified properties and to produce examples via explicit construc-
tions. For example, R. Kenyon and J. Smillie classified the acute lattice triangles
[KS]. R. Schwartz and P. Hooper have written a Java program called McBilliards
that computes periodic paths in triangular billiard tables. Using this program and
similar techniques to those of Kenyon and Smillie, they discovered an obtuse triangle
that produces a Veech surface of genus 4 [Ho]. C. McMullen [Mc1, Mc2, Mc3, Mc5]
and K. Calta [Ca] have independently given criteria for determining when a genus
2 surface, carrying a quadratic differential which is the square of an abelian differ-
ential, is Veech.

In this article we develop a general algorithm for computing generating elements
of Veech groups. The method depends on keeping track of combinatorial data
that is canonically associated to a flat surface—namely, its Delaunay triangulation
(Section 2). This produces a natural partition of the orbit of a flat surface under
affine equivalence, whose structure is preserved by elements of the Veech group. If
the Veech group is in fact a lattice, then this method is guaranteed to determine a
full generating set of elements. In many of the cases of the preceding paragraph, the
Veech group is known to be finitely generated, so the algorithm we shall describe
can be particularly effective in studying these examples.

Figures 5 and 6 show examples of iso-Delaunay regions, the type of data we are
seeking in the Teichmüller disc of a surface (see Definition 2.11). These images were
made with a program written in MATLAB, designed to compute the boundaries
of iso-Delaunay regions. A fuller program, which will compute both iso-Delaunay
regions and isomorphisms between them, is under construction. More examples of
these images, made with the newer program, are available at

http://www.math.cornell.edu/˜bowman/pictures.html.

During preparation of this article, the author became aware of a preprint by
Veech [Ve2], which also introduces what we call the iso-Delaunay complex (Defi-
nition 2.14) under the name of the tessellation of H subordinate to the quadratic
differential. In future work, we shall call this object the iso-Delaunay tessellation.

1. Background

1.1. Flat surfaces. Let X be a compact hyperbolic Riemann surface (i.e., of genus
g ≥ 2).

Definition 1.1. A holomorphic quadratic differential on X is a section of the
tensor-square of the sheaf of holomorphic one-forms. In symbols, it is an element
of Γ(X,Ω⊗2(X)).

Let q be a non-zero quadratic differential on X. In a local analytic coordinate
z on X, q has the form q(z) = f(z) dz ⊗ dz; often one abbreviates dz2 = dz ⊗ dz.
Let Z denote the set of zeroes of q on X. Given a point x ∈ X − Z and a simply
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connected neighborhood U ⊂ X − Z of x, a chart U → C centered at x is

y 7→
∫
γ

√
q,

where y ∈ U and γ : [0, 1]→ U is a path from x to y. In this chart, q has the form
dz2. The choice of

√
q is unique up to sign, hence q determines an analytic atlas

on X − Z with transition maps all of the form z 7→ z + c or z 7→ −z + c. Such an
atlas is called a flat structure on X with singularities in Z.

The Euclidean metric |dz| = |√q| is invariant under changes of coordinates in
the flat structure, and so gives an elementary perspective on the geometry of the
quadratic differential. The pair (X−Z, |√q|) is locally isometric to the plane, while
each point z ∈ Z has a cone angle of kπ for some integer k > 2; k − 2 is called
the order of the singular point z (this coincides with the analytic definition of the
order of a zero).

The reverse construction is also possible: given a flat structure on a compact
oriented surface of genus g ≥ 2, one obtains a unique pair (X ′, q′), where X ′ is a
Riemann surface and q′ is a quadratic differential on X ′. The conformal structure
on X ′ is obtained by completing the flat structure to a maximal conformal atlas,
and q′ is obtained by taking q′(z) = dz2 in the charts of the flat structure.

Definition 1.2. Via the above equivalence, a flat surface means either a topological
surface with a flat structure or a Riemann surface with a chosen non-zero quadratic
differential.

Remark 1.3. One might also consider flat structures with some singularities of
cone angle π, i.e., zeroes of order −1; these correspond to meromorphic quadratic
differentials with at worst simple poles. This class of quadratic differentials is quite
important, and much of the material developed in this paper applies also to these
flat surfaces. All of our examples, however, will arise as holomorphic quadratic
differentials.

