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Notation and conventions

Let V be a finite-dimensional real vector space, and let V > = Hom(V,R) denote the dual
space to V . If W is another real vector space and A ∈ Hom(V,W ), then A> : W> → V > is
defined by A>α = αA for all α ∈ W>. Any element B ∈ Hom(V, V >) induces a bilinear form
(v, w) 7→ (Bw)v. In this case, B> is called the adjoint of B and also maps V to V >: V is
canonically identified with its double dual (V >)> via the map v 7→ ev v, where ev v is defined
by ev vα = αv, and so (B>w)v = evwBv = (Bv)w. B ∈ Hom(V, V >) is called symmetric
(or self-adjoint) if B> = B and skew-symmetric if B> = −B. It is called positive definite,
written B > 0, if (Bv)v > 0 for all nonzero v ∈ V . If B > 0, then B is invertible, and B> is
also positive definite. If G ∈ Hom(V, V >) is symmetric and positive definite, then we call it
a Euclidean structure, and the bilinear form g it induces an inner product.

To illustrate these notations and conventions, which may be unfamiliar, we prove a simple
lemma and state a version of the spectral theorem.

Lemma 0.1. If A,B ∈ Hom(V, V >) are both positive definite, then all of the eigenvalues of
A−1B are positive.

Proof. Suppose λ is an eigenvalue of A−1B with corresponding eigenvector v. Note that
v 6= 0. Then Bv = λAv. Applying this transformation to v, we get (Bv)v = λ(Av)v, and
because A > 0 and B > 0, also λ > 0. �

Theorem 0.2 (Spectral theorem for symmetric maps). If G ∈ Hom(V, V >) is a Euclidean
structure and B ∈ Hom(V, V >) is symmetric, then the eigenvalues of G−1B are real and the
eigenvectors of G−1B span V (that is, G−1B is “diagonalizable”).

Note that, given any Euclidean structure G on V , a map A ∈ Hom(V ) is symmetric in
the usual sense if GA is symmetric in our sense. The property of being symmetric depends
on an inner product, although being diagonalizable does not.
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I must in these notes admit my indebtedness to the exposition of Pedro J. Freitas’s thesis
(available online), although I have chosen a different overall approach.

1. Symplectic and orthogonal groups

Suppose dimR V = 2n ≥ 2, and fix a symplectic structure on V , i.e., a skew-symmetric
linear isomorphism Σ ∈ Hom(V, V >). In other words, the bilinear form σ induced by Σ on
V is alternating and non-degenerate. The symplectic group of (V,Σ) is

Sp(V ) = SpΣ(V ) := {A ∈ Hom(V ) | A>ΣA = Σ}.
The following two results are completely standard.

Lemma 1.1. If λ is an eigenvalue of A ∈ Sp(V ), then so is 1/λ.

Proof. From the equation A>ΣA = Σ, we get A−1 = Σ−1A>Σ. Because A> has the same
eigenvalues on A> as A has on V , A and A−1 have the same set of eigenvalues. �

Proposition 1.2. The determinant of any element A ∈ Sp(V ) is 1.

Proof. By Lemma 1.1, if −1 is not an eigenvalue, then every eigenvalue λ appears simul-
taneously with the eigenvalue 1/λ, which means the determinant of A must be 1. The set
of such A is a Zariski open set, thereby dense in Sp(V ), because its complement is the set
defined by the equation det(id +A) = 0. Because the determinant is a continuous function,
it must therefore equal 1 everywhere on Sp(V ). �

We are interested in studying the interplay between C(V ) = {J ∈ Hom(V ) | J2 = −id}
and Sp(V ), eventually leading to a description of the Siegel half-plane. We begin with an
elementary result that will prove essential to our study.

Lemma 1.3. If J ∈ C(V ) ∩ Sp(V ), then (ΣJ)> = ΣJ .

Proof. By applying the identities J2 = −id and Σ> = −Σ to the equation J>ΣJ = Σ, we
get ΣJ = −J>Σ = J>Σ> = (ΣJ)>. �

This lemma implies that, for all J ∈ C(V ) ∩ Sp(V ), ΣJ induces a symmetric, non-
degenerate bilinear form on V . Given any G (not necessarily positive definite) that induces
a symmetric, non-degenerate bilinear form on V , we obtain an orthogonal group:

OG(V ) := {A ∈ Hom(V ) | A>GA = G}.
We also define the special orthogonal group SOG(V ) to be the connected subgroup of OG(V )
containing the identity, which for G > 0 is just the subgroup of orthogonal transformations
with determinant 1. The Lie algebra of this group is the space of A ∈ Hom(V ) such that
GA is skew-symmetric:

soG(V ) = {A ∈ Hom(V ) | (GA)> = −GA}.
The dimension of the Lie algebra, and hence the dimension of OG(V ), is 2n2 − n.

