
ČECH COHOMOLOGY AND DE RHAM’S THEOREM:
CLASS LECTURE FOR MATH 758, SPRING 2008

JOSHUA P. BOWMAN

Much of these notes is almost verbatim from notes I took during John Hubbard’s course
on complex manifolds, hence there is a lot of overlap with Appendix A7 in [3]. I also used
Chern’s text [1] and Appendix D in Conlon’s book [2] as references. When approaching
Weil’s proof of de Rham’s Theorem, one can either:

• develop a fair amount of theory regarding sheaves and cohomology, then attack
de Rham’s Theorem as a special case; or
• build up a proof of de Rham’s Theorem from scratch, using more elementary but

possibly more notationally heavy arguments.

Roughly, Hubbard does the first while Conlon does the second. I’ll try to work somewhere
in the middle, developing just enough sheaf theory to handle this particular application.

Throughout, we will assume that M is a smooth paracompact manifold (recall: paracom-
pact means every open cover has a locally finite refinement; we’ll review refinements).

1. Abstract simplicial complexes and Čech covers

Definition 1.1. Let I be a totally ordered set. An abstract simplicial complex modeled on
I is a collection ∆ of finite subsets of I, closed under taking subsets. Each F ∈ ∆ is called
a face of ∆; F is called a k-face if |F | = k + 1.

Definition 1.2. If U = {Ui}i∈I is a locally finite open cover of M , then there is naturally
associated an abstract simplicial complex N (U), called the nerve of U . Its faces are the
collections of Uis with non-empty intersection. That is, {Ui1 , . . . , Uik} is a face of N (U) if
Ui1 ∩ · · · ∩ Uik 6= ∅.

Example 1.3. Cover S2 by six open hemispheres, say, north, south, east, west, front, and
back (U = {UN , US, UE, UW , UF , UB}). Any collection of these open sets containing one of
the pairs {UN , US}, {UE, UW}, or {UF , UB} has empty intersection. The remaining subsets
of U determine an abstract simplicial complex that can be realized as an octahedron.

Definition 1.4. Let U and V be open covers of M . Then V is a refinement of U if every
element of V is contained in an element of U . Note that some elements of V may lie in
multiple elements of U : a choice of inclusions τ : V → U is called a refining map.

The idea is that by taking a refinement, we’re looking more locally on M , hence getting
more of its structure. This is the apparent paradox that we’ll be building on throughout
this lecture: we can get global information (via cohomology) from sufficient amounts of local
data (which is what sheaves encode). In fact, Čech showed the following.

Theorem 1.5. Let U be a locally finite open cover of M . If all intersections of sets in U
(including all elements of U) are contractible, then N (U) is homotopy equivalent to M .
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Such a cover, with all intersections contractible, is called a Čech cover of M . Not all
topological spaces admit Čech covers, but all manifolds do. We won’t prove this result, but
we give it as an example of the kind of intuition to use.

Exercise 1.

• Find a Čech cover of S2 whose nerve can be realized as a tetrahedron.
• Find a Čech cover for the compact orientable surface of genus g ≥ 1. (Hint: use the

standard presentation of this surface as a quotient of the 4g-gon.)
• Find a Čech cover for the n-dimensional torus (S1)n = Rn/Zn.
• Prove Theorem 1.5. (I haven’t tried this, and have no idea how hard it is.)

2. Sheaves and maps of sheaves

We already know, from courses on manifolds and algebraic topology, about two kinds of
cohomology on M : de Rham and singular. Soon we’ll introduce Čech cohomology on M ,
with various “coefficients”. The content of de Rham’s Theorem is that, with the appropriate
choice of sheaf coefficients, these three cohomologies coincide, i.e.,

H•dR(M) ∼= H•sing(M ; R) ∼= Ȟ•(M,RM).

(The same is true with complex-valued differential forms and complex coefficients, but for
concreteness we’ll stick with real coefficients.) First, we need to introduce the notion of
sheaves. This topic will connect well with the open covers we studied in the previous section.

