SOME ELEMENTARY RESULTS ON THE SIEGEL HALF-PLANE

JOSHUA P. BOWMAN

Contents

Notation and conventions		1
1.	Symplectic and orthogonal groups	2
2.	The Siegel half-plane $\mathfrak H$	3
3.	Coordinates on \mathfrak{H}	5
3.1	1. Block decompositions	5
3.2	2. Bounded complex domain	7
4.	Basic examples	8

NOTATION AND CONVENTIONS

Let V be a finite-dimensional real vector space, and let $V^{\top} = \operatorname{Hom}(V, \mathbb{R})$ denote the dual space to V. If W is another real vector space and $A \in \operatorname{Hom}(V, W)$, then $A^{\top} : W^{\top} \to V^{\top}$ is defined by $A^{\top}\alpha = \alpha A$ for all $\alpha \in W^{\top}$. Any element $B \in \operatorname{Hom}(V, V^{\top})$ induces a bilinear form $(v, w) \mapsto (Bw)v$. In this case, B^{\top} is called the adjoint of B and also maps V to V^{\top} : V is canonically identified with its double dual $(V^{\top})^{\top}$ via the map $v \mapsto ev_v$, where ev_v is defined by $ev_v\alpha = \alpha v$, and so $(B^{\top}w)v = ev_wBv = (Bv)w$. $B \in \operatorname{Hom}(V, V^{\top})$ is called symmetric (or self-adjoint) if $B^{\top} = B$ and skew-symmetric if $B^{\top} = -B$. It is called positive definite, written B > 0, if (Bv)v > 0 for all nonzero $v \in V$. If B > 0, then B is invertible, and B^{\top} is also positive definite. If $G \in \operatorname{Hom}(V, V^{\top})$ is symmetric and positive definite, then we call it a Euclidean structure, and the bilinear form g it induces an inner product.

To illustrate these notations and conventions, which may be unfamiliar, we prove a simple lemma and state a version of the spectral theorem.

Lemma 0.1. If $A, B \in \text{Hom}(V, V^{\top})$ are both positive definite, then all of the eigenvalues of $A^{-1}B$ are positive.

Proof. Suppose λ is an eigenvalue of $A^{-1}B$ with corresponding eigenvector v. Note that $v \neq 0$. Then $Bv = \lambda Av$. Applying this transformation to v, we get $(Bv)v = \lambda(Av)v$, and because A > 0 and B > 0, also $\lambda > 0$.

Theorem 0.2 (Spectral theorem for symmetric maps). If $G \in \text{Hom}(V, V^{\top})$ is a Euclidean structure and $B \in \text{Hom}(V, V^{\top})$ is symmetric, then the eigenvalues of $G^{-1}B$ are real and the eigenvectors of $G^{-1}B$ span V (that is, $G^{-1}B$ is "diagonalizable").

Note that, given any Euclidean structure G on V, a map $A \in \text{Hom}(V)$ is symmetric in the usual sense if GA is symmetric in our sense. The property of being symmetric depends on an inner product, although being diagonalizable does not.

I must in these notes admit my indebtedness to the exposition of Pedro J. Freitas's thesis (available online), although I have chosen a different overall approach.

1. Symplectic and orthogonal groups

Suppose $\dim_{\mathbb{R}} V = 2n \geq 2$, and fix a symplectic structure on V, i.e., a skew-symmetric linear isomorphism $\Sigma \in \operatorname{Hom}(V, V^{\top})$. In other words, the bilinear form σ induced by Σ on V is alternating and non-degenerate. The symplectic group of (V, Σ) is

$$\operatorname{Sp}(V) = \operatorname{Sp}_{\Sigma}(V) := \{ A \in \operatorname{Hom}(V) \mid A^{\top} \Sigma A = \Sigma \}.$$

The following two results are completely standard.

Lemma 1.1. If λ is an eigenvalue of $A \in \operatorname{Sp}(V)$, then so is $1/\lambda$.

Proof. From the equation $A^{\top}\Sigma A = \Sigma$, we get $A^{-1} = \Sigma^{-1}A^{\top}\Sigma$. Because A^{\top} has the same eigenvalues on A^{\top} as A has on V, A and A^{-1} have the same set of eigenvalues.

Proposition 1.2. The determinant of any element $A \in Sp(V)$ is 1.

Proof. By Lemma 1.1, if -1 is not an eigenvalue, then every eigenvalue λ appears simultaneously with the eigenvalue $1/\lambda$, which means the determinant of A must be 1. The set of such A is a Zariski open set, thereby dense in Sp(V), because its complement is the set defined by the equation $\det(\mathrm{id} + A) = 0$. Because the determinant is a continuous function, it must therefore equal 1 everywhere on Sp(V).

