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NOTATION AND CONVENTIONS

Let V be a finite-dimensional real vector space, and let VT = Hom(V, R) denote the dual
space to V. If W is another real vector space and A € Hom(V, W), then AT : WT — VT is
defined by A" = aA for alla € W'. Any element B € Hom(V, V") induces a bilinear form
(v,w) — (Bw)v. In this case, BT is called the adjoint of B and also maps V to V'': V is
canonically identified with its double dual (V)" via the map v — ev,, where ev, is defined
by ev,a = av, and so (B'w)v = ev,Bv = (Bv)w. B € Hom(V, V") is called symmetric
(or self-adjoint) if BT = B and skew-symmetric if BT = —B. It is called positive definite,
written B > 0, if (Bv)v > 0 for all nonzero v € V. If B > 0, then B is invertible, and B is
also positive definite. If G € Hom(V, V") is symmetric and positive definite, then we call it
a Euclidean structure, and the bilinear form ¢ it induces an inner product.

To illustrate these notations and conventions, which may be unfamiliar, we prove a simple
lemma and state a version of the spectral theorem.

Lemma 0.1. If A, B € Hom(V, V") are both positive definite, then all of the eigenvalues of
A7 B are positive.

Proof. Suppose ) is an eigenvalue of A~'B with corresponding eigenvector v. Note that
v # 0. Then Bv = AAv. Applying this transformation to v, we get (Bv)v = A(Av)v, and
because A > 0 and B > 0, also A > 0. O

Theorem 0.2 (Spectral theorem for symmetric maps). If G € Hom(V, V") is a Euclidean
structure and B € Hom(V, V") is symmetric, then the eigenvalues of G™'B are real and the
eigenvectors of G™1B span V' (that is, G™'B is “diagonalizable”).

Note that, given any Euclidean structure G on V, a map A € Hom(V) is symmetric in
the usual sense if GA is symmetric in our sense. The property of being symmetric depends
on an inner product, although being diagonalizable does not.



I must in these notes admit my indebtedness to the exposition of Pedro J. Freitas’s thesis
(available online), although I have chosen a different overall approach.

1. SYMPLECTIC AND ORTHOGONAL GROUPS

Suppose dimg V' = 2n > 2, and fix a symplectic structure on V| i.e., a skew-symmetric
linear isomorphism ¥ € Hom(V,V"). In other words, the bilinear form ¢ induced by ¥ on
V is alternating and non-degenerate. The symplectic group of (V,X) is

Sp(V) = Spg(V) := {A € Hom(V) | ATY A = ¥}
The following two results are completely standard.
Lemma 1.1. If X is an eigenvalue of A € Sp(V'), then so is 1/\.

Proof. From the equation ATYA = ¥, we get A=! = ¥71ATY. Because AT has the same
eigenvalues on A" as A has on V, A and A~! have the same set of eigenvalues. O

Proposition 1.2. The determinant of any element A € Sp(V') is 1.

Proof. By Lemma 1.1, if —1 is not an eigenvalue, then every eigenvalue A appears simul-
taneously with the eigenvalue 1/\, which means the determinant of A must be 1. The set
of such A is a Zariski open set, thereby dense in Sp(V'), because its complement is the set
defined by the equation det(id + A) = 0. Because the determinant is a continuous function,
it must therefore equal 1 everywhere on Sp(V). OJ

We are interested in studying the interplay between C(V) = {J € Hom(V) | J* = —id}
and Sp(V'), eventually leading to a description of the Siegel half-plane. We begin with an
elementary result that will prove essential to our study.

Lemma 1.3. If J € C(V)NSp(V), then (J)" = XJ.
Proof. By applying the identities J?> = —id and X7 = —3 to the equation J'¥J = %, we
get 2 =—J' =J'8T = ()" O

This lemma implies that, for all J € C(V) N Sp(V), ¥J induces a symmetric, non-
degenerate bilinear form on V. Given any G (not necessarily positive definite) that induces
a symmetric, non-degenerate bilinear form on V', we obtain an orthogonal group:

O¢(V) :={A € Hom(V) | ATGA = G}.

