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1. Conformal metrics

As a vector space, C has a canonical norm, the same as the standard R2 norm. Denote
this |dz|—one should think of dz as the identity map on C: ζ 7→ ζ. This also means C has
a standard norm as the tangent space to itself at any of its points. We will consistently use
Roman letters (e.g., z) to represent a point in C when we’re thinking of it as a topological

space, and Greek letters (e.g., ζ) to represent a point in C thought of as a vector. Let U
◦
⊂ C

be a plane domain (non-empty, connected, but not necessarily simply connected).

Definition 1.1. A conformal metric on U is a metric of the form ρ |dz|, where ρ is a smooth,
positive function on U . We will also use ρ to denote the metric itself, not just the function.

Almost always, “conformal” is used with respect to something else; here, we mean that
angles in a conformal metric are the same as those in the background Euclidean metric. In
other words, the unit ball of the norm in the tangent space at z is invariant under (Euclidean)
rotations.

Example 1.2. On U = C \ {0}, ρ = |dz|/|z| is a conformal metric. U is preserved by
multiplication by a non-zero complex number a; call such a map ma. The derivative of ma

is again multiplication by a. Let z ∈ U and let ζ ∈ Tz(U) = C. The image of z by ma is az,
and the image of ζ by the derivative is aζ ∈ Taz(U). Hence

ρ(az)|aζ| = |aζ|
|az|

=
|a||ζ|
|a||z|

=
|ζ|
|z|

= ρ(z)|ζ|,

that is, the metric is preserved by ma.

Definition 1.3. If ρU is a conformal metric on U and ρV is a conformal metric on V , then
a conformal diffeomorphism f : U → V is called an isometry if it sends tangent vectors to
tangent vectors of the same length, i.e.,

ρV (f(z))|f ′(z)ζ| = ρU(z)|ζ| for all z ∈ U , ζ ∈ C.

Definition 1.4. Let D be the open unit disk in C. The Poincaré metric (or hyperbolic
metric) on D is the conformal metric

ρD =
2 |dz|

1− |z|2
.

Theorem 1.5. Up to a global scaling factor, ρD is the unique conformal metric on D that
is invariant under the action of Aut(D).

Date: 13 March 2008.

1



Proof. Recall that Schwarz’s Lemma implies that all automorphisms of D have the form

fθ,a(z) = eiθ
z − a
1− az

, θ ∈ R, a ∈ D.

Suppose ρ is any conformal metric on D invariant under Aut(D). If z ∈ D is any point and
ζ ∈ Tz(D) is any tangent vector, then f0,z : w 7→ (w − z)/(1 − zw) sends z to 0, and f ′0,z
sends

ζ 7→ f ′0,z(z)ζ =
ζ

1− |z|2
∈ T0D.

By the invariance of ρ, we must therefore have

ρ(z)|ζ| = ρ(0)|f ′0,z(z)ζ| = ρ(0)
|ζ|

1− |z|2
.

Which shows that ρ is a multiple of ρD. Conversely, ρD has just been shown to be invariant
under f0,a for all a, and it is clearly invariant under multiplication by eiθ, hence it is invariant
under all of Aut(D). �

Corollary 1.6. The isometry group of ρD is precisely Aut(D).

Proof. Immediate, as previously observed, from Schwarz’s Lemma. �

We can determine a lot about the geometry of the metric space (D, ρD) just from the our
knowledge of ρD and Aut(D). Given any smooth (C1) curve γ : [a, b] → D, its Poincaré
length is

`D(γ) =

∫ b

a

ρD(γ(t)) |γ′(t)| dt.

Using the definition of a geodesic as a “locally length-minimizing” curve, we can then com-
pute the geodesics in D.

Let z ∈ D − {0}; we want to find a geodesic path from 0 to z. Because ρD is invariant
under rotations, we can assume z lies in (0, 1). Let γ : [a, b] → D be any path from 0 to z.
The composition of γ with the rotational projection (r, θ) 7→ (r, 0) is again a smooth path |γ|
whose radial component is the same as that of γ, but whose rotational component is zero;
hence `D(|γ|) ≤ `D(γ). Thus the geodesic from 0 to z is the segment [0, z]. The complete
geodesics through 0 are therefore the diameters of D.