Lemma 1.4. If J ∈ C(V ) ∩ Sp(V ), then the tangent space TJSp(V ) is the space of A ∈
Hom(V ) such that ΣJA is symmetric. We have the direct sum splitting

Hom(V ) = TJSp(V )⊕ soΣJ(V ).
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Proof. The first assertion follows from differentiating the condition A>ΣA = Σ at J and
taking the kernel of the derivative. To prove the second assertion, observe first that if
A ∈ TJSp(V ) ∩ soΣJ(V ), then ΣJA = −ΣJA, which implies A = 0 since ΣJ is invertible.
To show that the sum spans Hom(V ), take any A ∈ Hom(V ), and set

Asym =
1

2

(
A+ (ΣJ)−1A>ΣJ

)
, Askew =

1

2

(
A− (ΣJ)−1A>ΣJ

)
.

Then ΣJAsym is symmetric, ΣJAskew is skew-symmetric, and A = Asym + Askew . �

Thus we can think of soΣJ(V ) as the normal space to Sp(V ) at J .

Corollary 1.5. The dimension of Sp(V ) is 2n2 + n.

We define the symplectic orthogonal group to be SpΣOJ(V ) := Sp(V ) ∩ OΣJ(V ). If Σ
and J are understood, we just write SpO(V ). If ΣJ > 0, this definition is equivalent to
SpΣOJ(V ) = Sp(V ) ∩ SOΣJ(V ), since any symplectic transformation has determinant 1.

Proposition 1.6. Sp(V ) acts on C(V ) ∩ Sp(V ) by conjugation:

A : J 7→ AJA−1 for all A ∈ Sp(V ), J ∈ C(V ) ∩ Sp(V ).

The stabilizer of J under this action is SpΣOJ(V ).

Proof. The action of Sp(V ) on itself by inner automorphisms clearly preserves the condition
J2 = −id. If J ∈ C(V ) ∩ Sp(V ), A ∈ Sp(V ), and AJA−1 = J , then ΣJ = ΣA−1JA =
A>ΣJA, and therefore A ∈ SpΣOJ(V ). By the reverse argument, if A ∈ SpΣOJ(V ), then
AJA−1 = J . �

Lemma 1.7. If J ∈ C(V ) ∩ Sp(V ), then J ∈ SpΣOJ(V ) and Jv ⊥ΣJ v for all v ∈ V .

Proof. The first part follows from Proposition 1.6 and the fact that J commutes with itself.
The second part comes from (ΣJ(Jv))v = −(Σv)v = 0. �

2. The Siegel half-plane H

Again fix a symplectic structure Σ on V , with induced symplectic form σ. The Siegel
half-plane determined by Σ is

H = HΣ := {J ∈ C(V ) ∩ SpΣ(V ) | ΣJ > 0}.
That is, HΣ comprises those elements J ∈ C(V ) ∩ SpΣ(V ) such that ΣJ is a Euclidean
structure on V . We shall show that HΣ is in fact one connected component of C(V )∩SpΣ(V ).
(The remaining components of C(V )∩SpΣ(V ) are likewise classified by the signature of ΣJ .)

Let W ⊂ V be any subspace. Given a bilinear form g on V , define

W⊥g := {v ∈ V | g(v, w) = 0 ∀ w ∈ W}.
If g is non-degenerate, then dimW + dimW⊥g = dimV = 2n. If g is an inner product,
we call W⊥g the orthogonal complement of W in V ; similarly, we call W⊥σ the symplectic
complement of W . A subspace L of V is called Lagrangian if L = L⊥σ , i.e., it has real
dimension n and σ(v, w) = 0 for all v, w ∈ L. We denote the set of Lagrangian subspaces of
V by ΛΣ(V ).
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Proposition 2.1. Let J ∈ HΣ, and let g be the associated inner product. Let L ⊂ V be any
subspace. Then L ⊂ L⊥σ if and only if JL ⊂ L⊥g . In particular, if L ∈ ΛΣ(V ), then V splits
into the orthogonal sum L⊕ JL.