For the remainder of the paper, (X, q) will denote a fixed flat surface, and Z the
set of zeroes of q.

1.2. Teichmüller geodesics and the Poincaré half-plane. Let TX denote the
Teichmüller space of X, i.e., the space of Riemann surfaces marked by X, up to
isomorphisms respecting the marking, and H the open upper half-plane in C.

Definition 1.4. A (complex ) Teichmüller geodesic (also known as a Teichmüller
disc) is a complex-analytic embedding f : H→ TX whose image is geodesic for the
Teichmüller metric.

The pull-back of the Teichmüller metric by f coincides with the Poincaré metric
on H. It is a fundamental result in Teichmüller theory that the bundle of quadratic
differentials QX → TX is the cotangent bundle to TX , and that there is a canonical
pairing between QX and the tangent bundle to TX . Hence (X, q) generates a
complex-analytic embedding of the upper half-plane H into QX , which projects
down to a Teichmüller geodesic f : H→ TX .

For t ∈ H, the flat surface (Xt, qt) ∈ QX can be described explicitly in terms
of the local geometry of q. Take a local coordinate z on X in which q = dz2, and
write z = x+ iy. Compose with the map x+ iy 7→ x+ty to get a new coordinate zt.
Then Xt is the Riemann surface with local coordinate zt, and qt is the quadratic
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Figure 1. A “bouillabaisse” flat surface, λ = 5 +
√

17. (Bouil-
labaisse surfaces are described in Section 3.) Horizontal exterior
edges are identified via vertical translations, and vertical exterior
edges are identified via 180◦ rotations. The singular points are A,
B, C, and D; they are simple zeroes of the quadratic differential
dz2, each having a cone angle of 3π.

differential with local form qt = dzt2. The map x + iy 7→ x + ty is affine, with

derivative given by the matrix
(

1 Re t
0 Im t

)
.

Dividing
(

1 Re t
0 Im t

)
by the square root of its determinant Im t, we obtain a repre-

sentative element in SL(2,R) for the map (X, q) 7→ (Xt, (Im t)−1/2qt). Normalizing
to an element in SL(2,R) simply yields a quadratic differential having the same
area on Xt as the original. As we are interested in the projection to TX , rather
than the complex curve in QX , we will in general ignore the difference between
GL(2,R) and SL(2,R).

Even further, one can consider the action of SL(2,R) directly on the flat structure
of a flat surface, and obtain a picture of the Teichmüller geodesic apart from its
embedding into TX . This description is given in [EG]; we reproduce the salient
features for our computational purposes. Let A ∈ SL(2,R), and define A · (X, q)
by taking each chart in the flat structure of (X, q) and post-composing it with
A. Multiplying by an element of SO(2,R) is equivalent to multiplying q by a unit
complex number, which changes neither the conformal nor the metric structure of
(X, q). Hence we introduce:

Definition 1.5. The SL(2,R)-orbit of (X, q) is the quotient of

{A · (X, q) | A ∈ SL(2,R)}

by the left action of SO(2,R).
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We want to systematically identify the SL(2,R)-orbit of (X, q) with the well-
understood space H, using Proposition 1.6 below. Define P : SL(2,R)→ C by

P :
(
a b
c d

)
7→ di+ b

ci+ a

Let σ denote the involution on SL(2,R) given by

σ :
(
a b
c d

)
7→
(
a −b
−c d

)
.

Recall the standard action of SL(2,R) on H by Möbius transformations, which, for
A ∈ SL(2,R), we will denote by ζ 7→ Aζ:

A =
(
a b
c d

)
: ζ 7→ aζ + b

cζ + d
;

Then P (A) = (σ(A))−1i. Note that SO(2,R) is preserved by σ, and that Ai = i
for all A ∈ SO(2,R). The following result is straightforward computation.

Proposition 1.6. P descends to a bijection (also denoted P ) from the set of right
cosets of SO(2,R) to the upper half-plane H in C. (In particular, SO(2,R) itself is
mapped to i ∈ H.)

The group PSL(2,R) = SL(2,R)/{±I} acts faithfully on this coset space via

B ·A = A(σ(B))−1,

yielding the standard representation of PSL(2,R) onto the group of conformal au-
tomorphisms of H. (That is, P (B ·A) = B(P (A)).)

