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A tessellation of H determined by an unfolded billiard



Previous work on Delaunay triangulations of flat
surfaces

I Thurston: “Shapes of polyhedra and triangulations of the
sphere”, preprint c. 1987, published 1998

I Masur–Smillie: “Hausdorff dimension of sets of
nonergodic measured foliations”, 1991

I Rivin: “Euclidean structures on simplicial surfaces and
hyperbolic volume”, 1994

I Veech: “Delaunay partitions”, 1996
I Indermitte–Liebling–Troyanov–Clémençon, 2001:

application to biological growth
I Bobenko–Springborn, 2007: application to discrete

harmonic functions and mean curvature



Cotangents and Delaunay weights

The cotangent of the angle between an (ordered) pair of vectors
v ,w ∈ R2 is a rational function of the vectors’ coordinates:

cot∠(v ,w) =
〈v ,w〉
|v w |

If E is an edge joining two Euclidean triangles, define the
Delaunay weight of E to be

w(E) = cotα+ cotβ,

where α and β are the angles opposite E .

E is Delaunay if w(E) ≥ 0.



Prop. cotα+ cotβ ≥ 0 ⇐⇒ α+ β ≤ π
(Equality is also an iff statement.)

O

y = 1cotαcot(π − α) cot β

α−α
β

Cor. E is Delaunay ⇐⇒ the triangles adjacent to E have
empty circumcircles.

Observe: if the triangles form a convex quadrilateral,
let E ′ be the other diagonal. Then

w(E) = 0 ⇐⇒ w(E ′) = 0 ⇐⇒ E and E ′ are both Delaunay.



Flat surfaces
A flat surface is a triple (X ,g,Z ) such that:

I X is a surface;
I Z is a discrete subset of X ;
I g is a metric on X :

I on X \ Z , locally isometric to R2,
I each pt of Z has a nbhd isometric to a Euclidean cone.

Examples:
I polyhedra in R3

I Riemann surface with a non-zero abelian differential
I Riemann surface with a non-zero quadratic differential
I Riemann surface with a higher-order differential

We assume that X is compact. (Could also handle “finite type”
by treating punctures as points of Z .)



Triangulations

Given a flat surface (X ,g,Z ), a (g,Z )-triangulation of X is a
simplicial structure on X such that:

I the vertex set is Z , and
I the edges are geodesic with respect to g.

The number of faces and edges are determined by the Euler
characteristic of X and the size of Z :

|Z | − #(edges) + #(faces) = 2 − 2 · genus(X )

#(edges) =
3
2
· #(faces)

#(faces) = 4 · (genus(X ) − 1) + 2 · |Z |

A (g,Z )-triangulation of X is Delaunay if all of its edges are
Delaunay.



Two characterizing theorems

Thm. “Delaunay Lemma” for flat surfaces
(Masur–Smillie, Bobenko–Springborn)
Given a flat surface (X ,g,Z ), there exists a Delaunay
(g,Z )-triangulation of X , which is unique up to exchanges of
edges with Delaunay weight 0.

Hence we define the Delaunay partition of (X ,g,Z ) to be the
cell structure on X obtained from any Delaunay triangulation by
removing edges with weight 0.

Thm. (Rivin, Indermitte et al.)
A Delaunay triangulation may be obtained from any
(g,Z )-triangulation of X by an “edge-flipping” algorithm.



Curvature

The curvature at a point p ∈ Z is 2π− θp.
(θp = cone angle at p)

Note that the total curvature over X must be∑
p∈Z

(2π− θp) = 4π · (1 − genus(X )),

following Gauss–Bonnet (or by counting triangles).

For a flat surface (X , |
√

q|, zeroes(q)) (where X is a
Riemann surface and q is a quadratic differential on X ),
all curvatures are multiples of π. If q = ω2 for some
abelian differential ω, then all curvatures are multiples of 2π.



In any Euclidean triangle with angles (α1, α2, α3), the
cotangents ai = cotαi satisfy the equation

a1a2 + a2a3 + a3a1 = 1.

This equation defines a hyperboloid in R3, hence the space of
marked Euclidean triangles, up to similarity, carries a canonical
hyperbolic metric.



More generally, the solution set of the equation

tan
(

cot−1(x1) + cot−1(x2) + · · ·+ cot−1(xn)
)

= 0

is a smooth algebraic variety in Rn with n − 1 components,
each of which is contractible.