We also define the special orthogonal group SO (V') to be the connected subgroup of Og(V)
containing the identity, which for G > 0 is just the subgroup of orthogonal transformations
with determinant 1. The Lie algebra of this group is the space of A € Hom(V') such that
G A is skew-symmetric:

soq(V) = {A € Hom(V) | (GA)"T = —GA}.

The dimension of the Lie algebra, and hence the dimension of Og(V), is 2n? — n.

Lemma 1.4. If J € C(V) N Sp(V), then the tangent space T;Sp(V') is the space of A €
Hom(V') such that £JA is symmetric. We have the direct sum splitting

HOIIl(V) = TJSP(V) S5) 502](‘/).



Proof. The first assertion follows from differentiating the condition ATYA = ¥ at J and
taking the kernel of the derivative. To prove the second assertion, observe first that if
A € T;Sp(V) Nsoxy(V), then XJA = —XJA, which implies A = 0 since ¥J is invertible.
To show that the sum spans Hom(V), take any A € Hom(V'), and set

1 1
Asm = 3 (A+(ZN)TATST),  Agew = 3 (A—(zJ)7'AT2)).
Then X J Ay, is symmetric, ¥.J A, is skew-symmetric, and A = Agyp, + Agkew- O

Thus we can think of sox; (V') as the normal space to Sp(V') at J.
Corollary 1.5. The dimension of Sp(V') is 2n* + n.

We define the symplectic orthogonal group to be Spy,O;(V) := Sp(V) N Ox, (V). If ¥
and J are understood, we just write SpO(V). If 3J > 0, this definition is equivalent to
SpsO(V) = Sp(V) NSOgx,(V), since any symplectic transformation has determinant 1.

Proposition 1.6. Sp(V') acts on C(V') N Sp(V') by conjugation:
A:J— AJAT for all A € Sp(V), J € C(V)NSp(V).
The stabilizer of J under this action is SpyxO (V).
Proof. The action of Sp(V') on itself by inner automorphisms clearly preserves the condition
J? = —id. If J € C(V)NSp(V), A € Sp(V), and AJA™' = J, then XJ = TA'JA =

ATYJA, and therefore A € SpgO;(V). By the reverse argument, if A € SpxO;(V), then
AJA™L = . O

Lemma 1.7. If J € C(V) N Sp(V), then J € Spy,O;(V) and Jv Ly v for allv e V.

Proof. The first part follows from Proposition 1.6 and the fact that J commutes with itself.
The second part comes from (X.J(Jv))v = —(Xv)v = 0. O

2. THE SIEGEL HALF-PLANE §)

Again fix a symplectic structure ¥ on V', with induced symplectic form o. The Siegel
half-plane determined by X is

H=Hy:={JelC(V)NnSpx(V)|XJ > 0}.

That is, $» comprises those elements J € C(V) N Spy (V) such that ¥.J is a Euclidean

structure on V. We shall show that )y is in fact one connected component of C(V)NSpy,(V).

(The remaining components of C(V)NSpy (V') are likewise classified by the signature of ¥.J.)
Let W C V be any subspace. Given a bilinear form g on V| define

W ={veV|ghv,w)=0Ywe W}

If ¢ is non-degenerate, then dim W + dim W+¢ = dimV = 2n. If g is an inner product,
we call W+s the orthogonal complement of W in V; similarly, we call W< the symplectic
complement of W. A subspace L of V is called Lagrangian if L = L*°, i.e., it has real
dimension n and o(v,w) = 0 for all v,w € L. We denote the set of Lagrangian subspaces of

V by Ag(V).



Proposition 2.1. Let J € Hx, and let g be the associated inner product. Let L C V be any
subspace. Then L C L*< if and only if JL C L*s. In particular, if L € Ax(V), then V splits
into the orthogonal sum L & JL.