1.3. Veech groups. Recall that Mod(X), the Teichmüller modular group of X,
(a.k.a. the mapping class group) acts on TX by complex-analytic isomorphisms,
which are also isometries for the Teichmüller metric, and that the quotient of TX

by this action is precisely MX , the moduli space of X.

Definition 1.7. The Veech group Γ(X, q) of (X, q) is the subgroup of PSL(2,R)
that corresponds to mapping classes of X, i.e., elements of Mod(X) that stabilize
the image of the geodesic f generated by (X, q). The surface (X, q) is called Veech
if Γ(X, q) is a lattice in PSL(2,R), i.e., if H/Γ(X, q) has finite hyperbolic area.

If (X, q) is a Veech surface, the image of the composition H → TX → MX is
an algebraic curve. Veech showed that a Veech surface also has especially “nice”
geometric properties [Ve1], as stated in Theorem 0.1.

By Thurston’s description [Th] of the action of elements of Mod(X) on TX , we
can closely relate the topological type of g ∈ Γ(X, q) and the type of isometry of H
that g induces; see also I. Kra’s study in [K]. Specifically,

• g is periodic if and only if the correponding isometry of H is elliptic (fixes
a point in H);
• g is reducible if and only if the corresponding isometry of H is parabolic

(fixes a point on ∂H and the class of horocycles through this point);
• g is pseudo-Anosov if and only if the corresponding isometry of H is hyper-

bolic (fixes two points on ∂H and the Poincaré geodesic connecting them).
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2. Delaunay triangulations

Our algorithm for computing generators of the Veech group depends essentially
on the existence of a combinatorial structure uniquely determined by the geometry
of q. The structure we will use is the Delaunay triangulation of the flat surface.
The existence of Delaunay triangulations and a few basic results concerning them
are proved by H. Masur and J. Smillie in [MS]. We will also use several results from
I. Rivin’s work in [Ri].

2.1. Triangulations of a flat surface. Following Vorobets’s description of ω-
triangles when ω is a holomorphic 1-form on a Riemann surface [Vo], we introduce:

Definition 2.1. A q-triangle on X is a 2-simplex in X, embedded on its interior,
whose vertices lie in Z, whose sides are geodesic with respect to |√q|, and whose
interior does not contain any points of Z.

On the interior of a q-triangle, the structure is purely Euclidean; for instance,
the angles sum to π. Some of the vertices may coincide (for example, if Z contains
only a single point). The condition that singular points have a cone angle greater
than 2π prevents two edges of a single q-triangle from coinciding, however.

Definition 2.2. A q-triangulation of X is a simplicial cell structure on X, the clo-
sures of whose 2-cells are q-triangles. A q-triangulation on X and a q′-triangulation
on X ′ are combinatorially equivalent if there is a bijective map from the q-triangles
in the triangulation of X to the q′-triangles in the triangulation of X ′ that preserves
edge identifications.

Remark 2.3. A combinatorial equivalence between (X, q) and (X ′, q′) induces a
homeomorphism from X to X ′, which is piecewise affine for the local coordinates
of q and q′. We will use this natural homeomorphism in our algorithm, described
in Section 4.

The Whitehead move is a natural way to change one q-triangulation into another.
Suppose ABC and BCD are two triangles in some q-triangulation of X with the
common edge BC. (Some or all of A,B,C,D may actually coincide as elements
of Z; as far as the Euclidean structure on X − Z is concerned, we can consider
ABC and BCD to simply lie in the plane.) Then no points of Z are contained in
the interior of the quadrilateral ABDC; provided ABDC is convex, we can obtain
a new q-triangulation of X by removing the edge BC and adding the edge AD,
forming the triangles ABD and ACD.

Clearly, (X, q) admits many q-triangulations. We wish to describe a particular
sort that is unique for an open dense subset of surfaces in the SL(2,R)-orbit of
(X, q).

2.2. Dihedral angles and the Delaunay condition.

Definition 2.4. Let T1 and T2 be a pair of Euclidean triangles with disjoint inte-
riors and a common edge e, and let α1 and α2 be the (unsigned) angles opposite e
in T1 and T2, respectively. The dihedral angle of e is α(e) = α1 + α2.

