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Previous work on Delaunay triangulations of flat
surfaces

» Thurston: “Shapes of polyhedra and triangulations of the
sphere”, preprint ¢. 1987, published 1998

» Masur—Smillie: “Hausdorff dimension of sets of
nonergodic measured foliations”, 1991

» Rivin: “Euclidean structures on simplicial surfaces and
hyperbolic volume”, 1994

» Veech: “Delaunay partitions”, 1996

» Indermitte—Liebling—Troyanov—-Clémengon, 2001:
application to biological growth

» Bobenko—Springborn, 2007: application to discrete
harmonic functions and mean curvature



Cotangents and Delaunay weights

The cotangent of the angle between an (ordered) pair of vectors
v, w € R? is a rational function of the vectors’ coordinates:

{v,w)

cotZ(v,w) = v Wl

If E is an edge joining two Euclidean triangles, define the
Delaunay weight of E to be

w(E) = cot o+ cot §3,

where « and 3 are the angles opposite E.

E is Delaunay if w(E) > 0.



Prop. cotax+cotp >0 &< a+pB <=
(Equality is also an iff statement.)

cot(r —a) cotf cot v

— o

Cor. E is Delaunay < the triangles adjacent to E have
empty circumcircles.

Observe: if the triangles form a convex quadrilateral,
let E’ be the other diagonal. Then

W(E)=0 < w(E') =0 <= E and E’ are both Delaunay.



Flat surfaces

A flat surface is a triple (X, g, Z) such that:
» X is a surface;

» Z is a discrete subset of X;
» gis a metric on X:

» on X\ Z, locally isometric to R?,
» each pt of Z has a nbhd isometric to a Euclidean cone.

Examples:
» polyhedra in R3
» Riemann surface with a non-zero abelian differential
» Riemann surface with a non-zero quadratic differential
» Riemann surface with a higher-order differential

We assume that X is compact. (Could also handle “finite type”
by treating punctures as points of Z.)



Triangulations

Given a flat surface (X, g,Z), a (g, Z)-triangulation of X is a
simplicial structure on X such that:

» the vertex set is Z, and
» the edges are geodesic with respect to g.

The number of faces and edges are determined by the Euler
characteristic of X and the size of Z:

|Z| — #(edges) + #(faces) = 2 — 2 - genus(X)
#(edges) = 3 - #(faces)

2
#(faces) =4 - (genus(X) —1)+2-|Z|

A (g, Z)-triangulation of X is Delaunay if all of its edges are
Delaunay.



Two characterizing theorems

Thm. “Delaunay Lemma” for flat surfaces

(Masur—Smillie, Bobenko—Springborn)

Given a flat surface (X, g, Z), there exists a Delaunay

(g, Z)-triangulation of X, which is unique up to exchanges of
edges with Delaunay weight 0.

Hence we define the Delaunay partition of (X, g, Z) to be the
cell structure on X obtained from any Delaunay triangulation by
removing edges with weight 0.

Thm. (Rivin, Indermitte et al.)
A Delaunay triangulation may be obtained from any
(g, Z)-triangulation of X by an “edge-flipping” algorithm.



Curvature

The curvature at a point p € Z is 27t — 0.
(6p = cone angle at p)

Note that the total curvature over X must be

Z(Zn—ep) =47 (1 —genus(X)),
peZ

following Gauss—Bonnet (or by counting triangles).

For a flat surface (X, [\/ql, zeroes(q)) (where X is a
Riemann surface and q is a quadratic differential on X),

all curvatures are multiples of 7. If g = w? for some

abelian differential w, then all curvatures are multiples of 27t



In any Euclidean triangle with angles (o, ap, 3), the
cotangents a; = cot «; satisfy the equation

a1ao + aras + aza; = 1.

This equation defines a hyperboloid in R3, hence the space of

marked Euclidean triangles, up to similarity, carries a canonical
hyperbolic metric.