Proof. From the definition of g, we get g(v, Jw) = —o(v,w). Hence o(v,w) = 0 for all
v,w € L if and only if g(v,w’) = 0 for all v € L, w’ € JL, which proves the inclusions. A
dimension count now proves the latter statement. [l

In what follows it will be useful to note that, if J; and J, are any complex structures on
V', then the inverse of J;Js is JyJ;.

Lemma 2.2. Let J, and Jy be in . Then all eigenvalues of —JyJ1 are positive, and the
corresponding eigenspaces Ey sum to V. For any eigenvalue \, Ex*c is the sum of all
eigenspaces Ey where A\N' £ 1. If 1 is an eigenvalue, then Fy is invariant under both Jy and
Jo. For any eigenvalue X # 1, Jy and Jo interchange Ey\ and K.

Proof. First observe that —JoJ; = — LY 7'3J; = (XJ3) (X)), and therefore by the spec-
tral theorem and Lemma 0.1 all the eigenvalues of —.J5J; are positive and the eigenvectors
span V. Given v € E\, w € E)/, we have

(Sw)v = AN (EJ1Jow) (J1Jov) = AN (Zw)v

because J; and Jy are symplectic. If AN # 1, this equality implies (Yw)v = 0. Because a
subspace and its symplectic complement sum to V, this shows that E,~” is as claimed.

An eigenspace F) is the kernel of —JyJ; — A -id. This map factors as Jo(AJy — Jp),
and because J, is non-singular, F, is also the kernel of \J; — J;. Suppose v € E). Then
(Jo = AJy)Jiv = —Jo(AJo — Ji)v = 0, and therefore J; maps Ey to Ey/\. Because —J;J;
has the same eigenspaces as —.JyJi, the same argument shows that J, maps E) to E1/y. In
particular, if 1 is an eigenvalue, then F; is invariant under J; and Js. 0

Lemma 2.3. Let J; and Jy be in $. Then (—JoJ1)t is in Sp(V) for all t € R.

Proof. Let & be the set of eigenvalues of —J,J;, and for each A € & let E) denote the
corresponding eigenspace. By Lemma 2.2, every eigenvalue is positive and V' = @, ., E.
Hence (—J5J;)" is defined on each E\ by w — Aw. We need to show that this map is
symplectic. Suppose \, N € &, and v € E\,w € Ey. Then

(S(=Tod)'w) (=T i) v = SN 'w) v = (AN) (Zw)o.

If AN # 1, Lemma 2.2 shows that both sides of this equality are zero. If A\ = 1, then the
equality shows that 3 is preserved on Ey @ Ej/y (or on Ey, if A = X = 1). Because the E\s
sum to V, this shows that (—JyJ7)" is symplectic for all ¢ € R. O

Proposition 2.4. Sp(V) acts transitively on $ by conjugation (as in Proposition 1.6).
Proof. Let J € $ and A € Sp(V'). Then for all v € V
(BA T Av) = (ATSJAv)w = ((£J) Av) Av.

Therefore YA™'JA > 0 because ¥.J > 0 and A is nonsingular. Hence the action of Proposi-
tion 1.6 preserves ).



Given any pair (J;, J;) of points in 9, v/—JoJi = (—=J3J1)"/? is an element of Sp(V) by
Lemma 2.3. We shall show that /—.J5J; sends J; to Js. The inverse of \/—JsJ; is v/—J1 Ja,
because taking inverses of linear transformations commutes with taking square roots (when
both exist). It suffices to show that J, equals /—JoJ1J1v/—J1Jo on E\x@ Ey )y for each A # 1,
since Jo, = J; on Ej if 1 is an eigenvalue.