Proof. From the definition of g, we get g(v, Jw) = −σ(v, w). Hence σ(v, w) = 0 for all
v, w ∈ L if and only if g(v, w′) = 0 for all v ∈ L, w′ ∈ JL, which proves the inclusions. A
dimension count now proves the latter statement. �

In what follows it will be useful to note that, if J1 and J2 are any complex structures on
V , then the inverse of J1J2 is J2J1.

Lemma 2.2. Let J1 and J2 be in H. Then all eigenvalues of −J2J1 are positive, and the
corresponding eigenspaces Eλ sum to V . For any eigenvalue λ, Eλ

⊥σ is the sum of all
eigenspaces Eλ′ where λλ′ 6= 1. If 1 is an eigenvalue, then E1 is invariant under both J1 and
J2. For any eigenvalue λ 6= 1, J1 and J2 interchange Eλ and E1/λ.

Proof. First observe that −J2J1 = −J2Σ−1ΣJ1 = (ΣJ2)−1(ΣJ1), and therefore by the spec-
tral theorem and Lemma 0.1 all the eigenvalues of −J2J1 are positive and the eigenvectors
span V . Given v ∈ Eλ, w ∈ Eλ′ , we have

(Σw)v = λλ′(ΣJ1J2w)(J1J2v) = λλ′(Σw)v

because J1 and J2 are symplectic. If λλ′ 6= 1, this equality implies (Σw)v = 0. Because a
subspace and its symplectic complement sum to V , this shows that Eλ

⊥σ is as claimed.
An eigenspace Eλ is the kernel of −J2J1 − λ · id. This map factors as J2(λJ2 − J1),

and because J2 is non-singular, Eλ is also the kernel of λJ2 − J1. Suppose v ∈ Eλ. Then
(J2 − λJ1)J1v = −J2(λJ2 − J1)v = 0, and therefore J1 maps Eλ to E1/λ. Because −J1J2

has the same eigenspaces as −J2J1, the same argument shows that J2 maps Eλ to E1/λ. In
particular, if 1 is an eigenvalue, then E1 is invariant under J1 and J2. �

Lemma 2.3. Let J1 and J2 be in H. Then (−J2J1)t is in Sp(V ) for all t ∈ R.

Proof. Let E be the set of eigenvalues of −J2J1, and for each λ ∈ E let Eλ denote the
corresponding eigenspace. By Lemma 2.2, every eigenvalue is positive and V =

⊕
λ∈E Eλ.

Hence (−J2J1)t is defined on each Eλ by w 7→ λtw. We need to show that this map is
symplectic. Suppose λ, λ′ ∈ E , and v ∈ Eλ, w ∈ Eλ′ . Then(

Σ(−J2J1)tw
)
(−J2J1)tv = Σ(λ′

t
w)λv = (λλ′)t(Σw)v.

If λλ′ 6= 1, Lemma 2.2 shows that both sides of this equality are zero. If λλ′ = 1, then the
equality shows that Σ is preserved on Eλ ⊕ E1/λ (or on E1, if λ = λ′ = 1). Because the Eλs
sum to V , this shows that (−J2J1)t is symplectic for all t ∈ R. �

Proposition 2.4. Sp(V ) acts transitively on H by conjugation (as in Proposition 1.6).

Proof. Let J ∈ H and A ∈ Sp(V ). Then for all v ∈ V

(ΣA−1JAv)v = (A>ΣJAv)v = ((ΣJ)Av)Av.

Therefore ΣA−1JA > 0 because ΣJ > 0 and A is nonsingular. Hence the action of Proposi-
tion 1.6 preserves H.
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Given any pair (J1, J2) of points in H,
√
−J2J1 = (−J2J1)1/2 is an element of Sp(V ) by

Lemma 2.3. We shall show that
√
−J2J1 sends J1 to J2. The inverse of

√
−J2J1 is

√
−J1J2,

because taking inverses of linear transformations commutes with taking square roots (when
both exist). It suffices to show that J2 equals

√
−J2J1J1

√
−J1J2 on Eλ⊕E1/λ for each λ 6= 1,

since J2 = J1 on E1 if 1 is an eigenvalue.
Recall from the proof of Lemma 2.2 that Eλ is the kernel of λJ1 − J2. Thus J2 restricts

on Eλ⊕E1/λ to λJ1⊕ (1/λ)J1.
√
−J1J2 restricts on Eλ⊕E1/λ to λ1/2id⊕λ−1/2id. Likewise,√

