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1. Abstract vector spaces

What is a vector? Loose definition we’ve been using so far: an object that can be added
and scalar multiplied. Even this makes clear that the definition of a vector requires a context,
i.e., a vector space. The examples we’ve seen:

• Rn

• Matk×n

Here are other examples of sets where we can add and multiply by real numbers:

• C[0, 1], the set of continuous functions on the interval [0, 1]. To add two functions
together, we just add their values at each point, and likewise for scalar multiplication:

(f + g)(x) = f(x) + g(x), (cf)(x) = c(f(x)) for all x ∈ [0, 1].

We know that adding two continuous functions gives another continuous function,
and multiplying a function by a real number doesn’t change its continuity.

• `0, the set of sequences (functions N → R).

(a0, a1, a2, . . . ) + (b0, b1, b2, . . . ) = (a0 + b0, a1 + b1, a2 + b2, . . . ),

c(a0, a1, a2, . . . ) = (ca0, ca1, ca2, . . . ).

• Poly3
x, the set of polynomials in x with degree at most 3. To add, we add coefficients,

and likewise to multiply by a real. The sum of two such polynomials cannot have
degree more than 3, so Poly3

x is closed under addition.

How can we talk about all these different things at once, and see what’s the same about
them? They are unified by the concept of a vector space.

Definition 1.1. A (real) vector space is a set V with addition and scalar multiplication
defined that satisfy the following axioms:

∃ 0 ∈ V such that ∀ v ∈ V, v + 0 = v (identity)(1)

∀ v ∈ V, ∃ −v ∈ V such that v + (−v) = 0 (inverses)(2)

∀ v,w ∈ V, v + w = w + v (commutativity)(3)

∀ u,v,w ∈ V, c, d ∈ R,

{
(u + v) + w = u + (v + w)

c(dv) = (cd)v
(associativity laws)(4)

∀ v,w ∈ V, c, d ∈ R,

{
c(v + w) = cv + cw

(c + d)v = cv + dv
(distributive laws)(5)

∀ v ∈ V, 1v = v (normalization)(6)
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These axioms are chosen so that almost everything you know about Rn is true for any
vector space. For example,

• A subspace of a vector space W is a subset W that is also itself a vector space; when
adding and scalar multiplying things in W , you don’t go outside of W . Looking at
the examples above, we see that Poly3

x is a subspace of C[0, 1], because a polynomial
is certainly continuous on [0, 1]. You should convince yourself that the addition and
scalar multiplication we’ve defined for Poly3

x is the same as the one for C[0, 1].
• Linear combination and span work just as before. A function in Poly3

x is a linear
combination of the functions 1, x, x2, and x3; these four functions span Poly3

x. The
two sequences (1, 0, 1, 0, 1, 0, . . . ) and (0, 1, 0, 1, 0, 1, . . . ) in `0 span the set of sequences
whose terms have alternating values.

• A finite set of vectors {v1, . . . ,vn} is linearly independent if

c1v1 + · · ·+ cnvn = 0 =⇒ c1 = · · · = cn = 0.

A non-zero polynomial has only finitely many points on which it equals zero, so
a + bx + cx2 + dx3 ∈ Poly3

x can only equal 0 for all x if a = b = c = d = 0. Thus
{1, x, x2, x3} is a linearly indepedent spanning set for Poly3

x—hey, we have a basis!

As the last example above suggests, bases also work as before, and the “dimension” of
a space is simply a measure of the size of a basis. Unfortunately, in “infinite-dimensional”
spaces, some of what we know breaks down. This is mostly due to the fact that linear
combinations must be finite. For example, in `0, let

e1 = (1, 0, 0, 0, . . . )

e2 = (0, 1, 0, 0, . . . )

e3 = (0, 0, 1, 0, . . . )

...

These vectors are linearly independent, because obviously

k∑
j=1

ajeij = (0, 0, 0, . . . ) ⇐⇒ a1 = · · · = ak = 0.

But the vectors {ei} do not span `0, because any linear combination of them will only have
finitely many nonzero terms.

You may ask, why don’t we simply allow infinite linear combinations? The reason is, once
we write something like

∞∑
i=1

aiei,

we’re no longer talking about a sum; we’re talking about a limit, which means we need a
way of measuring convergence. An abstract vector space doesn’t come equipped with such
a thing. There are infinite-dimensional spaces, called Hilbert spaces, in which one can make
sense of the above expression, and these are a possible topic for the term project. We will
not deal with questions of basis in infinite-dimensional spaces in this class.
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2. Finite-dimensional spaces

Okay, let’s step back from seeing what can go wrong. We should at least be able to
understand completely our usual vector space notions when the dimension is finite. And
such is the case, by the following proposition:

Proposition 2.1. A vector space V is finite-dimensional, with dimension n, iff there exists
a linear map Φ : Rn → V that is 1-to-1 and onto. Moreover, such a map sends a basis of
Rn to a basis of V .