Definition 2.5. A q-triangulation of X is Delaunay if α(e) ≤ π for all edges e of
the triangulation. A Delaunay triangulation is degenerate if α(e) = π for one or
more e.
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Figure 2. A pair of adjacent triangles in a Delaunay triangula-
tion, and in a degenerate Delaunay triangulation

The following result is a consequence of Theorem 10.2 in [Ri]; the proof is cor-
rected by A. Bobenko and B. Springborn in [BS].

Proposition 2.6. Given any q-triangulation of X, one obtains a Delaunay trian-
gulation of X via a finite sequence of Whitehead moves, each of which replaces an
edge having dihedral angle > π with its opposite diagonal.

Remark 2.7. The Delaunay condition for a triangulation is usually phrased in terms
of the circumcircles of the triangles. It is a basic fact of Euclidean geometry that if
α(e) = π, then the vertices of T1 and T2 lie on a single circle. If α(e) > π, then the
circumcircle of T1 contains the remaining vertex of T2, and vice versa. If α(e) < π,
then the remaining vertex of T2 lies outside the circumcircle of T1.

Remark 2.8. The terminology of “dihedral angles” arises from an application to
hyperbolic geometry [Ri]. If we use the half-space model of hyperbolic 3-space H3,
then ∂H3 is the union of the Euclidean plane E2 and the point∞. A triangle ABC
in E2 determines an ideal tetrahedron ABC∞ in H3, with ideal vertices A, B, C,
and ∞. A basic fact of hyperbolic geometry is that the opposite edges of an ideal
tetrahedron have equal dihedral angles (which measure the “solid” angle between
faces of the tetrahedron). The dihedral angle of ∠ABC in ABC∞ equals the angle
∠ABC in the plane, because the faces AB∞ and BC∞ are contained in vertical
(Euclidean) planes. Two adjacent triangles ABC and BCD then determine two
ideal tetrahedra, joined along the common face BC∞, and the dihedral angle of
their common edge BC is the sum of the angles ∠BAC and ∠BDC in E2.

The Delaunay condition on a triangulation of (X, q) will allow us to introduce
additional structure on the SL(2,R)-orbit of (X, q) in the following section.

2.3. Iso-Delaunay regions in H. The key observations in our algorithm are the
following:

Proposition 2.9. If a Delaunay triangulation of (X ′, q′) ∈ H is non-degenerate,
then it is unique. If a Delaunay triangulation is degenerate, then it is unique except
for exchanges of edges with dihedral angle π via Whitehead moves.

Proposition 2.10. If f ∈ Γ(X, q) and T is a Delaunay triangulation of (X, q),
then f∗T = {f∗(T ) | T ∈ T } is a Delaunay triangulation of (f∗X, f∗q). I.e., The
Delaunay triangulation is independent of the marking of X.

Uniqueness is typically proved via the duality between edges of a Delaunay tri-
angulation and those of the Voronoi cells on the surface (see, e.g., [MS]; see also [Ri]
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for a proof using the convexity of a volume function on the triangulation). Identify
the SL(2,R)-orbit of (X, q) with H as in Section 1.2. In this case, the openness
of the non-degenerate Delaunay condition implies that (X ′, q′) is contained in a
neighborhood of surfaces with combinatorially equivalent Delaunay triangulations.

Definition 2.11. An iso-Delaunay region (IDR) is a maximal connected open
subset of H such that all its points have combinatorially equivalent Delaunay tri-
angulations.

Proposition 2.12. With respect to the Poincaré metric on H, each IDR is convex
and has piecewise geodesic boundary.

To prove this result, we shall use a standard test in computational geometry.

Proposition 2.13 (Incircle test). Let P1 = (x1, y1), P2 = (x2, y2), and P3 =
(x3, y3) be three points in R2, with O, P1, and P2 non-colinear. Let C be the
circumcircle of OP1P2. Then

(1) if det

x1 y1 x2
1 + y2

1

x2 y2 x2
2 + y2

2

x3 y3 x2
3 + y2

3



< 0, P3 is in the interior of C.
= 0, P3 lies on C.
> 0, P3 is exterior to C.