−J2J1 restricts on Eλ ⊕E1/λ to λ−1/2id⊕ λ1/2id. J1 interchanges Eλ and E1/λ. Therefore

the composition of
√
−J1J2, J1, and

√
−J2J1 equals J2. �

Geometrically, we see that to move from J1 to J2 involves, loosely speaking, a choice of a
set of λi > 1 and some subspaces Ei such that Ei ⊂ Ei

⊥σ . Then J2 is the composition of J1

with an expansion by λi in Ei and a contraction by 1/λi in J1Ei. This suggests a family of
natural metrics on H: for J1, J2 ∈ H, let E be the set of eigenvalues of

√
−J2J1. Then, given

p ∈ [1,∞], define the Siegel p-metric dp on H by

dp(J1, J2) =
(∑
λ∈E

|log λ|p
)1/p

(1 ≤ p <∞), d∞(J1, J2) = max {log λi}.

Proposition 2.5. For 1 ≤ p ≤ ∞, dp is a Sp(V )-invariant metric on H, and (H, dp) is a
geodesic metric space.

Proof. The symmetry of dp follows from an application of Lemma 1.1 to the equality −J2J1 =
(−J1J2)−1. If dp(J1, J2) = 0, then −J2J1 = id, i.e., J1 = J2, and so dp is non-degenerate. For
any three points J1, J2, J3 in H, we have −J3J1 = (−J3J2)(−J2J1). The triangle equality for
dp follows from this equation and a somewhat lengthy argument which we omit here.

Because Sp(V ) acts by conjugation, and eigenvalues are invariant under conjugation, dp is
Sp(V )-invariant. A path from J1 to J2 in H is γ : t 7→ (−J2J1)t/2J1(−J1J2)t/2 for t ∈ [0, 1].
After checking that

dp(γ(t1), γ(t2)) = |t1 − t2| · dp(J1, J2) (for t1, t2 ∈ [0, 1])

we conclude that the image of γ is a geodesic for dp having J1 and J2 as endpoints. �

Propositions 1.6 and 2.4 imply further that H ∼= Sp(V )/SpΣOJ(V ) for any choice of J ∈ H,
but this description distinguishes the coset SpΣOJ(V ), or, what is the same, J , as a base
point. Indeed, dp is the restriction to H of a metric defined on the entire homogeneous space
GL(V )/OΣJ(V ), but we have chosen to exploit the very geometric description of how points
in H relate to each other, without reference to a base point.

3. Coordinates on H

3.1. Block decompositions. From the data (Σ, L0, J0), with L0 ∈ ΛΣ(V ) and J0 ∈ HΣ,
we get a canonical splitting V = L0 ⊕ J0L0 (cf. Proposition 2.1). An R-basis for V is
{e1, . . . , en, J0e1, . . . , J0en}, where {e1, . . . , en} is any basis of L0; this latter set is therefore a
C-basis of V . This extra structure on V allows us to define, for example, complex conjugation
on V : given w ∈ V , write w = u+ J0v. We call u the real part and v the imaginary part of
w. The complex conjugate of w is w = u− J0v.
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In this context, any linear transformation A : V → V can be decomposed as follows:

A =

[
A11 A12

A21 A22

]
,

where A11 : L0 → L0, A12 : J0L0 → L0, A21 : L0 → J0L0, and A22 : J0L0 → J0L0.

J0 itself has the form
[

0 −I−1
0

I0 0

]
for some invertible map I0 : L0 → J0L0. Indeed, I0

preserves ΣJ0-lengths since, by Lemma 1.7, J0 is an orthogonal map. We next deter-

mine the conditions on the Aµν for A to be symplectic. Σ can be written as
[

0 Σ12

−Σ12
> 0

]
,

where Σ12 ∈ Hom(J0L0, L0
>) is an isomorphism, because L0 and J0L0 are Lagrangian and

Σ = −Σ>. A> has the form
[
A11
> A21

>

A12
> A22

>

]
. Thus the condition A>ΣA = Σ becomes the three

conditions

(1)


A11

>Σ12A21 = (Σ12A21)>A11

A11
>Σ12A22 − (Σ12A21)>A12 = Σ12

A12
>Σ12A22 = (Σ12A22)>A12

(although there are apparently four conditions, two of them are identical). If we take A = J0,

the second equation yields (Σ12I0)> = Σ12I0. This is the restriction of ΣJ0 to L0.
If J =

[
J11 J12
J21 J22

]
is a complex structure, then the equation J2 = −id translates to the

conditions

(2)


J11

2 + J12J21 = −idL0

J22
2 + J21J12 = −idJ0L0

J11J12 + J12J22 = 0

J21J11 + J22J21 = 0

.