We are interested in studying the interplay between $C(V) = \{J \in \text{Hom}(V) \mid J^2 = -\text{id}\}$ and Sp(V), eventually leading to a description of the Siegel half-plane. We begin with an elementary result that will prove essential to our study.

Lemma 1.3. If $J \in \mathcal{C}(V) \cap \operatorname{Sp}(V)$, then $(\Sigma J)^{\top} = \Sigma J$.

Proof. By applying the identities $J^2 = -\mathrm{id}$ and $\Sigma^\top = -\Sigma$ to the equation $J^\top \Sigma J = \Sigma$, we get $\Sigma J = -J^\top \Sigma = J^\top \Sigma^\top = (\Sigma J)^\top$.

This lemma implies that, for all $J \in \mathcal{C}(V) \cap \operatorname{Sp}(V)$, ΣJ induces a symmetric, non-degenerate bilinear form on V. Given any G (not necessarily positive definite) that induces a symmetric, non-degenerate bilinear form on V, we obtain an orthogonal group:

$$\mathcal{O}_G(V) := \{ A \in \mathcal{H}(V) \mid A^\top G A = G \}.$$

We also define the special orthogonal group $SO_G(V)$ to be the connected subgroup of $O_G(V)$ containing the identity, which for G > 0 is just the subgroup of orthogonal transformations with determinant 1. The Lie algebra of this group is the space of $A \in Hom(V)$ such that GA is skew-symmetric:

$$\mathfrak{so}_G(V) = \{ A \in \operatorname{Hom}(V) \mid (GA)^\top = -GA \}.$$

The dimension of the Lie algebra, and hence the dimension of $O_G(V)$, is $2n^2 - n$.

Lemma 1.4. If $J \in \mathcal{C}(V) \cap \operatorname{Sp}(V)$, then the tangent space $T_J\operatorname{Sp}(V)$ is the space of $A \in \operatorname{Hom}(V)$ such that ΣJA is symmetric. We have the direct sum splitting

$$\operatorname{Hom}(V) = T_J \operatorname{Sp}(V) \oplus \mathfrak{so}_{\Sigma J}(V).$$

Proof. The first assertion follows from differentiating the condition $A^{\top}\Sigma A = \Sigma$ at J and taking the kernel of the derivative. To prove the second assertion, observe first that if $A \in T_J \operatorname{Sp}(V) \cap \mathfrak{so}_{\Sigma J}(V)$, then $\Sigma J A = -\Sigma J A$, which implies A = 0 since ΣJ is invertible. To show that the sum spans $\operatorname{Hom}(V)$, take any $A \in \operatorname{Hom}(V)$, and set

$$A_{sym} = \frac{1}{2} \left(A + (\Sigma J)^{-1} A^{\top} \Sigma J \right), \quad A_{skew} = \frac{1}{2} \left(A - (\Sigma J)^{-1} A^{\top} \Sigma J \right).$$

Then ΣJA_{sym} is symmetric, ΣJA_{skew} is skew-symmetric, and $A = A_{sym} + A_{skew}$.

Thus we can think of $\mathfrak{so}_{\Sigma J}(V)$ as the normal space to $\mathrm{Sp}(V)$ at J.

Corollary 1.5. The dimension of Sp(V) is $2n^2 + n$.

We define the symplectic orthogonal group to be $\operatorname{Sp}_{\Sigma} \operatorname{O}_{J}(V) := \operatorname{Sp}(V) \cap \operatorname{O}_{\Sigma J}(V)$. If Σ and J are understood, we just write $\operatorname{SpO}(V)$. If $\Sigma J > 0$, this definition is equivalent to $\operatorname{Sp}_{\Sigma} \operatorname{O}_{J}(V) = \operatorname{Sp}(V) \cap \operatorname{SO}_{\Sigma J}(V)$, since any symplectic transformation has determinant 1.

Proposition 1.6. $\operatorname{Sp}(V)$ acts on $\mathcal{C}(V) \cap \operatorname{Sp}(V)$ by conjugation:

$$A: J \mapsto AJA^{-1}$$
 for all $A \in \operatorname{Sp}(V), J \in \mathcal{C}(V) \cap \operatorname{Sp}(V)$.

The stabilizer of J under this action is $\operatorname{Sp}_{\Sigma} O_J(V)$.

Proof. The action of $\operatorname{Sp}(V)$ on itself by inner automorphisms clearly preserves the condition $J^2 = -\operatorname{id}$. If $J \in \mathcal{C}(V) \cap \operatorname{Sp}(V)$, $A \in \operatorname{Sp}(V)$, and $AJA^{-1} = J$, then $\Sigma J = \Sigma A^{-1}JA = A^{\top}\Sigma JA$, and therefore $A \in \operatorname{Sp}_{\Sigma}\operatorname{O}_{J}(V)$. By the reverse argument, if $A \in \operatorname{Sp}_{\Sigma}\operatorname{O}_{J}(V)$, then $AJA^{-1} = J$.