More generally, the solution set of the equation
tan (cot*1 (x1) +cot ' (xp) 4 --- + cot™ (xn)> =0

is a smooth algebraic variety in R” with n— 1 components,
each of which is contractible.

The kth component corresponds to n angles adding up to k.
(Therefore it is contractible, since we can follow a path to make
all angles equal k7t/n.)

These can be applied to give local equations for a stratum of
quadratic differentials with prescribed types of curvature.



Partition of cotangent bundle to Teichmuller space

An example: Let X = R?/Z? and w = dz.
Let Z = {p}, where p is the image of Z2 on X.

Recall that the Teichmdiller space of (X, Z) is one-dimensional,
i.e., it is just a copy of the hyperbolic plane.

A (lwl, Z)-triangulation of X is given by a pair of congruent
triangles, with corresponding sides glued.

Mark the angles of one of the triangles by «q, xs, a3;
the Delaunay weights on the three edges are then 2 cot «4,
2 cot ap, and 2 cot as.



Let (X, w) vary under the usual SL»(RR)-action, and just keep
track of the Delaunay weights.

For all weights to be non-negative, we must have cot«; > 0
for all /; that is, all the angles must be acute. This condition
determines an ideal triangle in the hyperboloid.




General case: Let Y be a compact Riemann surface, and let
T*Teich(Y) be the cotangent bundle to the Teichmller space
of Y, whose fibers consist of quadratic differentials.

(We will ignore points of the zero section.)

Given (X, q) € T*Teich(Y), find the Delaunay partition of
(X,1\/ql, zeroes(q)). Use the marking of Y to identify the points
in zeroes(q) for all g in each stratum. Partition the stratum
according to which edges are in the Delaunay partition.

From the uniqueness of Delaunay partitions, it follows that:

Thm. (Veech)
The above partition of T*Teich(Y) is Mod(Y)-equivariant.



Orbits of flat surfaces

We now want to consider this partition in the context of
Teichmller disks.

Let (X, q) € T*Teich(Y), and scale to assume area(q) = 1.

The PSL»(R)-orbit of (X, g) is canonically identified with the unit
tangent bundle to H. The projection P : orbit(X, q) — H can be
written explicitly as

[Al-(X,q) — [AI -,

where the right is defined by usual action of PSL,(RR) on H.



Tessellations of H

A tessellation of H is a set X~ of closed finite-area (not
necessarily bounded) polygons such that

» H=J(o € X);
» forany oq,02 € X, 01 N o2 is a face of both oy and o».

An automorphism of a tessellation X is an element
f € Isom(H) such that f(o) € Zforall o € L.

Prop. Given any tessellation £ of H, Aut(X) is a Fuchsian
group.



Iso-Delaunay tessellations

Fix (X, q) € T*Teich(Y), and set Z = zeroes(q).

For any (|,/ql, Z)-triangulation T, define
H. ={P([A]) - i | T is Delaunay for [A] - (X,q)}

and

L(X,q) = {H. | int(H) # o}.
Thm. (B., Veech)
X (X, q) is a tessellation of H.

Y (X, q) is the iso-Delaunay tessellation of H.



Proof

Recall the Delaunay weight of an edge: w(E) = cot « + cot .

For each edge E in T, define
Hg ={P([A]) | w(A- E) > 0O}

Observe that H. = (g He.

Lemma. Each Hg is either a Poincaré half-plane or all of H.

If the quadrilateral with E as its diagonal is not convex,
then w(A- E) > 0 for any A € SLo(R).

Otherwise, let vq, vo and wq, wo be the vectors forming
the remaining sides of the triangles adjacent to E,
ordered so that |vi vo| > 0 and [wy ws| > 0.



The following conditions are equivalentto w(A- E) > 0:

<AV1 ,AV2> <AW1 R AW2>

>0
V1 Vol lwy wo

(Avq, Ava)lwy wol + vy vol (Awq, Awp) > 0

This reduces to a quadratic inequality in the coordinates of
P([A]), whose boundary set is a Poincaré geodesic.