Sketch of proof. Embed R2 into R3 as the (x, y)-plane. Project P1, P2, and P3

vertically to Q1, Q2, and Q3, respectively, on the paraboloid z = x2 + y2. Let P
be the plane determined by O, Q1, and Q2. Observe that {Q1, Q2, Q3} is a direct
basis, an indirect basis, or a dependent set as the above determinant is greater
than, less than, or equal to zero; this also corresponds to Q3 lying above, below, or
on P (where “above” and “below” are determined by the orientation of the basis
{Q1, Q2} for P). Replacing z in the equation ax+ by + cz = 0 of P with x2 + y2,
one obtains the equation of a circle in the (x, y)-plane, which must pass through O,
P1, and P2. One concludes the desired result by comparing the various geometric
and algebraic conditions. �

Proof of Proposition 2.12. We will show that each IDR is an intersection of hyper-
bolic half-planes, which implies the desired results.

Suppose a Delaunay triangulation is given for a certain point in the SL(2,R)
orbit of (X, q). For each edge in the Delaunay triangulation, choose a chart as in
Section 1.1 such that one endpoint of the edge is at 0. Label the other endpoint
P2, and the remaining vertices P1 and P3, so that the ordered bases {P1, P2} and
{P2, P3} are oriented counterclockwise.

Now let A ∈ SL(2,R) be a variable matrix, with u + iv the image of A in H.
Then we can chose a representative in the same left SO(2,R)-coset as A that sends
xi to xi + uyi and yi to vyi (i = 1, 2, 3). Evaluate the equality in (1) with xi and
yi replaced by their images under the action of this representative. After some
simplification (including dividing by v, which we can do because v > 0 in the upper
half-plane), this becomes

(2) a(u2 + v2) + 2bu+ c ≥ 0
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where

a = x1y2y3(y3 − y2) + x2y1y3(y1 − y3) + x3y1y2(y2 − y1),

b = x1y1(x2y3 − x3y2) + x2y2(x3y1 − x1y3) + x3y3(x1y2 − x2y1),

c = x1x2y3(x1 − x2) + x2x3y1(x2 − x3) + x1x3y2(x3 − x1).

If a 6= 0, (2) is the equation of a circle whose center lies on the real axis. If a = 0
(for example, if y1 = 0 and y2 = y3), then (2) is the equation of a vertical line.
These are precisely the forms of geodesics in H.

Let (X ′, q′) be a surface in the SL(2,R)-orbit of (X, q) with nondegenerate De-
launay triangulation. For each edge e, choose a chart in the corresponding flat
structure whose domain contains the triangles adjacent to e. We may assume that
one of the endpoints of e is at the origin. Then, applying the result of the previ-
ous paragraph, we get one inequality for each edge. Because there are only finitely
many such inequalities—one for each edge of the Delaunay triangulation—the result
follows. �

As noted in Veech [Ve2], the area of each IDR is finite, so it is actually a hyper-
bolic polygon, possibly with some vertices at infinity.

Observe that, at an edge of an IDR determined by a set of inequalities (1), by
performing a Whitehead move on the degenerate edges, we reverse these particular
inequalities and obtain a polygonal region on the opposite side of the edge. Hence
the Delaunay triangulations of surface in the orbit of (X, q) naturally partition H
into 2-cells (the open IDRs), 1-cells (maximally connected sets of points lying in
the closures of exactly two IDRs), and 0-cells (points lying in the closures of at
least three IDRs), giving H the structure of a cell complex.

Definition 2.14. The above cell complex on H is called the iso-Delaunay complex
of (X, q).

Proposition 2.10 implies that the iso-Delaunay complex in the SL(2,R)-orbit
of the surface is preserved by the action of Γ(X, q). A caveat: the iso-Delaunay
complex is not a CW-complex, as some of its cells may not have compact closure
in H.

3. Bouillabaisse surfaces

Whenever a flat surface has a direction in which it decomposes into cylinders, and
the moduli of these cylinders are commensurable, the Veech group of the surface
contains a parabolic element, which consists of appropriate powers of Dehn twists
in each of the cylinders. A bouillabaisse surface is a flat surface with at least two
such directions; in other words, its Veech group contains two transverse parabolic
elements. The construction of bouillabaisse surfaces is due to W. Thurston [Th]. In
June 2003, J. Hubbard described them at the “bouillabaisse night” lecture during
a conference at the Centre International de Rencontres Mathématiques in Luminy,
France, whence their name.