(The book calls Φ a “concrete-to-abstract” function.) The point of the above proposition
is that a vector space that can be spanned by only finitely many elements can be thought of
as Rn in a very specific way. The map Φ tells us exactly which vectors in V to think of as
our basis.

Let’s look at our standby example, Poly3
x. We’ve already seen that {1, x, x2, x3} is a basis

for this space, so the first map R4 → Poly3
x that should come to mind is

Φ :


a
b
c
d

 7→ a + bx + cx2 + dx3.

This almost looks stupid: it looks like the basis we’ve chosen for Poly3
x is just acting as

“place-holders” for the R4 coordinates. That’s what Φ does, in a sense: once we’ve chosen a
set of linearly independent vectors in our abstract space, Φ associates them to the standard
basis in Rn. Once we’ve done that, we can treat V (or whatever subspace is spanned by the
vectors we chose) just like Rn.

Let’s look at another example, which allows us to exploit the “bigness” of `0: As before,
let ei ∈ `0 be the sequence that is zero everywhere except in the (i− 1)st term, which is 1.
Fix n, and define Φ : Rn → `0 by

Φ :


a1

a2
...

an

 7→ a1e1 + a2e2 + · · ·+ anen = (a1, a2, . . . , an, 0, 0, . . . ).

Thus, we can think of Rn as being the subspace of `0 composed of sequences that have 0 for
the nth and higher terms. That is, `0 contains a copy of Rn for every n! This gives us a
useful and accurate way to say Rm ⊂ Rn when m ≤ n: just tack on enough zeroes to vectors
in Rm to make them have n entries.

3. Linear transformations

The axioms for a vector space also allow us to define linear transformations between vector
spaces exactly as we always have. To emphasize:

Definition 3.1. Let V and W be vector spaces. A map T : V → W is linear iff

T (v + w) = T (v) + T (w) for all v,w ∈ V(7)

and T (cv) = cT (v) for all v ∈ V, c ∈ R.(8)
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We’ve already seen examples in the case of the “concrete-to-abstract” functions. Here’s
one that gives a name to basic properties of the derivative that you’ve known for ages:

Example 3.2. Let C1(0, 1) be the space of continuously differentiable functions on (0, 1).
(This space, C[0, 1], and other spaces whose elements are functions are sometimes called
function spaces.) Define D : C1(0, 1) → C(0, 1) by

D(f) = f ′.

Recall that (f + g)′ = f ′ + g′, and (cf)′ = cf ′. Hence D, the differentiation map, is linear!

The kernel of a linear map is, as before, a subspace of the domain. In the previous exam-
ple, the kernel is the set of constant functions, which is certainly a subspace: it’s spanned
by the function 1. But D is also onto: every continuous function has an antiderivative.
Thus we don’t have an analogue of the dimension formula (without more careful defini-
tions, which we won’t go into here). Once again, the problem is that C1(0, 1) and C(0, 1)
are infinite-dimensional (for example, they both contain all the polynomials). One of next
week’s exercises will probably ask you to think a bit more about this example, and to write
a matrix for D just on the finite-dimensional space of polynomials of degree d or less.

4. Inner products

So what about length, orthogonality, and all that? The definition of a vector space doesn’t
give us any way to handle these things. And sometimes there’s just no reasonable way to
define them. We need some extra structure. Here’s an example that generalizes Rn.

Example 4.1 (An important subspace of `0). Let’s use the sequence structure of `0 to define
the following:

`2 =

{
(ai)

∞
i=0 ∈ `0

∣∣∣∣ ∞∑
i=0

|ai|2 < ∞

}
.

This is called the space of square summable sequences. To show that it is a subspace of `0, we
need to show that it’s closed under addition and scalar multiplication. Scalar multiplication
is easy: if (ai) ∈ `2, c ∈ R, then

∞∑
i=0

|cai|2 =
∞∑
i=0

|c|2|ai|2 = |c|2
∞∑
i=0

|ai|2 < ∞.

For addition, we first recall that |ab| ≤ 1
2
(a2 + b2). Thus, if (ai), (bi) ∈ `2,

∞∑
i=0

|ai+bi|2 ≤
∞∑
i=0

(
|ai|2 + 2|aibi|+ |bi|2

)
≤

∞∑
i=0

(
2|ai|2 + 2|bi|2

)
= 2

∞∑
i=0

|ai|2+2
∞∑
i=0

|bi|2 < ∞.

If (ai) only had n non-zero terms, then
∑∞

i=0 |ai|2 would just be the square of the length
of (ai) as a vector in Rn. Since the length in Rn is defined by the dot product, we’d like to
extend the dot product to `2. For (ai), (bi) ∈ `2,

〈(ai), (bi)〉 =
∞∑
i=0

aibi

is called the inner product (or sometimes dot product) of (ai) and (bi). With it, the notions of
length, orthogonality, and convergence once again become accessible. `2 is a Hilbert space.