Recall from the proof of Lemma 2.2 that E) is the kernel of A\J; — J5. Thus J; restricts
on E\® By to My & (1/N)Jy. /=T J restricts on E\ & Ey )y to AY2id @ A~1/%id. Likewise,
V= Ji restricts on Ey @ Ey/y to A™V/%d @ A/%id. J; interchanges E) and Ej ). Therefore
the composition of /—J;Jo, Ji, and /—JyJ; equals Js. O

Geometrically, we see that to move from J; to J, involves, loosely speaking, a choice of a
set of A\; > 1 and some subspaces F; such that E; C E;/to. Then Jy is the composition of J;
with an expansion by \; in E; and a contraction by 1/); in J; E;. This suggests a family of
natural metrics on $: for Ji, Jo € 9, let & be the set of eigenvalues of \/—.J5J;. Then, given
p € [1,00], define the Siegel p-metric d, on $ by

d(J1, o) = (Z llog )\|p> P U <p<oo), (i Js) = max {log A}
AEE

Proposition 2.5. For 1 < p < oo, d, is a Sp(V)-invariant metric on $, and ($,d,) is a
geodesic metric space.

Proof. The symmetry of d,, follows from an application of Lemma 1.1 to the equality —J;J; =
(=J1J2) "t I dy(Jh, Jo) = 0, then —JoJ; = id, i.e., J; = Ja, and so d,, is non-degenerate. For
any three points Jy, Jy, J3 in §, we have —J3J; = ( J3Jo)(—JaJ1). The triangle equality for
d,, follows from this equation and a somewhat lengthy argument which we omit here.

Because Sp(V') acts by conjugation, and eigenvalues are invariant under conjugation, d,, is
Sp(V)-invariant. A path from J; to Jy in 9 is v : t +— (=JoJ1)/2 T (= J1Jy)!? for t € [0, 1].
After checking that

dp(y(tr),y(t2)) = [ty — to] - dy(J1, o) (for 1,5 € [0, 1])

we conclude that the image of v is a geodesic for d, having J; and .J; as endpoints. U

Propositions 1.6 and 2.4 imply further that $ = Sp(V')/Spy,0 (V') for any choice of J € $,
but this description distinguishes the coset Spy,O;(V'), or, what is the same, J, as a base
point. Indeed, d, is the restriction to §) of a metric defined on the entire homogeneous space
GL(V)/Os,(V), but we have chosen to exploit the very geometric description of how points
in $ relate to each other, without reference to a base point.

3. COORDINATES ON $)

3.1. Block decompositions. From the data (3, Lo, Jy), with Ly € Ax(V) and Jy € 9y,
we get a canonical splitting V' = Ly @ JoLo (cf. Proposition 2.1). An R-basis for V is
{e1,...,en, Joe1, ..., Joen}, where {eq, ..., e,} is any basis of Ly; this latter set is therefore a
C-basis of V. This extra structure on V' allows us to define, for example, complex conjugation
on V: given w € V', write w = u + Jyv. We call u the real part and v the imaginary part of
w. The complex conjugate of w is w = u — Jyv.



In this context, any linear transformation A : V' — V can be decomposed as follows:

A A
A pu—
{Am A22:| ’

where AH : L() — Lo, A12 : J()L() - Lo, Agl : LO — J()Lo, and A22 : JoLO — J()Lo.
Jo itself has the form [0 _151} for some invertible map Iy : Ly — JoLg. Indeed, I

Iy 0
preserves YJp-lengths since, by Lemma 1.7, Jy is an orthogonal map. We next deter-
mine the conditions on the A,, for A to be symplectic. ¥ can be written as [_;;T 282},

where 35 € Hom(JyLy, LOT) is an isomorphism, because Ly and JyLy are Lagrangian and
Y =—-XT. AT has the form [fﬁ; ﬁz; ] Thus the condition ATY A = ¥ becomes the three
conditions

A "S124s = (S12da1) Al
(1) Apr ' S12Ag — (212A21)TA12 =Y

Arz ' Ti2Ag = (212A22)TA12

(although there are apparently four conditions, two of them are identical). If we take A = Jy,
the second equation yields (212IO)T = Y191y. This is the restriction of ¥.Jy to Ly.