3.1. Basic construction. The construction begins with an oriented compact sur-
face S of genus g ≥ 2. A multi-curve on S is a collection of pairwise disjoint, non-
homotopic simple closed curves. The number of curves is bounded by the genus of
the surface. In particular, any maximal multi-curve creates a decomposition of the
surface into pairs of pants, and the number of pairs of pants is determined by the
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Figure 3. The pair of multi-curves Γ and ∆ on a genus 2 surface
that produce the flat surface in Figure 1.

genus. Thus the number of elements in a maximal multi-curve is 3g − 3. A Dehn
twist around a multi-curve is simply the composition of the Dehn twists around each
of the component curves; because the curves are disjoint, all these twists commute,
so the order of composition does not matter. We will always assume Dehn twists
are “right-handed” with respect to the orientation of S. We will also mildly abuse
notation by letting, for example, Γ represent both the set of curves in a multi-curve
on S and the set of points on S contained in the images of these curves.

Let Γ and ∆ be transverse, not necessarily maximal, multicurves on S such that
each component of S − (Γ∪∆) is simply connected. Assume further that Γ and ∆
are in minimal position, meaning that each pair (γ, δ) ∈ Γ ×∆ has the minimum
number of intersections as γ and δ vary in their respective homotopy classes. Define
M = [mδγ ] : RΓ → R∆ by

δ ·M(γ) = mδγ , γ ∈ Γ, δ ∈ ∆

where mδγ is the geometric intersection number of δ and γ. Let λ be the largest
eigenvalue of M>M , and let v ∈ RΓ be an eigenvector of M>M corresponding to
λ with all entries positive. (Such a v exists because M>M is a Perron-Frobenius
matrix.) Now set u = Mv. Then u is an eigenvector of MM>, also corresponding
to the eigenvalue λ.

We use the above data to simultaneously construct a Riemann surface X ′ ∈ TS

and a quadratic differential q′ on X ′. Γ ∪∆ induces a cell structure on S, whose
dual structure consists of rectangles Rδγ , each containing the intersection of one
γ ∈ Γ and one δ ∈ ∆. For each rectangle Rδγ crossed by γ and δ in the dual cell
structure to Γ ∪ ∆, take a chart on the interior to C so that γ is horizontal, δ is
vertical, the the width of Rδγ is uδ and the height is vγ . Assume further that each
chart matches the orientation of S with the orientation of the plane. These charts
define the complex structure on S. Take q′ = dz2 in each of these charts.

Proposition 3.1. In these coordinates, the Dehn twists DΓ and D∆, around Γ and
∆ respectively, are affine transformations, and their derivatives have the forms

der(DΓ) =
(

1 λ
0 1

)
and der(D∆) =

(
1 0
−1 1

)
.
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γ2

γ1

γ0

δ0 δ1

δ2 δ3 δ4

Figure 4. A bouillabaisse surface on which the cylinders have
moduli that are rationally related, such as the square-tiled sur-
face in this figure, can be constructed via multi-curves, using the
appropriate duplication of each homotopy class of curves.

Proof. Choose a point in the cylinder crossed by γ ∈ Γ and a rectangular chart so
that one edge of the cylinder lies along the x-axis. In these coordinates, the Dehn
twist around Γ maps (x, y) by: (

x
y

)
7→
(
x+ sγy

y

)
for some sγ depending a priori on γ. When y = tvγ , x is increased by∑

δ∈∆

mδγtuδ = (M>tu)γ = t(M>Mv)γ = tλvγ .

Hence sγ = λ independently of γ, and der(DΓ) has the form described. The proof
for the Dehn twist around ∆ is similar. �

3.2. Introducing arbitrary rational ratios of moduli. The above construction
admits several generalizations. We remark here on the principal one that applies to
our study. As described above, the bouillabaisse construction creates cylinders with
equal moduli in each of the horizontal and vertical directions. In order to create
cylinders which have commensurable moduli, one “duplicates” the core curves of
cylinders in which higher powers of Dehn twists are necessary. More precisely,
fix γ0 ∈ Γ, δ0 ∈ ∆, and rational numbers rγ , rδ for each γ ∈ Γ, δ ∈ ∆, with
rγ0 = rδ0 = 1. We will construct a flat structure on S so that rγ is the ratio of the
modulus of the cylinder with core curve γ to that of the cylinder with core curve
γ0 (and likewise for the rδs).