To find the geodesic path between z1 and z2, we recall that we can send z1 to 0 by an
isometry, find the geodesic from 0 to the image of z2, and reverse the isometry. Because all
of the elements of Aut(D) are Möbius transformations, which are conformal and send circles
to circles, we conclude that the geodesic from z1 to z2 is the arc of the circle passing through
z1 and z2 and orthogonal to ∂D = S1. (If these properties of Möbius transformations are
unfamiliar to you, then work through Exercise 30 in Chapter 14 of [4].)

Definition 1.7. Let H be the open upper half-plane in C. The Poincaré metric (or hyperbolic
metric) on H is the conformal metric

ρH =
|dz|
y
, y = Im z.
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As subsets of CP1 = C∪ {∞}, we know that D and H are conformally equivalent, via the
Möbius transformations

ϕ : z 7→ i
1 + z

1− z
D→ H,

ψ : w 7→ w − i
w + i

H→ D.

We want to show that, in fact, these maps are isometries. We’ll do this by “pulling back” ρH
via ϕ and showing that the result coincides with ρD. (We won’t formally define “pull-back”,
but it basically means cooking up a metric so that a diffeomorphism becomes an isometry.
The definition should be clear after an example.) Given z ∈ D, ζ ∈ C, we have

ρH(ϕ(z))|ϕ′(z)ζ| = 1

Imϕ(z)

∣∣∣∣ 2i

(1− z)2
ζ

∣∣∣∣ =
|1− z|2

1− |z|2
2 |ζ|
|1− z|2

= ρD(z)|ζ|.

Definition 1.8. We call any smooth Riemannian manifold that is isometric to (D, ρD) a
model of the hyperbolic plane.

Definition 1.9. If U is any simply connected domain in C, not equal to all of C, then its
Poincaré metric ρU is the conformal metric obtained by pulling back the Poincaré metric on
D via the Riemann map. (Note: this is well-defined because the Riemann map is defined up
to an element of Aut(D).)

Often, pictures are easier to draw in H than in D, because the geodesics are simply
the circles and lines in C orthogonal to the real axis (again, this follows from properties of
Möbius transformations). Also, the isometry group in this model simply becomes PSL2(R) ⊂
PSL2(C), because these are the Möbius transformations that preserve the real axis. This
model distinguishes a single point ∞ on the boundary, as we occasionally wish to do.

Other models are also useful. For example, if we wanted to distinguish two points on the
boundary, we could use the band model. Let B be the infinite strip

B := {z ∈ C | |Im z| < π} ,
and define its Poincaré metric by

ρB =
|dz|
cos y

, y = Im z.

Then all translations in the x-direction are isometries: moreover, they preserve the two
boundary points ±∞ and the geodesic between them. The remaining geodesics in this model
are much more difficult to describe, however, except to say that they meet the boundary
orthogonally (or have one end limiting to ±∞).

Exercise 1.

(1) Show that the map z 7→ ez is an isometry from B with the conformal metric |dz| to
C \ (−∞, 0] with the conformal metric |dz|/|z|.
[Note: the same calculation shows that the covering map z 7→ ez is a local isometry
from (C, |dz|) to (C \ {0}, |dz|/|z|).]

(2) Show that (B, ρB) is isometric to (D, ρD).
(3) Find the Poincaré metric on C \ [0,∞).
(4) Using the idea of “local isometry” from (1), find the Poincaré metric on D \ {0}.
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2. Curvature

The most geometric way to describe the qualitative difference between conformal metrics
is via their curvature. Roughly speaking, we want to compare how the area of a circle grows
in terms of its radius, and compare this to the Euclidean growth rate πr2. More precisely,
we define the following.

Definition 2.1. Let ρ |dz| be a conformal metric on U ⊂ C. Then the Gaussian curvature,
or simply curvature, of ρ |dz| at z ∈ U is

Kρ(z) = −∆ log ρ(z)

ρ2(z)
,

where ∆ is the standard Laplacian ∂2/∂x2 + ∂2/∂y2.

Here’s an attempt at a geometric explanation, somewhat hand-wavey for now: ∆/ρ2 =
divρ2 gradρ is the Laplace–Beltrami operator for (U, ρ), hence is defined intrinsically. Note
that the volume form on each tangent space to points in U is given by ρ2 dx ∧ dy.

• gradρ log ρ = ρ

[
ρx
ρy

]
measures the change in ρ with respect to itself ; the ρ-length of

this vector is ρ2
√
ρx2 + ρy2, which takes into account both the current volume form

and how fast it’s changing.