The k th component corresponds to n angles adding up to kπ.
(Therefore it is contractible, since we can follow a path to make
all angles equal kπ/n.)

These can be applied to give local equations for a stratum of
quadratic differentials with prescribed types of curvature.



Partition of cotangent bundle to Teichmüller space

An example: Let X = R2/Z2 and ω = dz.
Let Z = {p}, where p is the image of Z2 on X .

Recall that the Teichmüller space of (X ,Z ) is one-dimensional,
i.e., it is just a copy of the hyperbolic plane.

A (|ω|,Z )-triangulation of X is given by a pair of congruent
triangles, with corresponding sides glued.

Mark the angles of one of the triangles by α1, α2, α3;
the Delaunay weights on the three edges are then 2 cotα1,
2 cotα2, and 2 cotα3.



Let (X ,ω) vary under the usual SL2(R)-action, and just keep
track of the Delaunay weights.

For all weights to be non-negative, we must have cotαi ≥ 0
for all i ; that is, all the angles must be acute. This condition
determines an ideal triangle in the hyperboloid.



General case: Let Y be a compact Riemann surface, and let
T ∗Teich(Y ) be the cotangent bundle to the Teichmüller space
of Y , whose fibers consist of quadratic differentials.
(We will ignore points of the zero section.)

Given (X ,q) ∈ T ∗Teich(Y ), find the Delaunay partition of
(X , |
√

q|, zeroes(q)). Use the marking of Y to identify the points
in zeroes(q) for all q in each stratum. Partition the stratum
according to which edges are in the Delaunay partition.

From the uniqueness of Delaunay partitions, it follows that:

Thm. (Veech)
The above partition of T ∗Teich(Y ) is Mod(Y )-equivariant.



Orbits of flat surfaces

We now want to consider this partition in the context of
Teichmüller disks.

Let (X ,q) ∈ T ∗Teich(Y ), and scale to assume area(q) = 1.

The PSL2(R)-orbit of (X ,q) is canonically identified with the unit
tangent bundle to H. The projection P : orbit(X ,q) → H can be
written explicitly as

[A] · (X ,q) 7→ [A]−1 · i ,

where the right is defined by usual action of PSL2(R) on H.



Tessellations of H

A tessellation of H is a set Σ of closed finite-area (not
necessarily bounded) polygons such that

I H =
⋃

(σ ∈ Σ);
I for any σ1, σ2 ∈ Σ, σ1 ∩ σ2 is a face of both σ1 and σ2.

An automorphism of a tessellation Σ is an element
f ∈ Isom(H) such that f (σ) ∈ Σ for all σ ∈ Σ.

Prop. Given any tessellation Σ of H, Aut(Σ) is a Fuchsian
group.



Iso-Delaunay tessellations

Fix (X ,q) ∈ T ∗Teich(Y ), and set Z = zeroes(q).

For any (|
√

q|,Z )-triangulation τ, define

Hτ = {P([A]) · i | τ is Delaunay for [A] · (X ,q)}

and
Σ(X ,q) = {Hτ | int(Hτ) 6= ∅}.

Thm. (B., Veech)
Σ(X ,q) is a tessellation of H.

Σ(X ,q) is the iso-Delaunay tessellation of H.



Proof

Recall the Delaunay weight of an edge: w(E) = cotα+ cotβ.

For each edge E in τ, define

HE = {P([A]) | w(A · E) ≥ 0}.

Observe that Hτ =
⋂

E∈τHE .

Lemma. Each HE is either a Poincaré half-plane or all of H.

If the quadrilateral with E as its diagonal is not convex,
then w(A · E) ≥ 0 for any A ∈ SL2(R).

Otherwise, let v1, v2 and w1,w2 be the vectors forming
the remaining sides of the triangles adjacent to E ,
ordered so that |v1 v2| > 0 and |w1 w2| > 0.



The following conditions are equivalent to w(A · E) ≥ 0:

〈Av1,Av2〉
|v1 v2|

+
〈Aw1,Aw2〉

|w1 w2|
≥ 0

〈Av1,Av2〉|w1 w2| + |v1 v2|〈Aw1,Aw2〉 ≥ 0

This reduces to a quadratic inequality in the coordinates of
P([A]), whose boundary set is a Poincaré geodesic.