Let ρ be the least common multiple of the rγs (i.e., ρ is the smallest rational
number such that ρ/rγ is an integer for all γ); ρ is an integer because rγ0 = 1. Set
r′γ = ρ/rγ , and replace each γ ∈ Γ with r′γ homotopic copies of γ (for example, γ0

is replaced by ρ copies of itself); denote these copies αγ,j for 1 ≤ j ≤ r′γ . Then a
simultaneous Dehn twist in each αγ,j for fixed γ corresponds to the r′γth power of
the Dehn twist in γ. Let Γ′ = {αγ,j | γ ∈ Γ, 1 ≤ j ≤ r′γ}. Note that the r′γs depend
only on the ratios of the moduli of the cylinders, not on the choice of γ0.

Now carry out the same process in the vertical direction to get a collection ∆′ of
βδ,ks, and construct M ′ : RΓ′ → R∆′

as before. Because the geometric intersection
number is well-defined on homotopy classes, we have βδ,k ·M ′(αγj

) = δ ·M(γ),
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i.e., M ′ is obtained from the ordinary M : RΓ → R∆ by replacing each column
[mδγ ]δ∈∆ with r′γ copies, and each row [mδγ ]γ∈Γ with r′δ copies.

By carrying out the same construction with M ′ as we did with M , we get a flat
surface such that the cylinders containing each of αγ,j all have the same modulus.
The cylinder of which some γ is a core curve is comprised of r′γ of these cylinders.
For γ1, γ2 ∈ Γ, the ratio of the moduli of their respective cylinders is r′γ1/r

′
γ2 =

rγ2/rγ1 , as desired.

3.3. Relevance of bouillabaisse surface. The following corollary to Theorem 0.1
demonstrates one measure of the importance of bouillabaisse surfaces:

Corollary 3.2. Every Veech surface is bouillabaisse.

Proof. Any direction containing a geodesic that connects two singular points de-
composes the surface into cylinders whose moduli are commensurable. �

This construction has become an indispensible tool in the study of flat surfaces.
For example, McMullen has used it to describe infinite families of Veech surfaces in
genus 2, 3, and 4 [Mc4]. Not all flat structures with a non-trivial Veech group arise
in this manner, however. The expansion constants for pseudo-Anosov elements of
the subgroup 〈DΓ, D∆〉 < Γ(X, q) all lie in the field Q(λ), which is totally real since
λ arises as an eigenvalue of a symmetric matrix. P. Arnoux and J.-C. Yoccoz [AY]
constructed pseudo-Anosov maps of surfaces in all genera g ≥ 3 whose expansion
constants are Pisot numbers, some of whose Galois conjugates lie outside of R.
P. Hubert and E. Lanneau [HuLa] showed that this implies the Veech groups of
the Arnoux–Yoccoz surfaces contain no parabolic elements; i.e., every stabilizing
element of such a surface is either periodic or pseudo-Anosov; hence the Arnoux–
Yoccoz examples are not bouillabaisse.

4. The algorithm

The IDRs and iso-Delaunay complex determined by (X, q) partition H into (not
necessarily compact) polygons. A fundamental domain for the action of the Veech
group Γ(X, q) can be assembled from (possibly infinitely many) IDRs of the surface.
In order to turn this observation into an algorithm, we need a method for detecting
when two IDRs are equivalent under an element of Γ(X, q); we will call such a pair
of IDRs Veech equivalent.

4.1. Veech equivalent IDRs. Combinatorial equivalence is an obvious necessary
condition for two IDRs to be Veech equivalent, by the uniqueness of non-degenerate
Delaunay triangulations. It is not sufficient, however, so we must also take into
account the metric structure of the surfaces. Fortunately, this structure is well-
behaved for the action of SL(2,R).

Let R1 and R2 be two iso-Delaunay regions with the same combinatorial data,
and choose a point (X ′, q′) in one of them, say in R2. We want to determine if
(X ′, q′) is isomorphic to a point in R1; if it is, then there is an element of Γ(X, q)
carrying R1 to R2.

4.2. Tree search in H. To assemble the fundamental domain of Γ(X, q), begin
with a single point in H whose Delaunay triangulation is not degenerate. First
determine the IDR containing this point; each edge of the IDR corresponds to the
degeneration of (a) particular edge(s) in the triangulation.
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Figure 5. Some IDRs for the flat surface shown in Figures 1 and
3. This is a Veech surface, which explains the extreme regularity
of the iso-Delaunay complex.