• divρ2

(
ρ

[
ρx
ρy

])
measures how the volume form changes when moving along flow lines

of the gradient of log ρ, i.e., in the direction that the metric is increasing most quickly.

More concretely, one can show that the above value Kρ(z) appears as a coefficient in the
power series for the area of a circle centered at z:

Area(B(z, r)) = πr2

(
1− 1

12
Kρ(z)r2

)
+ o(r4).

This requires showing that Kρ(z) is invariant under conformal coordinate changes—an essen-
tial property anyway, if this is going to measure something intrinsic; see [3]—and choosing a
coordinate w so that ρ(w) = (1 + c|w|2 + o(|w|2)) |dw| (see [2], where this fact about power
series is left as an exercise, but the remainder of the proof is shown).

Note that the factor 1/ρ2 doesn’t affect whether or not a function is harmonic. That is,
∆f = 0 if and only if (∆/ρ2)f = 0; the property of being harmonic is a conformal property,
not a metric one. So a conformal metric ρ |dz| has constant curvature 0 if and only if log ρ
is harmonic.

Example 2.2. On H, the metric ρH has curvature −1.

−∆ log(1/y)

1/y2
= y2 ∂

2

∂y2
log y = y2

(
− 1

y2

)
= −1.

Exercise 2.

(1) Show that the metric ρ = |dz|/|z| on C \ {0} has zero curvature.
(2) Show directly that the metric ρD on D has constant curvature −1.
(3) Show that the conformal metric 2|dz|/(1 + |z|2) on all of C has constant curvature 1.
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3. Consequences of curvature

We have geodesics in D and H. Given any smooth (C2 is all we need) curve γ in H, we
can define its curvature with respect to the Poincaré metric, i.e., the amount by which it
differs from a geodesic. A careful definition requires some technical language which we won’t
explain here, but we’ll immediately specialize to describing curves of constant curvature,
which will obviate the need for the definition.

Definition 3.1. Let γ : (−ε, ε) → H be a smooth curve parametrized by arclength with
respect to ρH. Then the geodesic curvature k of γ at γ(0) is the length of the vector[

∇
dt
γ′(t)− ∇

dt
α′(t)

]
t=0

where α is the unique geodesic satisfying α(0) = γ(0) and α′(0) = γ′(0), and ∇/dt is the
covariant derivative of the Levi–Civita connection given by ρ.

The definition we have given is for general conformal metrics, but we only know geodesics
explicitly for hyperbolic and Euclidean metrics: in the former case, we can reduce the formula
to

k(t) = |θ′(t) + sin θ(t)|,
where we are using the upper half-plane model and θ is the angle between the downward
direction and γ′(t) (see [2] for the proof that this formula works).

In Euclidean plane geometry, curves of constant geodesic curvature have only two kinds
of behavior: either the curvature is zero, and the curve is a geodesic, or it is non-zero, and
the curve is a circle with radius 1/curvature. In hyperbolic plane geometry, there are three
(or maybe four) possible behaviors for curves of constant geodesic curvature k:

• If k = 0, the curve is a geodesic; in particular, it has two limit points on the boundary.
• If k < 1, the curve is an arc of a Euclidean circle, joining two distinct boundary points;

these are represented in D by arcs of circles that meet the boundary transversely, or
in H by circles that cross the real axis and non-horizontal lines.
• If k = 1, the curve limits in both directions to a single point of the boundary; in D,

these are circles tangent to the boundary, and in H they are either circles tangent to
the boundary or horizontal lines (tangent to the point at infinity).
• If k > 1, the curve is a (closed) circle; in D or H it is both a Euclidean and a hyperbolic

circle, but the Euclidean center and the hyperbolic center do not in general coincide.

Definition 3.2. In any model of hyperbolic geometry, a curve with constant geodesic cur-
vature 1 is called a horocycle.

Definition 3.3. A hyperbolic triangle is the region enclosed by three distinct, non-colinear
points and the geodesic segments between them. An ideal triangle is a triangle with at least
one vertex on the boundary.

An ideal triangle, while unbounded, still has finite area. In fact, any triangle with three
ideal vertices has the same area, because Aut(D) acts triply transitively on ∂D. (You can
see this by using the half-plane model and showing that PSL2(R) acts triply transitively on
R ∪ {∞}.) This area is in fact a global upper bound for the area of triangles. With a bit
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more elementary geometry (see [1]), one can show the following form of the Gauss–Bonnet
Theorem: a hyperbolic triangle with angles α, β, and γ has area π − (α + β + γ). (Ideal
vertices are supposed to have zero angle.) In particular, the angles must satisfy α+β+γ < π.