Lemma 1.7. If $J \in \mathcal{C}(V) \cap \operatorname{Sp}(V)$, then $J \in \operatorname{Sp}_{\Sigma} O_J(V)$ and $Jv \perp_{\Sigma J} v$ for all $v \in V$.

Proof. The first part follows from Proposition 1.6 and the fact that J commutes with itself. The second part comes from $(\Sigma J(Jv))v = -(\Sigma v)v = 0$.

2. The Siegel half-plane \mathfrak{H}

Again fix a symplectic structure Σ on V, with induced symplectic form σ . The Siegel half-plane determined by Σ is

$$\mathfrak{H} = \mathfrak{H}_{\Sigma} := \{ J \in \mathcal{C}(V) \cap \operatorname{Sp}_{\Sigma}(V) \mid \Sigma J > 0 \}.$$

That is, \mathfrak{H}_{Σ} comprises those elements $J \in \mathcal{C}(V) \cap \operatorname{Sp}_{\Sigma}(V)$ such that ΣJ is a Euclidean structure on V. We shall show that \mathfrak{H}_{Σ} is in fact one connected component of $\mathcal{C}(V) \cap \operatorname{Sp}_{\Sigma}(V)$. (The remaining components of $\mathcal{C}(V) \cap \operatorname{Sp}_{\Sigma}(V)$ are likewise classified by the signature of ΣJ .) Let $W \subset V$ be any subspace. Given a bilinear form g on V, define

$$W^{\perp_g} := \{ v \in V \mid g(v, w) = 0 \ \forall \ w \in W \}.$$

If g is non-degenerate, then $\dim W + \dim W^{\perp_g} = \dim V = 2n$. If g is an inner product, we call W^{\perp_g} the orthogonal complement of W in V; similarly, we call W^{\perp_σ} the symplectic complement of W. A subspace L of V is called Lagrangian if $L = L^{\perp_\sigma}$, i.e., it has real dimension n and $\sigma(v, w) = 0$ for all $v, w \in L$. We denote the set of Lagrangian subspaces of V by $\Lambda_{\Sigma}(V)$.

Proposition 2.1. Let $J \in \mathfrak{H}_{\Sigma}$, and let g be the associated inner product. Let $L \subset V$ be any subspace. Then $L \subset L^{\perp_{\sigma}}$ if and only if $JL \subset L^{\perp_{g}}$. In particular, if $L \in \Lambda_{\Sigma}(V)$, then V splits into the orthogonal sum $L \oplus JL$.

Proof. From the definition of g, we get $g(v, Jw) = -\sigma(v, w)$. Hence $\sigma(v, w) = 0$ for all $v, w \in L$ if and only if g(v, w') = 0 for all $v \in L$, $w' \in JL$, which proves the inclusions. A dimension count now proves the latter statement.

In what follows it will be useful to note that, if J_1 and J_2 are any complex structures on V, then the inverse of J_1J_2 is J_2J_1 .

Lemma 2.2. Let J_1 and J_2 be in \mathfrak{H} . Then all eigenvalues of $-J_2J_1$ are positive, and the corresponding eigenspaces E_{λ} sum to V. For any eigenvalue λ , $E_{\lambda}^{\perp_{\sigma}}$ is the sum of all eigenspaces $E_{\lambda'}$ where $\lambda\lambda' \neq 1$. If 1 is an eigenvalue, then E_1 is invariant under both J_1 and J_2 . For any eigenvalue $\lambda \neq 1$, J_1 and J_2 interchange E_{λ} and $E_{1/\lambda}$.

Proof. First observe that $-J_2J_1 = -J_2\Sigma^{-1}\Sigma J_1 = (\Sigma J_2)^{-1}(\Sigma J_1)$, and therefore by the spectral theorem and Lemma 0.1 all the eigenvalues of $-J_2J_1$ are positive and the eigenvectors span V. Given $v \in E_{\lambda}$, $w \in E_{\lambda'}$, we have

$$(\Sigma w)v = \lambda \lambda'(\Sigma J_1 J_2 w)(J_1 J_2 v) = \lambda \lambda'(\Sigma w)v$$

because J_1 and J_2 are symplectic. If $\lambda \lambda' \neq 1$, this equality implies $(\Sigma w)v = 0$. Because a subspace and its symplectic complement sum to V, this shows that $E_{\lambda}^{\perp_{\sigma}}$ is as claimed.