� (Lemma)



Lemma. There exists some triangulation τ such that Hτ
contains a geodesic ray limiting at cot θ ⇐⇒ θ is a periodic
direction on (X ,q).

Lemma. Each Hτ is a finite-area hyperbolic polygon.

Every Hτ is an intersection of finitely many half-planes.

Suppose some Hτ has infinite area. Then Hτ ⊂ H must contain
an interval on the boundary, hence (X ,q) has uncountably
many periodic directions. By a result of Vorobets, (X ,q) has
only countably many saddle connections (contradiction).

� (Lemma)
� (Theorem)

Conj. For all τ, area(Hτ) ≤ π.



Veech group

Let Aff(X ,q) be the group of affine self-maps of (X ,q).

Suppose f ∈ Aff(X ,q). Then f must send the Delaunay cells
of (X ,q) to the Delaunay cells of [der(f )] · (X ,q).
Thus Aff(X ,q) acts by automorphisms of Σ(X ,q), and so does
the Veech group Γ(X ,q) := der(Aff(X ,q)) ≤ PSL2(R).

That is, Γ(X ,q) ≤ Aut(Σ(X ,q)).

Prop. If (X ,q) is primitive among Riemann surfaces with
quadratic differentials, then Γ(X ,q) = Aut(Σ(X ,q)).

The converse is not true: the “quaternion” origami (XW ,ωW ) is
not primitive, but Γ(XW ,ωW ) = PSL2(Z) = Aut(Σ(XW ,ωW )).



Other applications

I If F is any triangle in a triangulation of (X ,q), then the
hyperbolic metric on the space of triangles containing F
coincides with the Teichmüller metric on the disk of (X ,q).

I Even if θ is not a periodic direction of (X ,q), it may happen
that the saddle connections in the direction θ cut X into
subsurfaces with boundary.

In this case, contracting the direction θ will cause saddle
connections in that direction to appear in the Delaunay
triangulation. Thus the Delaunay triangulations can be
used to study, e.g., minimality properties.



Genus 3 Arnoux–Yoccoz surface

First in family of hyperelliptic surfaces, one for each genus
γ ≥ 3, each admitting a pseudo-Anosov diffeomorphism
with an expansion constant λ whose inverse is the unique
real solution to

x + x2 + · · ·+ xγ = 1.

Originally constructed via interval exchange transformation.



We find another description using Delaunay cells:

Let (XAY,ωAY) denote this flat surface.



A portion of Σ(XAY,ωAY)



The pseudo-Anosov element is visible by scaling the
horizontal direction by λ and the vertical direction by 1/λ,
then drawing the new Delaunay edges:

Now match trapezoids and squares between the two pictures.



Prop. (B.)
(XAY,ωAY) belongs to a family of pairs (Xt,u,ωt,u)

with t > 1 and u > 0, where Xt,u has the equation

y2 = x(x − 1)(x − t)(x + u)(x + tu)(x2 + tu)

and ωt ,u =
x dx

y
.

For the values (tAY,uAY) corresponding to (XAY,ωAY), we find

tAY ≈ 1.91709843377,
uAY ≈ 2.07067976690.

Conj. tAY and uAY are algebraic.



These surfaces are characterized by the following properties:
I Xt ,u is hyperelliptic (Υ = hyperelliptic involution)
I ωt,u has two zeroes of order 2
I Xt ,u has two real structures ρ1, ρ2:

I each fixes 6 Weiertrass points, including zeroes of ωAY
I exchanges 2 other Weierstrass points
I ρ1 ◦ ρ2 = ρ2 ◦ ρ1 = Υ

I Xt ,u has two other anti-holomorphic involutions σ1, σ2:
I fixed-point free
I σ1 ◦ σ2 = σ2 ◦ σ1 = Υ

I for i , j ∈ {1,2}, (ρi ◦ σj)
2 = Υ



Scaling only the horizontal direction of (XAY,ωAY), again by λ,
we obtain another surface with additional real structures.

Prop. (B.)
This new surface belongs to a family of pairs (Xr ,s,ωr ,s)

with r > 0 and s /∈ R, where Xr ,s has the equation

y2 = x(x2 + r)(x − s)(x − s̄)(x + r/s)(x + r/s̄)

and ωr ,s =
x dx

y
.
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