Now we determine the conditions to ensure J ∈ H. By Proposition 2.1, J21 = projJ0L0
J

must be an isomorphism between L0 and J0L0, hence invertible. In this case, the system of
equations (2) is equivalent to

(3) J12 = −(J11
2 + idL0)J21

−1 and J22 = −J21J11J21
−1.

Moreover, by Lemma 1.3 we know that ΣJ must be symmetric, which translates to

(4)


(Σ12J21)> = Σ12J21

Σ12
>J12 = J12

>Σ12

Σ12J22 = −J11
>Σ12

.

Combining the second equation in (3) with the first equation in (4), the final equation in (4)
becomes

(5) (Σ12J21J11)> = Σ12J21J11.

Lastly, we need ΣJ > 0. Clearly we must have Σ12J21 > 0, because this is the restriction
of ΣJ to L0. But this condition is also sufficient: if u ⊕ v ∈ L0 ⊕ J0L0, then by setting
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u′ = J21
−1v, we can reduce the computation of (ΣJ(u⊕ v))(u⊕ v) to a computation in L0.

We get

(Σ21J21u)u− (Σ12v)J12v + (Σ12J22v)u− (Σ12v)J11u

= (Σ12J21u)u+ (Σ12J21u
′)(J11

2 + idL0)u
′ − (Σ12J21J11u

′)u− (Σ12J21u
′)J11u

= (Σ12J21u)u+ (Σ12J21J11u
′)J11u

′ + (Σ12J21u
′)u′ − 2(Σ12J21J11u

′)u

= (Σ12J21u
′)u′ + (Σ12J21(u− J11u

′))(u− J11u
′).

Both of these terms are non-negative. If v 6= 0, then the first term is positive, and if v = 0
but u 6= 0, the second term is positive. Hence we have proved:

Proposition 3.1. If J =
[
J11 J12
J21 J22

]
is an element of Hom(V ), then necessary and sufficient

conditions for J ∈ H are Σ12J21 > 0, (Σ12J21)> = Σ12J21, and the equations (3) and (5).

3.2. Bounded complex domain. From previous results, we know that C(V ) has canonical
charts. At J0 ∈ C(V ), the canonical chart is k0 : J 7→ (id + J0J)(id − J0J)−1; its natural
domain is all J ∈ C(V ) such that 1 is not an eigenvalue of J0J , and its image is all A in
HomJ0

(V ) = {A ∈ Hom(V ) | AJ0 = −J0A} for which 1 is not an eigenvalue. The inverse

map is k0
−1 : A 7→ J0(id− A)(id + A)−1.

Proposition 3.2. Given any J0 ∈ H, all of H lies in the domain of the natural chart k0 at
J0. The image k0(H) is an open bounded domain of the complex subspace

HomJ0,Σ
(V ) = {A ∈ HomJ0

| (ΣA)> = ΣA}.

Proof. There are several pieces to prove.
First, given any other J ∈ H, all eigenvalues of J0J are negative by Lemma 2.2, hence in

particular J0J does not have 1 as an eigenvalue. Therefore all of H lies in the domain of the
canonical chart at J0.

Secondly, we show that any symplectic J maps to HomJ0,Σ
(V ) under k0. That is, we want

to determine the condition on A ∈ HomJ0
(V ) such that k0

−1(A) is symplectic. Because

k0
−1(A) is a complex structure, we have

J0(id− A)(id + A)−1 = (id− A)−1(id + A)J0.

(Note that power series in A commute.) The requirement (Σk0
−1(A))> = Σk0

−1(A) is
equivalent to each of the following:

(id + A>)−1(id− A>)ΣJ0 = Σ(id− A)−1(id + A)J0,

(id− A>)Σ(id− A) = (id + A>)Σ(id + A),

−A>Σ− ΣA = A>Σ + ΣA,

(ΣA)> = ΣA.