An eigenspace E_{λ} is the kernel of $-J_2J_1 - \lambda \cdot \text{id}$. This map factors as $J_2(\lambda J_2 - J_1)$, and because J_2 is non-singular, E_{λ} is also the kernel of $\lambda J_2 - J_1$. Suppose $v \in E_{\lambda}$. Then $(J_2 - \lambda J_1)J_1v = -J_2(\lambda J_2 - J_1)v = 0$, and therefore J_1 maps E_{λ} to $E_{1/\lambda}$. Because $-J_1J_2$ has the same eigenspaces as $-J_2J_1$, the same argument shows that J_2 maps E_{λ} to $E_{1/\lambda}$. In particular, if 1 is an eigenvalue, then E_1 is invariant under J_1 and J_2 .

Lemma 2.3. Let J_1 and J_2 be in \mathfrak{H} . Then $(-J_2J_1)^t$ is in $\mathrm{Sp}(V)$ for all $t \in \mathbb{R}$.

Proof. Let \mathscr{E} be the set of eigenvalues of $-J_2J_1$, and for each $\lambda \in \mathscr{E}$ let E_{λ} denote the corresponding eigenspace. By Lemma 2.2, every eigenvalue is positive and $V = \bigoplus_{\lambda \in \mathscr{E}} E_{\lambda}$. Hence $(-J_2J_1)^t$ is defined on each E_{λ} by $w \mapsto \lambda^t w$. We need to show that this map is symplectic. Suppose $\lambda, \lambda' \in \mathscr{E}$, and $v \in E_{\lambda}, w \in E_{\lambda'}$. Then

$$(\Sigma(-J_2J_1)^t w)(-J_2J_1)^t v = \Sigma(\lambda'^t w)\lambda v = (\lambda\lambda')^t (\Sigma w)v.$$

If $\lambda \lambda' \neq 1$, Lemma 2.2 shows that both sides of this equality are zero. If $\lambda \lambda' = 1$, then the equality shows that Σ is preserved on $E_{\lambda} \oplus E_{1/\lambda}$ (or on E_1 , if $\lambda = \lambda' = 1$). Because the E_{λ} s sum to V, this shows that $(-J_2J_1)^t$ is symplectic for all $t \in \mathbb{R}$.

Proposition 2.4. Sp(V) acts transitively on \mathfrak{H} by conjugation (as in Proposition 1.6).

Proof. Let $J \in \mathfrak{H}$ and $A \in \operatorname{Sp}(V)$. Then for all $v \in V$

$$(\Sigma A^{-1}JAv)v = (A^{\top}\Sigma JAv)v = ((\Sigma J)Av)Av.$$

Therefore $\Sigma A^{-1}JA > 0$ because $\Sigma J > 0$ and A is nonsingular. Hence the action of Proposition 1.6 preserves \mathfrak{H} .

Given any pair (J_1, J_2) of points in \mathfrak{H} , $\sqrt{-J_2J_1} = (-J_2J_1)^{1/2}$ is an element of $\operatorname{Sp}(V)$ by Lemma 2.3. We shall show that $\sqrt{-J_2J_1}$ sends J_1 to J_2 . The inverse of $\sqrt{-J_2J_1}$ is $\sqrt{-J_1J_2}$, because taking inverses of linear transformations commutes with taking square roots (when both exist). It suffices to show that J_2 equals $\sqrt{-J_2J_1}J_1\sqrt{-J_1J_2}$ on $E_\lambda \oplus E_{1/\lambda}$ for each $\lambda \neq 1$, since $J_2 = J_1$ on E_1 if 1 is an eigenvalue.

Recall from the proof of Lemma 2.2 that E_{λ} is the kernel of $\lambda J_1 - J_2$. Thus J_2 restricts on $E_{\lambda} \oplus E_{1/\lambda}$ to $\lambda J_1 \oplus (1/\lambda) J_1$. $\sqrt{-J_1 J_2}$ restricts on $E_{\lambda} \oplus E_{1/\lambda}$ to $\lambda^{1/2} \mathrm{id} \oplus \lambda^{-1/2} \mathrm{id}$. Likewise, $\sqrt{-J_2 J_1}$ restricts on $E_{\lambda} \oplus E_{1/\lambda}$ to $\lambda^{-1/2} \mathrm{id} \oplus \lambda^{1/2} \mathrm{id}$. J_1 interchanges E_{λ} and $E_{1/\lambda}$. Therefore the composition of $\sqrt{-J_1 J_2}$, J_1 , and $\sqrt{-J_2 J_1}$ equals J_2 .