O (Lemma)



Lemma. There exists some triangulation T such that H.
contains a geodesic ray limiting at cot®0 < 0 is a periodic
direction on (X, q).

Lemma. Each H. is a finite-area hyperbolic polygon.
Every H- is an intersection of finitely many half-planes.

Suppose some H, has infinite area. Then H. ¢ H must contain
an interval on the boundary, hence (X, q) has uncountably
many periodic directions. By a result of Vorobets, (X, q) has
only countably many saddle connections (contradiction).
O (Lemma)
O (Theorem)

Conj. For all t, area(H-) < 7.



Veech group

Let Aff(X, q) be the group of affine self-maps of (X, q).

Suppose f € Aff(X, q). Then f must send the Delaunay cells
of (X, q) to the Delaunay cells of [der(f)] - (X, q).

Thus Aff(X, q) acts by automorphisms of £(X, q), and so does
the Veech group I'(X, q) := der(Aff(X, q)) < PSL>(R).

Thatis, I'(X, q) < Aut(X(X, q)).

Prop. If (X, q) is primitive among Riemann surfaces with
quadratic differentials, thenT'( X, q) = Aut(Z(X, q)).

The converse is not true: the “quaternion” origami (X, wy) is
not primitive, but I'( Xy, ww) = PSL2(Z) = Aut(Z(Xw, ww)).



Other applications

» If Fis any triangle in a triangulation of (X, q), then the
hyperbolic metric on the space of triangles containing F
coincides with the Teichmiller metric on the disk of (X, g).

» Even if 0 is not a periodic direction of (X, q), it may happen
that the saddle connections in the direction 6 cut X into
subsurfaces with boundary.

In this case, contracting the direction 0 will cause saddle
connections in that direction to appear in the Delaunay
triangulation. Thus the Delaunay triangulations can be
used to study, e.g., minimality properties.



Genus 3 Arnoux—Yoccoz surface

First in family of hyperelliptic surfaces, one for each genus
v > 8, each admitting a pseudo-Anosov diffeomorphism
with an expansion constant A whose inverse is the unique
real solution to

X+X24+ XY =1.

Originally constructed via interval exchange transformation.




We find another description using Delaunay cells:

Let (Xay, way) denote this flat surface.



)

A portion of Z(Xay, way



The pseudo-Anosov element is visible by scaling the
horizontal direction by A and the vertical direction by 1/A,
then drawing the new Delaunay edges:

Now match trapezoids and squares between the two pictures.



Prop. (B.)
(Xay, way) belongs to a family of pairs (X; u, wt u)
with t > 1 and u > 0, where X; , has the equation

y2 = x(x —1)(x — t)(x + u)(x + tu)(x® + tu)

X ax
and wt’u == 7

For the values (tay, Uay) corresponding to (Xay, way), we find

tay ~ 1.91709843377,
uay ~ 2.07067976690.

Conj. tay and uay are algebraic.



These surfaces are characterized by the following properties:
> Xt is hyperelliptic (Y = hyperelliptic involution)
> w;y has two zeroes of order 2
» Xy has two real structures py, pa:
» each fixes 6 Weiertrass points, including zeroes of way
» exchanges 2 other Weierstrass points
» propa=pzop1 =7
» X has two other anti-holomorphic involutions o, o5:
» fixed-point free
» 01002 =02001 =7

» fori,j€{1,2}, (piooj)2 =7



Scaling only the horizontal direction of (Xay, way), again by A,
we obtain another surface with additional real structures.

Prop. (B.)
This new surface belongs to a family of pairs (X; s, wr s)
withr > 0 and s ¢ R, where X, s has the equation

Y2 = x(xX2+r)(x —8)(x —8)(Xx +r/s)(x + r/3)

and wrys - &.
y
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