Exercise 3. Show that the area of a triangle in H with three ideal vertices is π.
[Hint: Assume one of the vertices is the point at infinity. Integrate the measure ρH

2 dx dy
over the triangle.]

More generally, the following qualitative properties hold: in positively curved spaces,
parallels tend to approach each other; in negatively curved spaces, parallels tend to diverge
from each other; and in zero curvature spaces, parallels maintain their distance.

4. Classification of isometries

We have already looked at three kinds of isometries of the hyperbolic plane: rotations,
translations in the band model (which preserve a geodesic), and translations in the upper
half-plane model (which preserve a class of horocycles). It takes very little work to show that
these are the only kinds of hyperbolic isometries. We’ll use the model H with its isometry
group PSL2(R).

Let A : z 7→ A ·z with [A] =

[(
a b
c d

)]
∈ PSL2(R) be an isometry of H. First, we find the

fixed points of this map in H ⊂ CP1 (we know such points exist by the Brower fixed point
theorem, but we will soon show it algebraically). We want to solve the equation A · z = z in
CP1. That is,

az + b = z(cz + d), or cz2 + (d− a)z − b = 0.

Now we must consider two cases: c = 0 and c 6= 0.
In the first case, we have the map z 7→ (a/d)z + (b/d), a polynomial which therefore

fixes ∞. To see if any other points are fixed, we consider the equation (d − a)z − b = 0; if
a = d = 1 (why is this the only possibility for d− a to be zero when c = 0?) and b 6= 0, then
no solutions exist in C, so the only fixed point is ∞. If d− a 6= 0, then the point b/(d− a)
is fixed.

In the second case, ∞ is not fixed, because it is sent to a/c. We consider the discriminant
(d− a)2 − 4bc = (a+ d)2 (why is this equality true?). If it is 0, then there is a unique fixed
point on the real axis. If it is positive, there are two fixed points on the real axis. If it is
negative, there are two fixed points in C, but they are complex conjugates, so only one lies
in H.

We have therefore shown the three possibilities: A fixes either one point in the interior of
H, or one point on the boundary of H, or two points on the boundary of H.

Exercise 4. Show that if A fixes:

(1) two points in ∂H, then it preserves the geodesic between those two points;
(2) one point in ∂H, then it preserves all horocycles tangent to that point;
(3) one point in the interior of H, then it preserves all circles centered at that point.
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These considerations lead to standard forms for each kind of isometry. Up to conjugacy
in PSL2(R), any hyperbolic isometry is induced by a matrix of one of the following types:(

et 0
0 e−t

)
(geodesic translation by hyperbolic distance 2t),(

1 ±1
0 1

)
(horocylic translation),(

cos θ − sin θ
sin θ cos θ

)
(rotation through angle 2θ).

We have carried out a very algebraic analysis of the situation; one can follow a more
dynamical approach instead and arrive at the same conclusions. In this case, one considers
the infimum of the distances points in H are moved, and examines what happens when this
number is positive, when it is zero and realized by a fixed point in H, or when is it zero and
is not realized in H. These cases correspond, respectively, to geodesic translation, rotation,
and horocylic translation.

A final word on naming: these three types of isometries are sometimes called hyperbolic,
parabolic, and elliptic isometries of H. When a matrix in SL2(R) is applied to R2, it certainly
preserves a hyperbola in the first case and an ellipse (a circle) in the last case. (These aren’t
quite the reasons for giving these names, but they’re close enough.) The horocycle has no
analogue in Euclidean geometry, but in some ways it resembles a parabola, in that it is a
limit of ellipses, and both ends tend to the same point at infinity. It is nicer than a parabola,
however, in that it has constant geodesic curvature, while a parabola flattens out.

5. Extensions and generalizations

The metric on D was defined in terms of maps from D to itself. This leads to a special
kind of metric on general open subsets of Cn.

Definition 5.1. Let M be an open subset of Cn, z ∈M . The Kobayashi ball at z is defined
by

Bz(M) = {f ′(0) | f : D→M analytic, f(0) = z}.
If Bz(M) ⊂ Tz(M) = Cn is bounded for all z ∈M , then the Kobayashi balls define a metric
on M , called the Kobayashi metric, and M is said to be Kobayashi hyperbolic.