Thirdly, we show that HomJ0,Σ
(V ) is invariant under J0, i.e., HomJ0,Σ

(V ) is a complex

subspace of HomJ0
(V ). If A ∈ HomJ0,Σ

(V ), then (ΣJ0A)> = A>ΣJ0 = −ΣAJ0 = ΣJ0A.
Fourthly, k0(H) is open because it is a component of the complement in HomJ0,Σ

(V ) of
the zero set of det(id− A).
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Finally, we show that k0(H) is bounded. 0 is certainly in the image, and so it suffices to
show that every line through the origin contains at least one point such that det(id − A).
Note that A ∈ HomJ0,Σ

(V ) is diagonalizable by the spectral theorem: ΣJ0 is a Euclidean

structure, and as we saw before, (ΣJ0A)> = ΣJ0A. In particular, all eigenvalues of A2 are
positive or zero. Note also that, because J0 sends ker (id−A) isomorphically to ker (id +A),
the vanishing of det(id − A) is equivalent to the vanishing of det(id + A), hence also of
det(id − A2). These two observations imply that for any non-zero A ∈ HomJ0,Σ

(V ), there

exists some t ∈ R such that det(id− tA) = det(id− t2A2) = 0. Because the set of directions
through 0 is compact, there is some uniform bound on all directions. �

A generalization of a previous result is: for any eigenvalue λ of A ∈ HomJ0
(V ), −λ is

also an eigenvalue of A, and J0 interchanges the corresponding eigenspaces. This result is
highly reminiscent of Lemmas 1.1 and 2.2, particularly in the case where (ΣA)> = ΣA and
thus all the eigenvalues of A are real. If A ∈ k0(H), then we know the leading eigenvalue of
A must have absolute value less than 1. In that case, if v is an eigenvector of A = k0(J)
corresponding to the eigenvalue λ,

−JJ0v = (id− A)−1(id + A)v = (id− A)−1(1 + λ)v =
1 + λ

1− λ
v,

and so (1 + λ)/(1− λ) is an eigenvalue of −JJ0. This implies the following:

Proposition 3.3. On k0(H), the distance from 0 in the Siegel p-metric is given by

dp(0, A) =

( ∑
λ∈E +

logp
1 + λ

1− λ

)1/p

(1 ≤ p <∞), d∞(0, A) = max
λ∈E +

{
log

1 + λ

1− λ

}
where E + is the set of positive eigenvalues of A.

4. Basic examples

Example 4.1. The simplest case is V = R2, σ(v, w) = det(v, w), L0 = x-axis, J0 = [ 0 −1
1 0 ].

A symplectic transformation is one which preserves the determinant, hence the symplectic
group is SL2(R). All one-dimensional subspaces are Lagrangian. Any complex structure on

R2 has the form J =
[
a −(a2+1)/b
b −a

]
, which is already in SL2(R). For J to lie in H, the form

(v, w) 7→ σ(v, Jw) must be positive definite, which implies y > 0. Thus the Siegel half-plane
has a natural identification with the upper half-plane, given by J 7→ z = a/b + i/b. The
Siegel 2-metric on H coincides with the Poincaré metric on H under this identification.

Example 4.2. Now we generalize the previous example. Identify R2n = (Rn)2 with Cn via
the bijection (q, p)↔ q + ip. The standard symplectic structure Σ and complex structure J
are given by

Σ = −J =

[
0 In
−In 0

]
where In denotes the n× n identity matrix. Here we have used the standard inner product
to identify R2n with its dual. Observe that ΣJ = I2n induces the standard inner product.
The subspaces {(q, 0) | q ∈ Rn} and {(0, p) | p ∈ Rn} are Lagrangian and interchanged by J .
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The symplectic group Sp2n(R) = Sp(R2n) comprises those 2n × 2n matrices [ A B
C D ], broken

into n× n blocks such that A>C and B>D are symmetric and A>D − C>B = In.
Using Proposition 3.1, we find that there is a one-to-one correspondence between points in

the Siegel half-plane Hn and n×n symmetric (not Hermitian) complex matrices Z = X+ iY
with positive definite imaginary part; the maps are[

J11 J12

J21 J22

]
7→ J11J21

−1 + iJ21
−1 and X + iY 7→

[
XY −1 −(XY −1X + Y )
Y −1 −Y −1X

]
.

Under this correspondence, the action of Sp2n(R) on Hn becomes an action by “generalized
fractional linear transformations”, i.e., [ A B

C D ] : Z 7→ (AZ +B)(CZ +D)−1.
Because any real even-dimensional vector space with a symplectic form can be identified

with (R2n,Σ) by an appropriate choice of basis, this example shows that H is always simply-
connected and has real dimension n2 + n. Moreover, because the stabilizer of J under
conjugation (or iIn under fractional linear transformations, as can be checked directly) is
SpO2n(R) = Sp2n(R) ∩O2n(R), we see that dim SpO2n(R) = (2n2 + n)− (n2 + n) = n2.
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