Geometrically, we see that to move from J_1 to J_2 involves, loosely speaking, a choice of a set of $\lambda_i > 1$ and some subspaces E_i such that $E_i \subset E_i^{\perp_{\sigma}}$. Then J_2 is the composition of J_1 with an expansion by λ_i in E_i and a contraction by $1/\lambda_i$ in J_1E_i . This suggests a family of natural metrics on \mathfrak{H} : for $J_1, J_2 \in \mathfrak{H}$, let \mathscr{E} be the set of eigenvalues of $\sqrt{-J_2J_1}$. Then, given $p \in [1, \infty]$, define the Siegel p-metric d_p on \mathfrak{H} by

$$d_p(J_1, J_2) = \left(\sum_{\lambda \in \mathscr{E}} |\log \lambda|^p\right)^{1/p} \quad (1 \le p < \infty), \qquad d_\infty(J_1, J_2) = \max\{\log \lambda_i\}.$$

Proposition 2.5. For $1 \le p \le \infty$, d_p is a $\operatorname{Sp}(V)$ -invariant metric on \mathfrak{H} , and (\mathfrak{H}, d_p) is a geodesic metric space.

Proof. The symmetry of d_p follows from an application of Lemma 1.1 to the equality $-J_2J_1 = (-J_1J_2)^{-1}$. If $d_p(J_1, J_2) = 0$, then $-J_2J_1 = \mathrm{id}$, i.e., $J_1 = J_2$, and so d_p is non-degenerate. For any three points J_1, J_2, J_3 in \mathfrak{H} , we have $-J_3J_1 = (-J_3J_2)(-J_2J_1)$. The triangle equality for d_p follows from this equation and a somewhat lengthy argument which we omit here.

Because $\operatorname{Sp}(V)$ acts by conjugation, and eigenvalues are invariant under conjugation, d_p is $\operatorname{Sp}(V)$ -invariant. A path from J_1 to J_2 in $\mathfrak H$ is $\gamma: t \mapsto (-J_2J_1)^{t/2}J_1(-J_1J_2)^{t/2}$ for $t \in [0,1]$. After checking that

$$d_p(\gamma(t_1), \gamma(t_2)) = |t_1 - t_2| \cdot d_p(J_1, J_2)$$
 (for $t_1, t_2 \in [0, 1]$)

we conclude that the image of γ is a geodesic for d_p having J_1 and J_2 as endpoints.

Propositions 1.6 and 2.4 imply further that $\mathfrak{H} \cong \operatorname{Sp}(V)/\operatorname{Sp}_{\Sigma} \operatorname{O}_{J}(V)$ for any choice of $J \in \mathfrak{H}$, but this description distinguishes the coset $\operatorname{Sp}_{\Sigma} \operatorname{O}_{J}(V)$, or, what is the same, J, as a base point. Indeed, d_p is the restriction to \mathfrak{H} of a metric defined on the entire homogeneous space $\operatorname{GL}(V)/\operatorname{O}_{\Sigma J}(V)$, but we have chosen to exploit the very geometric description of how points in \mathfrak{H} relate to each other, without reference to a base point.

3. Coordinates on \mathfrak{H}

3.1. Block decompositions. From the data (Σ, L_0, J_0) , with $L_0 \in \Lambda_{\Sigma}(V)$ and $J_0 \in \mathfrak{H}_{\Sigma}$, we get a canonical splitting $V = L_0 \oplus J_0L_0$ (cf. Proposition 2.1). An \mathbb{R} -basis for V is $\{e_1, \ldots, e_n, J_0e_1, \ldots, J_0e_n\}$, where $\{e_1, \ldots, e_n\}$ is any basis of L_0 ; this latter set is therefore a \mathbb{C} -basis of V. This extra structure on V allows us to define, for example, complex conjugation on V: given $w \in V$, write $w = u + J_0v$. We call u the real part and v the imaginary part of w. The complex conjugate of w is $\overline{w} = u - J_0v$.

In this context, any linear transformation $A:V\to V$ can be decomposed as follows:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

where $A_{11}: L_0 \to L_0$, $A_{12}: J_0L_0 \to L_0$, $A_{21}: L_0 \to J_0L_0$, and $A_{22}: J_0L_0 \to J_0L_0$. J_0 itself has the form $\begin{bmatrix} 0 & -I_0^{-1} \\ I_0 & 0 \end{bmatrix}$ for some invertible map $I_0: L_0 \to J_0L_0$. Indeed, I_0 preserves ΣJ_0 -lengths since, by Lemma 1.7, J_0 is an orthogonal map. We next determine the conditions on the $A_{\mu\nu}$ for A to be symplectic. Σ can be written as $\begin{bmatrix} 0 & \Sigma_{12} \\ -\Sigma_{12}^{\top} & 0 \end{bmatrix}$, where $\Sigma_{12} \in \text{Hom}(J_0L_0, L_0^\top)$ is an isomorphism, because L_0 and J_0L_0 are Lagrangian and $\Sigma = -\Sigma^{\top}$. A^{\top} has the form $\begin{bmatrix} A_{11}^{\top} & A_{21}^{\top} \\ A_{12}^{\top} & A_{22}^{\top} \end{bmatrix}$. Thus the condition $A^{\top}\Sigma A = \Sigma$ becomes the three conditions