Definition 2.1. A sheaf F (of abelian groups) on M is an assignment, to each open set
U ⊂ M , of an abelian group F(U), that is “local”. This means precisely that we need
one additional kind of structure and two additional axioms. If V ⊂ U are both open,
then we should be able to “restrict” data from U to V , i.e., we have a homomorphism
ρUV : F(U) → F(V ). Of course, if W ⊂ V ⊂ U , then ρUW = ρVW ◦ ρUV (F is a functor, if you
like that language). Here are the axioms we need, along with the ideas they capture:

(1) If a, b ∈ F(U) are locally the same, then they are globally the same; that is, if U is
an open cover of U , and ρUV (a) = ρUV (b) for all V ∈ U , then a = b in F(U).

(2) If something can be defined locally in a way that coincides on overlapping domains,
then it can be defined globally; that is, if U is an open cover of U ⊂M and aV ∈ F(V )
are chosen for all V ∈ U in such a way that ρVV ∩W (aV ) = ρWV ∩W (aW ) whenever
V,W ∈ U , then there exists a ∈ F(U) such that all aV = ρUV (a).

Elements of F(U) are called sections over U ; elements of F(M) are called global sections.

Example 2.2. Here are the examples that will be most important to us:

• C∞M assigns to each open U ⊂M the group C∞M (U) of smooth functions on U .
• Ωk

M assigns to U the group Ωk
M(U) of smooth k-forms on U .

• RM , CM , ZM , etc., what are often called the constant sheaves, but be careful—
“constant” is not a local property! Hence the elements of RM(U), e.g., are locally
constant R-valued functions; they may take different values on different components.

Definition 2.3. Let F and G be sheaves on M . A map of sheaves (or sheaf morphism)
f : F → G is a collection of homomorphisms fU : F(U) → G(U) that commute with

2



restrictions; that is, whenever V ⊂ U ⊂M , the following square commutes:

F(U)
fU //

ρU
V

��

G(U)

ρU
V

��
F(V )

fV

// G(V )

Definition 2.4. A sequence E f−→ F g−→ G of sheaf maps is exact if g ◦ f is the zero map
and, locally, ker(g) = im(f): that is, if g(a) = 0 with a ∈ F(U), then every x ∈ U has a
neighborhood V ⊂ U such that ρUV (a) = f(b) for some b ∈ E(V ).

Example 2.5. Let C∞M,C be the sheaf of smooth C-valued functions on M , (C∞M,C)∗ the sheaf
of nowhere-vanishing smooth C-valued functions, and ZM the constant integer sheaf. The
exponential sequence

0 // ZM
incl. // C∞M,C

exp(2πi·)
// (C∞M,C)∗ // 1

is an exact sequence of sheaves. That is, every nowhere-vanishing function locally has a
logarithm, well-defined up to a term in 2πiZ. (The function z on C − {0} shows that
finding a global logarithm may not be possible; log z is a “multi-valued” function.) Note
that the group operation in the first three terms is addition, while in the last two terms it is
multiplication; in particular, the first and last terms are both the trivial sheaf on M .

Example 2.6. Because the exterior derivative operator can be computed locally, it induces
sheaf maps d : Ωk

M → Ωk+1
M . From d2 = 0 we have the following cochain complex of sheaves:

0 // RM
incl.// C∞M = Ω0

M
d // Ω1

M
d // Ω2

M
d // . . . .

But more is true: Poincaré’s Lemma (see any textbook on manifolds and differential forms;
Chapter 10 of [4] has a good presentation) implies that closed forms are locally exact, so the
above sequence is an exact sequence of sheaves. One further property of this sequence, the
fineness of the sheaves involved (see §4), will clinch de Rham’s theorem for us.

Exercise 2. Look up the proof of Poincaré’s Lemma.

