
INVERSE FUNCTION THEOREM

Before we recall the exact statement of the Inverse Function Theorem, let’s think about
what we’d like for it to say. We’ve been talking about solving equations. Naı̈vely, given
a function f : Rn → Rn and a value b in the range, we simply want to solve f(x) = b.
Newton’s method gives us a way to do this. But in the linear case, we have a much
stronger situation: when f is invertible, we just have to find f−1 to get solutions to all
equations f(x) = b. By examples, we know that it’s generally hopeless to expect this to
happen for non-linear functions. But if we know a solution exists for some b0, we might
hope that solutions also exist near b0. The Inverse Function Theorem tells us that this
hope is (often) justified, and that the solutions depend differentiably on b near b0.

Theorem 1 (Inverse Function Theorem). Let f : U ⊂ Rn → Rn be a C1 function on a
neighborhood of x0. Suppose that Df(x0) is invertible. Then f has a local C1 inverse on a
neighborhood of x0, i.e., f(x) = b has a solution for b in some ball around f(x0).

The concept of “locally invertible” may be difficult. First, you should realize that a
property being “local” on a set simply means that every point in that set is contained in a
neighborhood on which the property holds. (As opposed to “pointwise”, which only has
to hold at each point: continuity is an example of a pointwise property.) Some examples
may help explain why local invertibility is such an important concept.

Example 1 (A function that is everywhere locally invertible, but does not have a global
inverse). Define f : R → R by

f(x) =

{
x2 if x ≥ 0

x2 − 1 if x < 0.

At every point of R, f has a local inverse. For x > 0, it is y 7→ √
y; for x < 0, it is

y 7→ −
√

y + 1. There is also an inverse on the interval (−1, 1), given by

y 7→

{
−
√

y + 1 if y ∈ (−1, 0)
√

y if y ∈ [0, 1).

However, f has no global inverse, because it is not one-to-one.

Example 2 (A differentiable example). Consider the exponential function exp : C → C.
As you saw in an earlier homework, the derivative of exp as a function R2 → R2 at z0 =
x0 + iy0 is [

D exp

(
x0

y0

)]
= ex0

[
cos y0 − sin y0

sin y0 cos y0

]
,

This matrix is always invertible—its determinant is e2x0 6= 0. Thus the Inverse Function
Theorem guarantees a local inverse of exp at each point of C, and the inverse will even be
differentiable! (Aside: such a local inverse for exp is called, naturally, a logarithm. But as
we’ll see in a moment, logarithms are far from unique.)

However, exp is not one-to-one on C: if z1 = x + iy1 and z2 = x + iy2, where y1 and y2

differ by a multiple of 2π, then ez1 = ez2 ; exp is periodic in the imaginary direction. (Wow!)
Any point of C is contained in a ball of radius π on which exp is invertible. (In your spare
time, you might think about what the image of this ball would look like.)