(1)
$$\begin{cases} A_{11}^{\top} \Sigma_{12} A_{21} = (\Sigma_{12} A_{21})^{\top} A_{11} \\ A_{11}^{\top} \Sigma_{12} A_{22} - (\Sigma_{12} A_{21})^{\top} A_{12} = \Sigma_{12} \\ A_{12}^{\top} \Sigma_{12} A_{22} = (\Sigma_{12} A_{22})^{\top} A_{12} \end{cases}$$

(although there are apparently four conditions, two of them are identical). If we take $A = J_0$, the second equation yields $(\Sigma_{12}I_0)^{\top} = \Sigma_{12}I_0$. This is the restriction of ΣJ_0 to L_0 . If $J = \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix}$ is a complex structure, then the equation $J^2 = -\mathrm{id}$ translates to the

conditions

(2)
$$\begin{cases} J_{11}^2 + J_{12}J_{21} = -\mathrm{id}_{L_0} \\ J_{22}^2 + J_{21}J_{12} = -\mathrm{id}_{J_0L_0} \\ J_{11}J_{12} + J_{12}J_{22} = 0 \\ J_{21}J_{11} + J_{22}J_{21} = 0 \end{cases}.$$

Now we determine the conditions to ensure $J \in \mathfrak{H}$. By Proposition 2.1, $J_{21} = \operatorname{proj}_{J_0L_0} J$ must be an isomorphism between L_0 and J_0L_0 , hence invertible. In this case, the system of equations (2) is equivalent to

(3)
$$J_{12} = -(J_{11}^2 + id_{L_0})J_{21}^{-1}$$
 and $J_{22} = -J_{21}J_{11}J_{21}^{-1}$.

Moreover, by Lemma 1.3 we know that ΣJ must be symmetric, which translates to

(4)
$$\begin{cases} (\Sigma_{12}J_{21})^{\top} = \Sigma_{12}J_{21} \\ \Sigma_{12}^{\top}J_{12} = J_{12}^{\top}\Sigma_{12} \\ \Sigma_{12}J_{22} = -J_{11}^{\top}\Sigma_{12} \end{cases}.$$

Combining the second equation in (3) with the first equation in (4), the final equation in (4) becomes

$$(5) \qquad (\Sigma_{12}J_{21}J_{11})^{\top} = \Sigma_{12}J_{21}J_{11}.$$

Lastly, we need $\Sigma J > 0$. Clearly we must have $\Sigma_{12}J_{21} > 0$, because this is the restriction of ΣJ to L_0 . But this condition is also sufficient: if $u \oplus v \in L_0 \oplus J_0L_0$, then by setting $u' = J_{21}^{-1}v$, we can reduce the computation of $(\Sigma J(u \oplus v))(u \oplus v)$ to a computation in L_0 . We get

$$(\Sigma_{21}J_{21}u)u - (\Sigma_{12}v)J_{12}v + (\Sigma_{12}J_{22}v)u - (\Sigma_{12}v)J_{11}u$$

$$= (\Sigma_{12}J_{21}u)u + (\Sigma_{12}J_{21}u')(J_{11}^{2} + id_{L_{0}})u' - (\Sigma_{12}J_{21}J_{11}u')u - (\Sigma_{12}J_{21}u')J_{11}u$$

$$= (\Sigma_{12}J_{21}u)u + (\Sigma_{12}J_{21}J_{11}u')J_{11}u' + (\Sigma_{12}J_{21}u')u' - 2(\Sigma_{12}J_{21}J_{11}u')u$$

$$= (\Sigma_{12}J_{21}u')u' + (\Sigma_{12}J_{21}(u - J_{11}u'))(u - J_{11}u').$$

Both of these terms are non-negative. If $v \neq 0$, then the first term is positive, and if v = 0 but $u \neq 0$, the second term is positive. Hence we have proved:

Proposition 3.1. If $J = \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix}$ is an element of Hom(V), then necessary and sufficient conditions for $J \in \mathfrak{H}$ are $\Sigma_{12}J_{21} > 0$, $(\Sigma_{12}J_{21})^{\top} = \Sigma_{12}J_{21}$, and the equations (3) and (5).

3.2. **Bounded complex domain.** From previous results, we know that C(V) has canonical charts. At $J_0 \in C(V)$, the canonical chart is $k_0 : J \mapsto (\mathrm{id} + J_0 J)(\mathrm{id} - J_0 J)^{-1}$; its natural domain is all $J \in C(V)$ such that 1 is not an eigenvalue of $J_0 J$, and its image is all A in $\mathrm{Hom}_{\overline{J_0}}(V) = \{A \in \mathrm{Hom}(V) \mid AJ_0 = -J_0 A\}$ for which 1 is not an eigenvalue. The inverse map is $k_0^{-1} : A \mapsto J_0(\mathrm{id} - A)(\mathrm{id} + A)^{-1}$.