3. Čech cohomology

The purpose of sheaves is to localize data. The purpose of cohomology is to assemble this
data and extract global information. The first step is to compute cohomology with respect
to a fixed open cover U of M (which, as we saw earlier, provides an approximation of M
that can be improved by taking refinements, which will be the second step).

Definition 3.1. Let F be a sheaf on M , and let U = {Ui}i∈I be a locally finite open cover
of M . A Čech k-cochain is a function α on the k-faces of N (U) such that the value on
{Ui0 , . . . , Uik} ⊂ U lies in F(Ui0 ∩ · · · ∩ Uik). Thus the group of k-cochains is

Čk(U ,F) =
⊕

i0<···<ik

F(Ui0 ∩ · · · ∩ Uik).
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The coboundary operator d sends k-cochains to (k + 1)-cochains by the formula

dα
(
Ui0 ∩ · · · ∩ Uik ∩ Uik+1

)
=

k+1∑
j=0

(−1)jα
(
Ui0 ∩ · · · ∩ Ûij ∩ · · · ∩ Uik+1

)
,

where the hat indicates omission (this is where we use the total ordering on I). Strictly
speaking, each term should also include the restriction of α, i.e.,

ρ
Ui0
∩···∩dUij

∩···∩Uik

Ui0
∩···∩Uik

,

but this merely adds to an already cumbersome expression. We will henceforth suppress
these restriction maps and assume that their presence is understood, unless there is clarity
to be gained by including them.

The image of d in Čk(U ,F) is the group of k-coboundaries, and the kernel of d is the group
of k-cocycles :

B̌k(U ,F) = im
(
d : Čk−1(U ,F)→ Čk(U ,F)

)
,

Žk(U ,F) = ker
(
d : Čk(U ,F)→ Čk+1(U ,F)

)
.

And finally, the kth Čech cohomology group of F with respect to the cover U is the quotient

Ȟk(U ,F) = Žk(U ,F)/B̌k(U ,F).

For this last definition to make sense, we must have B̌k(U ,F) ⊆ Žk(U ,F), which is the
same as d2 = 0. This property is checked as usual.

Exercise 3.

• Compute the cohomology of the constant sheaf RS1 with respect to a Čech cover of
the circle. (Hint: you can make the nerve of the cover just a triangle.)
• Compute the cohomology of the constant sheaf RS2 on S2 with respect to the open

cover whose nerve is a tetrahedron; you should only get non-zero cohomology groups
for k = 0 and k = 2.

It will follow from the rest of the lecture that these cohomology groups are the same as the
de Rham cohomology, but they make good concrete practice cases.

Next, we need to be able to relate the cohomology groups with respect to different open
covers U and V ; any two covers have a common refinement, so we may assume without loss
of generality that V refines U . Given a choice of refining map τ : V → U , we can move from
cochains with respect to U to cochains with respect to V , by the adjoint

τ ∗ : (α : U 7→ a ∈ F(U)) 7→
(
τ ∗α : V 7→ ρ

τ(V )
V α(τ(V ))

)
.

But how much does the resulting homomorphism depend on τ?

Lemma 3.2. If τ1 and τ2 are both refining maps V → U , then they induce the same map on
cohomology τ ∗1 = τ ∗2 : Ȟ•(U ,F)→ Ȟ•(V ,F).
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Proof. We recall that it is sufficient to find a homotopy of chain complexes, i.e., a collection
of homomorphisms h : Čk+1(U ,F)→ Čk(V ,F) in the diagram

· · · // Čk−1(U ,F)
d // Čk(U ,F)

d //

h

xxppppppppppp
τ∗1

��
τ∗2

��

Čk+1(U ,F) //

h

xxppppppppppp
· · ·

· · · // Čk−1(V ,F)
d // Čk(V ,F)

d // Čk+1(V ,F) // · · ·

such that dh+hd = τ ∗1 − τ ∗2 , because this shows that the difference of τ ∗1 and τ ∗2 on a cocycle
(a representative of a cohomology class) is a coboundary (which is zero in cohomology). Set

h(α)
(
Vi0 ∩ · · · ∩ Vik

)
=

k∑
j=0

α
(
τ1(Vi0) ∩ · · · ∩ τ1(Vij ) ∩ τ2(Vij ) ∩ · · · ∩ τ2(Vik)

)
.