If J= [i; ﬁz} is a complex structure, then the equation J?> = —id translates to the
conditions

Jin? + Jigdoy = —idp,
Joo® + JorJ12 = —id 1,
Jindig + JiaJar =0
JorJir + Jador =0

(2)

Now we determine the conditions to ensure J € §. By Proposition 2.1, Jy = projy,.,J
must be an isomorphism between Lg and JyLg, hence invertible. In this case, the system of
equations (2) is equivalent to

(3) J12 = —(J112 + idLO)ng_l and JQQ = —J21J11J21_1.
Moreover, by Lemma 1.3 we know that >J must be symmetric, which translates to

(12d21) " = Siadn
(4) Y12 Jig = Ji2 ' T1o
212J22 - _J11T212

Combining the second equation in (3) with the first equation in (4), the final equation in (4)
becomes

(5) (212J21J11)T = Yiada1 1.

Lastly, we need ¥J > 0. Clearly we must have Yi5.J5; > 0, because this is the restriction
of ¥J to Ly. But this condition is also sufficient: if u ® v € Ly ® JyLg, then by setting



u' = Jo1 v, we can reduce the computation of (X.J(u @ v))(u @ v) to a computation in L.
We get
(3o1Joru)u — (X120) J120 + (L12J220)u — (X120) J11u
= (X1 Jo1u)u + (212J21U/)(J112 + idLO)Ul — (212J21J11U/)U — (212J21U,)J11U
= (B Jau)u+ (Eidor Jut) Jiu' + (Sia v )u’ — 2(E10Jor J1iu)u
= (B Jou ) + (X192 (u — Jyu')) (u — Jygu').
Both of these terms are non-negative. If v # 0, then the first term is positive, and if v =0

but u # 0, the second term is positive. Hence we have proved:

Proposition 3.1. If J = H; :gj} is an element of Hom(V'), then necessary and sufficient
conditions for J € ) are Xi9J21 > 0, (212J21)T = YoJo1, and the equations (3) and (5).

3.2. Bounded complex domain. From previous results, we know that C(V') has canonical
charts. At Jy € C(V), the canonical chart is ko : J +— (id + JoJ)(id — JoJ)™!; its natural
domain is all J € C(V') such that 1 is not an eigenvalue of JyJ, and its image is all A in
Homyz(V) = {A € Hom(V) | AJy = —JoA} for which 1 is not an eigenvalue. The inverse
map is ko~ 1 A Jo(id — A)(id + A) 7.

Proposition 3.2. Given any Jy € 9, all of $H lies in the domain of the natural chart ko at
Jo. The image ko($)) is an open bounded domain of the complex subspace

Homy; (V) = {A € Homg; | (ZA)" = ZA}.

Proof. There are several pieces to prove.

First, given any other J € §, all eigenvalues of JyJ are negative by Lemma 2.2, hence in
particular JyJ does not have 1 as an eigenvalue. Therefore all of $ lies in the domain of the
canonical chart at Jj.

Secondly, we show that any symplectic J maps to Homy (V') under kg. That is, we want

to determine the condition on A € Homy(V) such that ko~ '(A) is symplectic. Because
ko *(A) is a complex structure, we have

Jo(id — A)(id + A) ™ = (id — A) " (id + A) Jp.

(Note that power series in A commute.) The requirement (Sko '(A))T = Tko '(A) is
equivalent to each of the following:

(id+AT)"Hid — AT)SJy = B(id — A) 7 (id + A)Jo,
(id — AT)S(id — A) = (id + AT)S(id + A),
—ATY - YA =ATY + XA,
(BA)T = XA,
Thirdly, we show that Homy ,(V) is invariant under Jp, i.e., Homy (V) is a complex
subspace of Homy (V). If A € Homy; (V), then (8J,A)T = ATEJy = —XAJ, = /A

Fourthly, ko($) is open because it is a component of the complement in Homy; (V) of
the zero set of det(id — A).