Proposition 3.2. Given any $J_0 \in \mathfrak{H}$, all of \mathfrak{H} lies in the domain of the natural chart k_0 at J_0 . The image $k_0(\mathfrak{H})$ is an open bounded domain of the complex subspace

$$\operatorname{Hom}_{\overline{J_0},\Sigma}(V) = \{ A \in \operatorname{Hom}_{\overline{J_0}} \mid (\Sigma A)^\top = \Sigma A \}.$$

Proof. There are several pieces to prove.

First, given any other $J \in \mathfrak{H}$, all eigenvalues of J_0J are negative by Lemma 2.2, hence in particular J_0J does not have 1 as an eigenvalue. Therefore all of \mathfrak{H} lies in the domain of the canonical chart at J_0 .

Secondly, we show that any symplectic J maps to $\operatorname{Hom}_{\overline{J_0},\Sigma}(V)$ under k_0 . That is, we want to determine the condition on $A \in \operatorname{Hom}_{\overline{J_0}}(V)$ such that $k_0^{-1}(A)$ is symplectic. Because $k_0^{-1}(A)$ is a complex structure, we have

$$J_0(\mathrm{id} - A)(\mathrm{id} + A)^{-1} = (\mathrm{id} - A)^{-1}(\mathrm{id} + A)J_0.$$

(Note that power series in A commute.) The requirement $(\Sigma k_0^{-1}(A))^{\top} = \Sigma k_0^{-1}(A)$ is equivalent to each of the following:

$$(\mathrm{id} + A^{\top})^{-1}(\mathrm{id} - A^{\top})\Sigma J_0 = \Sigma(\mathrm{id} - A)^{-1}(\mathrm{id} + A)J_0,$$
$$(\mathrm{id} - A^{\top})\Sigma(\mathrm{id} - A) = (\mathrm{id} + A^{\top})\Sigma(\mathrm{id} + A),$$
$$-A^{\top}\Sigma - \Sigma A = A^{\top}\Sigma + \Sigma A,$$
$$(\Sigma A)^{\top} = \Sigma A.$$

Thirdly, we show that $\operatorname{Hom}_{\overline{J_0},\Sigma}(V)$ is invariant under J_0 , i.e., $\operatorname{Hom}_{\overline{J_0},\Sigma}(V)$ is a complex subspace of $\operatorname{Hom}_{\overline{J_0}}(V)$. If $A \in \operatorname{Hom}_{\overline{J_0},\Sigma}(V)$, then $(\Sigma J_0 A)^{\top} = A^{\top} \Sigma J_0 = -\Sigma A J_0 = \Sigma J_0 A$.

Fourthly, $k_0(\mathfrak{H})$ is open because it is a component of the complement in $\operatorname{Hom}_{\overline{J_0},\Sigma}(V)$ of the zero set of $\det(\operatorname{id} - A)$.

Finally, we show that $k_0(\mathfrak{H})$ is bounded. 0 is certainly in the image, and so it suffices to show that every line through the origin contains at least one point such that $\det(\mathrm{id} - A)$. Note that $A \in \mathrm{Hom}_{\overline{J_0},\Sigma}(V)$ is diagonalizable by the spectral theorem: ΣJ_0 is a Euclidean structure, and as we saw before, $(\Sigma J_0 A)^{\top} = \Sigma J_0 A$. In particular, all eigenvalues of A^2 are positive or zero. Note also that, because J_0 sends $\ker(\mathrm{id} - A)$ isomorphically to $\ker(\mathrm{id} + A)$, the vanishing of $\det(\mathrm{id} - A)$ is equivalent to the vanishing of $\det(\mathrm{id} + A)$, hence also of $\det(\mathrm{id} - A^2)$. These two observations imply that for any non-zero $A \in \mathrm{Hom}_{\overline{J_0},\Sigma}(V)$, there exists some $t \in \mathbb{R}$ such that $\det(\mathrm{id} - tA) = \det(\mathrm{id} - t^2 A^2) = 0$. Because the set of directions through 0 is compact, there is some uniform bound on all directions.