This h works, by a standard telescoping argument. �

This lemma allows us to define, unambiguously, the Čech cohomology groups of a sheaf.

Definition 3.3. Let F be a sheaf on M . The kth Čech cohomology group of F is

Ȟk(M,F) = lim−→
U , ordered by refinement

Ȟk(U ,F).

The direct limit means, roughly, that for something to appear in the final cohomology, it
only needs to appear for “sufficiently refined covers.” As previously observed, Čech covers
exist for manifolds, and so we’ll be able later to drop any concerns about the direct limit by
applying a theorem of Leray.

Here we will wave our hands a bit at the question of equivalence between Ȟk(M,RM) and
Hk

sing(M ; R), then not concern ourselves further with it: a singular cochain α ∈ Ck
sing(M,R)

is a function on maps from a k-simplex into M . A Čech k-cochain is a function on the
k-faces associated to an open cover U of M . In fact, the nerve N (U) can be realized, at least
locally, as a cellular decomposition of M when U is sufficiently refined, and by taking further
refinements we can approximate any map from a k-simplex into M by a face of N (U). So the
singular cochain α can be approximated by a Čech cochain. A homotopy argument shows
that this induces maps on the cohomology groups, and taking the direct limit shows that,
for sufficiently refined covers, the maps are isomorphisms.

4. Fine resolutions

Definition 4.1. A sheaf F on M is fine if its sections can be glued by partitions of unity,
i.e., for every open U ⊂ M and for every locally finite cover V of U , there exist extension
maps ϕVU : F(V )→ F(U) such that∑

V ∈V

ϕVU ◦ ρUV = idF(U).

In our context of manifolds, the most natural kind of partition of unity in the sense of the
foregoing definition is one given by a partition of unity in the manifold-theoretic sense, i.e., a
collection of smooth functions {ϕVU}V ∈V , so that ϕVU is only non-zero on a relatively compact
subset of V and

∑
ϕVU = 1 at every x ∈ U . Thus we can get global sections from local
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sections simply by multiplying by these functions and summing. For the sum to be finite at
every point, we need a locally finite cover, however; this is where we use paracompactness.

Example 4.2.

• As previously observed, all Ωk
M are fine sheaves. C∞M is a special case.

• Constant sheaves are not fine; trying to multiply by some arbitrary smooth function
defined locally will most of the time kill the property of being locally constant.

The extreme flexibility of fine sheaves means that the problem of solving their cohomology
is trivial:

Lemma 4.3. If F is a fine sheaf on M , then Ȟk(M,F) = 0 for all k > 0.

Proof. It suffices to consider a locally finite cover U = {Ui}i∈I on M and a partition of
unity {ϕUM}U∈U subordinate to U , because every open cover has a locally finite refinement.
Consider the diagram

· · · // Čk−1(U ,F)
d //

‖

Čk(U ,F)
d //

h

xxppppppppppp
‖

Čk+1(U ,F)
h

xxppppppppppp
‖

// · · ·

· · · // Čk−1(U ,F)
d // Čk(U ,F)

d // Čk+1(U ,F) // · · ·

with h : Čk+1(U ,F)→ Čk(U ,F) defined by

h(α) (Ui0 ∩ · · · ∩ Uik) =
∑
U∈U

(
ρUUi0

∩···∩Uik
◦ ϕU∩Ui0

∩···∩Uik
U

) (
α (U ∩ Ui0 ∩ · · · ∩ Uik)

)
.