Proposition 5.2. If M and N are open subsets of Cn and f : M → N is analytic, then
Df(z) sends Bz(M) into Bf(z)(N).

Proposition 5.3. The Kobayashi metric on D is ρD/2.

Corollary 5.4 (Schwarz–Pick Theorem). If f : D→ D is analytic, then it does not increase
Poincaré lengths. If f ′ preserves Poincaré lengths at a single point, then it is an isometry.

The Kobayashi metric is a way to define the hyperbolic metric of a plane domain U not
equal to C or C \ {0} “intrinsically”, without using uniformization: it is given at a point
z ∈ U by the analytic maps D → U that send 0 to z. It is in general hard to compute,
however, and in any case the extremal maps are uniformizing anyway.
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In higher dimensions, the Kobayashi metric can play an important classifying role: for
example, in C2, the unit ball B2 = {|z1|2 + |z2|2 < 1} and the bidisk D2 = D × D are
both open and contractible, hence homeomorphic. They are not biholomorphic, however;
each is its own Kobayashi ball at (0, 0), and any biholomorphism B2 → D2 would have
to induce a linear isomorphism between the two, which is impossible because ∂D2 contains
segments while ∂B2 does not. (This argument requires a little more knowledge about the
automorphism group of B2, but not much, just that Aut(B2) is transitive on B2. See [3] for
details.) Thus, no equivalent to the Riemann Mapping Theorem exists for domains in Cn,
n > 1.

In Teichmüller theory, the Kobayashi metric is used to show that the isometry group of
the Teichmüller space for a surface S coincides with the mapping class group of S.

Hyperbolic geometry admits generalizations to higher dimensions: the half-plane and disk
models generalize to the half-space and ball models: in Rn, the Poincaré half-space Hn is

Hn = {(x1, . . . , xn) | xn > 0} with the metric ds =
|dx|
xn

,

and the Poincaré ball is

Bn = {(x1, . . . , xn) |
∑
|xn|2 < 1} with the metric ds =

|dx|
1− |x|2

.

Geodesics, as before, are arcs of circles orthogonal to the boundary. Hyperbolic planes (i.e.,
embeddings of H = H2) are sectors of spheres orthogonal to the boundary. Horospheres,
the analogue of horocycles, are spheres tangent to the boundary. The half-space and the
ball, along with their boundaries, are contained in the one-point compactification Sn of Rn,
and as before, there is a Möbius transformation (in the sense of a diffeomorphism sending
spheres to spheres) that converts Hn into Bn.

By a strange coincidence, the isometry group of H2 (as we have seen) is PSL2(R), while
the isometry group of H3 is PSL2(C). This is simply because ∂H2 = S1 ∼= RP1 and ∂H3 =
S2 ∼= CP1, and does not seem to admit any higher generalizations in terms of similar Lie
groups (except, of course, the groups of Möbius transformations).

Another useful model of the hyperbolic plane that immediately generalizes to higher di-
mensions is given by a hyperboloid lying in Minkowski space R2,1—that is, R3 endowed with
the quadratic form Q(x1, x2, x3) = x1

2+x2
2−x3

2. Let H2 be a single sheet of the two-sheeted
hyperboloid Q(x) = −1, i.e.,

H2 = {(x1, x2, x3) ∈ R3 | x1
2 + x2

2 − x3
2 = −1, x3 > 0}.

A quick computation, or a quick sketch, shows that for any tangent vector v ∈ TxH2,
Q(v) > 0, so Q restricts to a Riemannian metric on H2. By construction, the isometries of
H2 are precisely the orientation-preserving Lorentz transformations—i.e., linear maps of R3

that preserve the Minkowski form Q and the sign of x3. Geodesics in this model are simply
the intersections of 2-dimensional planes with H2, i.e., sets of the form

{x ∈ R3 | Q(x) = −1, 〈x,g〉Q = 0} for some g ∈ R3 with Q(g) > 1.

An entire section in [2] addresses “hyperbolic trigonometry” using this model, including the
analogues of the sine law and cosine law from Euclidean geometry.
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The hyperboloid model and the disk model are related by projection: embed D as the unit
disk in the (x1, x2)-plane of R3, and let a = (0, 0,−1). Then, given any point x ∈ H2, the
line from a to x intersects D at exactly one point. This projection is an isometry (see [2]).
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