More systematically, we have the following algorithm:

(1) Begin with a surface in the SL(2,R)-orbit of (X, q) whose Delaunay trian-
gulation is non-degenerate, and compute its iso-Delaunay region Ri = R0

using the formulas in the proof of Proposition 2.12.
(2) Along each (possibly infinite) hyperbolic segment comprising the boundary

of Ri, determine which edges have degenerated, and compute the adjacent
triangulation that replaces each of these edges by their opposite diagonal.
This allows us to “cross” the edge into a new iso-Delaunay region.

(3) For each boundary segment crossed, compute the adjacent IDR from the
new triangulation; set Ri equal to this IDR.

(4) Check if the new triangulation in Ri is combinatorially equivalent to that
of a previously visited region Rj . If so:
• check if the new surface is isomorphic to a point in Rj ;
• if such an isomorphism exists, find an isometry that carries Ri to
Rj , and eliminate Ri from the tree search; add the isometry to the
generating list for Γ(X, q).

(5) For each new IDR not found to be Veech equivalent to a previous IDR,
return to Step (2).
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4.3. Initial bounds for bouillabaisse surfaces. From the construction of bouil-
labaisse surfaces, we automatically get part of the iso-Delaunay complex, and hence
initial bounds on the fundamental domain of Γ(X, q). The two elements of SL(2,R)
described in Proposition 3.1 generate a subgroup of Γ(X, q). This subgroup is in
most cases a free group on these two generators; C. Leininger has given the precise
conditions for the group to be free [Lei]. In any case, it has a fundamental domain
bounded by the geodesics

(3) x = 0, x = λ, y2 +
(
x− 1

2

)2

=
1
4
, and y2 +

(
x− λ+

1
2

)2

=
1
4
.

If λ > 2, F2 is not itself a lattice in SL(2,R).
The trace field of Γ(X, q) is exactly Q(λ). This follows from the fact that that

the trace field is generated by the trace of a single hyperbolic element ([KS]), and

(4) D−1
∆ ◦DΓ =

(
1 λ
1 1 + λ

)
,

which has trace 2 + λ, and Q(2 + λ) = Q(λ). Because λ arises from a symmetric
matrix, it and all of its Galois conjugates are real, hence the field Q(λ) is totally
real, i.e., all of its embeddings into C actually have their image contained in R.

4.4. Other uses of IDR analysis. By a slight modification of the surface in Fig-
ure 3, we obtain an example where λ ≈ 28.475 is the largest root of the polynomial
x3 − 30x2 + 44x− 16, which is irreducible over Q. A portion of the SL(2,R)-orbit
of this surface with its iso-Delaunay complex is shown in Figure 6. One observes
immediately that the structure of the iso-Delaunay complex is much more compli-
cated than the one in Figure 5. Indeed, we can demonstrate that this surface is not
Veech.

The IDR picture itself suggests a direction on the surface to examine: note the
prominent cusp near 4.8595 on the real axis. This is in fact the positive root ϕ of
the polynomial x2 + x− λ, which is contained in Q(λ):

ϕ =
−1 +

√
1 + 4λ

2
= −6 +

15
2
λ− 1

4
λ2 ≈ 4.8595

When we apply
(

1 ϕ
0 1

)
to the surface, we find that the vertical direction decom-

poses the surface into cylinders whose moduli are:

m1 = ϕ+ 1, m2 = −10 + 15λ− 1
2
λ2 = 2(ϕ+ 1)

m3 = −21
16

+
73
32
λ− 5

64
λ2 =

1
16

(5ϕ− λ+ 9) ,

These moduli are not commensurable:
m2

m1
= 2,

m3

m1
=

1
16

(5(ϕ+ 1)− λ),
m3

m2
=

1
32

(5(ϕ+ 1)− λ).

Therefore the Veech group of the surface is not a lattice. Further analysis may
demonstrate the existence of other cylindrical decompositions, not conjugate to
these in PSL(2,Q(λ)).
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Figure 6. Some IDRs for the flat surface described in Section 4.4.
Note the prominent cusp near 4.8595; this is the point ϕ described
in the text.
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