(The ϕs are key; the ρs are simply there to restrict to the appropriate open subset corre-
sponding to the face {Ui0 , . . . , Uik}.) We must take care to add in an appropriate sign when
we have to shuffle U among the Uij s according to the order of I. Then dh+hd = id = id−0,
which means we have given a homotopy from the identity map to the zero map. This proves
the result. �

At some point in the course of proving de Rham’s theorem, one has to set up a double
complex and show a canonical correspondence between the top row and the leftmost column.
The advantage of the sheaf theory we’ve developed is that we can do this once and for all
in a somewhat broader context than just “de Rham cohomology and sheaf cohomology with
constant coefficients”; e.g., Dolbeault’s Theorem will also be covered by this argument. The
point is, even though fine sheaves have no cohomology, an exact sequence of such sheaves
leads to a complex of their global sections (no restricting to smaller sets allowed!) which can
be used to compute the cohomology of another sheaf.

Definition 4.4. Let F be a sheaf on M . A fine resolution of F is an exact sequence of sheaf
maps

(1) 0→ F → F0 → F1 → F2 → · · ·

where every Fk is fine.

6



Theorem 4.5. Let F be a sheaf on M , and let (1) be a fine resolution of F . Suppose U is
an open cover of M such that the sequence of homomorphisms

F j−1(Ui0 ∩ · · · ∩ Uik)→ F j(Ui0 ∩ · · · ∩ Uik)→ F j+1(Ui0 ∩ · · · ∩ Uik)

is exact for every face {Ui0 , . . . , Uik} of N (U). Then

Ȟk(U ,F) ∼=
ker
(
d : Fk(M)→ Fk+1(M)

)
im (d : Fk−1(M)→ Fk(M))

canonically.

Proof. Set up the commuting double complex below; maps to the right between groups of
cochains are coboundary maps, while maps down are induced by the sheaf maps of the
resolution. The first map in each row below the first is given by restriction to elements of
the open cover.

Č0(U ,F) //

��

Č1(U ,F) //

��

Č2(U ,F) //

��

· · ·

F0(M) //

��

Č0(U ,F0) //

��

Č1(U ,F0) //

��

Č2(U ,F0) //

��

· · ·

F1(M) //

��

Č0(U ,F1) //

��

Č1(U ,F1) //

��

Č2(U ,F1) //

��

· · ·

F2(M) //

��

Č0(U ,F2) //

��

Č1(U ,F2) //

��

Č2(U ,F2) //

��

· · ·

...
...

...
...

Our hypothesis on U states that the columns from the second column over are exact, because
they are exact on each intersection. The rows from the second row down are exact because
the Fk are fine.

We commence the diagram chase: fortunately we only have to move on broken diagonals,
the shortest possible paths between the terms we want to connect. Take a Čech cocycle
α ∈ Žk(U ,F) ⊂ Čk(U ,F). Then its image to the right is zero, so it moves down to an
element β0 ∈ Čk(U ,F0) that is also a cocycle. But the rows below the first are exact, so
β0 is a coboundary, i.e., the image of some α0 ∈ Čk−1(U ,F0). Because the columns after
the first are exact and β0 came from an element one level up, it descends to 0 and thus α0

descends to a cocycle β1 in Čk−1(U ,F1). Continue by finding α1 ∈ Čk−2(U ,F1), β2, etc.,
until you arrive at αk ∈ Fk(M). The cohomology class [αk] in the complex of global sections
is independent of the choices α, α1, . . . , αk.

The situation is symmetric, so we have an analogous map from cohomology of the complex
of global sections to the cohomology of the Čech complex. These maps are inverses. �

Exercise 4. Check the assertions that conclude the last two paragraphs above.
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5. Final results

Theorem 4.5 can be strengthened in a couple of ways. First we observe that covers of
the type described in the statement of the theorem are cofinal among covers; that is, any
refinement of U can be refined again, if necessary, to a new cover that also satisfies the
conditions of the theorem. Because the maps involved are canonical, the groups do not
depend either on the particular open cover U nor on the particular fine resolution of F .
Thus we have the following corollaries:

Corollary 5.1 (Leray’s Theorem). Let F be a sheaf on M , and suppose U is an open cover
of M such that Ȟk(Ui0∩· · ·∩Uij ,F) = 0 for all finite intersections Ui0∩· · ·∩Uij of elements
in U . Then the canonical map

Ȟk(U ,F)→ Ȟk(M,F)

is an isomorphism for all k.