Finally, we show that kq($)) is bounded. 0 is certainly in the image, and so it suffices to
show that every line through the origin contains at least one point such that det(id — A).
Note that A € Homyp (V) is diagonalizable by the spectral theorem: ¥.J, is a Euclidean
structure, and as we saw before, (XJyA)" = YJyA. In particular, all eigenvalues of A? are
positive or zero. Note also that, because Jy sends ker (id — A) isomorphically to ker (id 4+ A),
the vanishing of det(id — A) is equivalent to the vanishing of det(id + A), hence also of
det(id — A?). These two observations imply that for any non-zero A € Homy; 5,(V), there
exists some ¢t € R such that det(id — tA) = det(id — t*A?) = 0. Because the set of directions
through 0 is compact, there is some uniform bound on all directions. O

A generalization of a previous result is: for any eigenvalue A of A € Homy(V), — A\ is
also an eigenvalue of A, and Jy interchanges the corresponding eigenspaces. This result is
highly reminiscent of Lemmas 1.1 and 2.2, particularly in the case where (XA)" = ¥ A and
thus all the eigenvalues of A are real. If A € ky($), then we know the leading eigenvalue of
A must have absolute value less than 1. In that case, if v is an eigenvector of A = ky(J)
corresponding to the eigenvalue A,

1+
1=
and so (1 4+ A)/(1 — A) is an eigenvalue of —J.Jy. This implies the following:

—JJov = (id — A)'(id+ A)v = (id — A) (1 + A\)v

v,

Proposition 3.3. On ko(9), the distance from 0 in the Siegel p-metric is given by

Ae&t

e 1+ A
d,(0,A) = ( Z logp—)\) (1 <p<o0), doo (0, A) = max {logl_)\}
where &7 is the set of positive eigenvalues of A.

4. BASIC EXAMPLES

Example 4.1. The simplest case is V = R?, o(v,w) = det(v,w), Ly = z-axis, Jo = [{ ']

A symplectic transformation is one which preserves the determinant, hence the symplectic
group is SLy(R). All one-dimensional subspaces are Lagrangian. Any complex structure on

R? has the form J = [b _(“2:;1)/1’], which is already in SLy(R). For J to lie in $, the form

(v,w) — o(v, Jw) must be positive definite, which implies y > 0. Thus the Siegel half-plane
has a natural identification with the upper half-plane, given by J — z = a/b+ i/b. The
Siegel 2-metric on $ coincides with the Poincaré metric on H under this identification.

Example 4.2. Now we generalize the previous example. Identify R?*" = (R")? with C" via
the bijection (¢, p) <> ¢ + ip. The standard symplectic structure ¥ and complex structure .J

are given by
0 I,
X=—t= l—]n 0}
where [,, denotes the n x n identity matrix. Here we have used the standard inner product
to identify R?" with its dual. Observe that ¥.J = I,, induces the standard inner product.
The subspaces {(q,0) | ¢ € R"} and {(0,p) | p € R"} are Lagrangian and interchanged by J.



The symplectic group Sp,,(R) = Sp(R?*") comprises those 2n x 2n matrices [4 8], broken

into n x n blocks such that ATC and BT D are symmetric and A'D — C'B = I,,.

Using Proposition 3.1, we find that there is a one-to-one correspondence between points in
the Siegel half-plane $),, and n x n symmetric (not Hermitian) complex matrices Z = X +iY
with positive definite imaginary part; the maps are

Jii Jio XYyt —(XY_1X+Y)
Jor Jao y-! -Y'X

Under this correspondence, the action of Sp,, (R) on $),, becomes an action by “generalized
fractional linear transformations”, i.e., [A B]: Z — (AZ + B)(CZ + D).

Because any real even-dimensional vector space with a symplectic form can be identified
with (R?",3) by an appropriate choice of basis, this example shows that ) is always simply-
connected and has real dimension n? + n. Moreover, because the stabilizer of J under
conjugation (or i/, under fractional linear transformations, as can be checked directly) is
Sp0,,,(R) = Sp,,,(R) N Oy, (R), we see that dim SpO,,, (R) = (2n? + n) — (n? +n) = n?.

1 — J11J21_1 + iJQl_l and X + 1Y +—