Proof. Choose a fine resolution of F . By Theorem 4.5, the cohomology of any such cover
coincides with the cohomology of the global sections in the fine resolution of F , which implies
that they are all identical. Hence the direct limit Ȟk(M,F) is isomorphic to any of them. �

Corollary 5.2. Let F be a sheaf on M , and let (1) be any fine resolution of F . Then

Ȟk(M,F) ∼=
ker
(
d : Fk(M)→ Fk+1(M)

)
im (d : Fk−1(M)→ Fk(M))

for all k.

Proof. Recall that because M is a manifold, it has a Čech cover, which satisfies the conditions
of the previous corollary. (The result is true for any paracompact space, and in general only
needs an argument about independence from the covers of the given type.) �

These are highly convenient tools for computing the cohomology of a sheaf. Our goal of
proving de Rham’s Theorem, which we accomplish next, will turn this technique around,
giving us a way to express de Rham cohomology, defined by quotients of infinite-dimensional
groups, in terms of the structurally simpler Čech cohomology with real coefficients.

Theorem 5.3 (de Rham’s Theorem). Let M be a paracompact C∞-manifold. Then

Ȟk(M,RM) ∼= Hk
dR(M) for all k.

Proof à la Weil. By definition, Hk
dR(M) is the quotient ker(d)/im(d) in Ωk(M). We have

already seen that the sequence

0 // RM
incl. // Ω0

M
d // Ω1

M
d // . . . d // ΩdimM

M
// 0

is a fine resolution of RM . Therefore the result follows by Corollary 5.2. �

To conclude, we’ll prove Dolbeault’s Theorem, modulo the proof of the (analytic) analogue
to Poincaré’s Lemma. First, we fix some notation: if M is a complex manifold, then Ωp,q

M is
the sheaf of smooth (p, q)-forms on M , and Ωp

M is the sheaf of (p, 0)-forms on M that are
∂-closed (which is the same as having holomorphic coefficients in any chart). The Dolbeault

operator ∂ maps Ωp,q
M to Ωp,q+1

M and satisfies ∂
2

= 0, giving rise to the Dolbeault complex,
whose cohomology groups are denoted Hp,q

Dol(M).
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Theorem 5.4 (Dolbeault’s Theorem). Let M be a complex manifold. Then

Ȟq(M,Ωp
M) ∼= Hp,q

Dol(M) for all (p, q).

Proof. The Dolbeault–Grothendieck Lemma states that every ∂-closed form in Ωp,q
M (U) is

locally ∂-exact; this is an analytic result about complex manifolds that is somewhat harder
to prove than the analogous Poincaré Lemma of differential topology. Apart from this
particular difference, the form of the proof here exactly mirrors that of de Rham’s Theorem.

By definition, Hp,q
Dol(M) is the quotient ker(∂)/im(∂) in Ωp,q(M). The kernel of ∂ in Ωp,0

M (U)
is precisely Ωp

M . Therefore the Dolbeault–Grothendieck Lemma implies that the sequence

0 // Ωp
M

incl. // Ωp,0
M

∂ // Ωp,1
M

∂ // Ωp,2
M

∂ // . . .

is a fine resolution of Ωp
M , and the result follows by Corollary 5.2. �

In particular, Ω0
M = OM , the sheaf of holomorphic functions, and so we get a relationship

between the cohomology of the sheaf OM and the anti-holomorphic forms on M . Because
OM also fits into the exact (exponential) sequence 0→ ZM → OM → O∗M → 1, the interplay
of these different contexts can yield a lot of information about M . For more results on sheaf
cohomology and applications to the study of complex manifolds, see [1] and [3].
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