A generalization of a previous result is: for any eigenvalue λ of $A \in \operatorname{Hom}_{\overline{J_0}}(V)$, $-\lambda$ is also an eigenvalue of A, and J_0 interchanges the corresponding eigenspaces. This result is highly reminiscent of Lemmas 1.1 and 2.2, particularly in the case where $(\Sigma A)^{\top} = \Sigma A$ and thus all the eigenvalues of A are real. If $A \in k_0(\mathfrak{H})$, then we know the leading eigenvalue of A must have absolute value less than 1. In that case, if v is an eigenvector of $A = k_0(J)$ corresponding to the eigenvalue λ ,

$$-JJ_0v = (\mathrm{id} - A)^{-1}(\mathrm{id} + A)v = (\mathrm{id} - A)^{-1}(1 + \lambda)v = \frac{1 + \lambda}{1 - \lambda}v,$$

and so $(1 + \lambda)/(1 - \lambda)$ is an eigenvalue of $-JJ_0$. This implies the following:

Proposition 3.3. On $k_0(\mathfrak{H})$, the distance from 0 in the Siegel p-metric is given by

$$d_p(0,A) = \left(\sum_{\lambda \in \mathscr{E}^+} \log^p \frac{1+\lambda}{1-\lambda}\right)^{1/p} \quad (1 \le p < \infty), \qquad d_\infty(0,A) = \max_{\lambda \in \mathscr{E}^+} \left\{\log \frac{1+\lambda}{1-\lambda}\right\}$$

where \mathcal{E}^+ is the set of positive eigenvalues of A.

4. Basic examples

Example 4.1. The simplest case is $V = \mathbb{R}^2$, $\sigma(v, w) = \det(v, w)$, $L_0 = x$ -axis, $J_0 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. A symplectic transformation is one which preserves the determinant, hence the symplectic group is $\mathrm{SL}_2(\mathbb{R})$. All one-dimensional subspaces are Lagrangian. Any complex structure on \mathbb{R}^2 has the form $J = \begin{bmatrix} a & -(a^2+1)/b \\ b & -a \end{bmatrix}$, which is already in $\mathrm{SL}_2(\mathbb{R})$. For J to lie in \mathfrak{H} , the form $(v, w) \mapsto \sigma(v, Jw)$ must be positive definite, which implies y > 0. Thus the Siegel half-plane has a natural identification with the upper half-plane, given by $J \mapsto z = a/b + i/b$. The Siegel 2-metric on \mathfrak{H} coincides with the Poincaré metric on \mathbb{H} under this identification.

Example 4.2. Now we generalize the previous example. Identify $\mathbb{R}^{2n} = (\mathbb{R}^n)^2$ with \mathbb{C}^n via the bijection $(q, p) \leftrightarrow q + ip$. The standard symplectic structure Σ and complex structure J are given by

$$\Sigma = -J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$$

where I_n denotes the $n \times n$ identity matrix. Here we have used the standard inner product to identify \mathbb{R}^{2n} with its dual. Observe that $\Sigma J = I_{2n}$ induces the standard inner product. The subspaces $\{(q,0) \mid q \in \mathbb{R}^n\}$ and $\{(0,p) \mid p \in \mathbb{R}^n\}$ are Lagrangian and interchanged by J.

The symplectic group $\operatorname{Sp}_{2n}(\mathbb{R}) = \operatorname{Sp}(\mathbb{R}^{2n})$ comprises those $2n \times 2n$ matrices $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$, broken into $n \times n$ blocks such that $A^{\top}C$ and $B^{\top}D$ are symmetric and $A^{\top}D - C^{\top}B = I_n$.

Using Proposition 3.1, we find that there is a one-to-one correspondence between points in the Siegel half-plane \mathfrak{H}_n and $n \times n$ symmetric (not Hermitian) complex matrices Z = X + iY with positive definite imaginary part; the maps are

$$\begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix} \mapsto J_{11}J_{21}^{-1} + iJ_{21}^{-1} \quad \text{and} \quad X + iY \mapsto \begin{bmatrix} XY^{-1} & -(XY^{-1}X + Y) \\ Y^{-1} & -Y^{-1}X \end{bmatrix}.$$

Under this correspondence, the action of $\operatorname{Sp}_{2n}(\mathbb{R})$ on \mathfrak{H}_n becomes an action by "generalized fractional linear transformations", i.e., $\left[\begin{smallmatrix}A&B\\C&D\end{smallmatrix}\right]:Z\mapsto (AZ+B)(CZ+D)^{-1}$.

Because any real even-dimensional vector space with a symplectic form can be identified with $(\mathbb{R}^{2n}, \Sigma)$ by an appropriate choice of basis, this example shows that \mathfrak{H} is always simply-connected and has real dimension $n^2 + n$. Moreover, because the stabilizer of J under conjugation (or iI_n under fractional linear transformations, as can be checked directly) is $\operatorname{SpO}_{2n}(\mathbb{R}) = \operatorname{Sp}_{2n}(\mathbb{R}) \cap \operatorname{O}_{2n}(\mathbb{R})$, we see that $\dim \operatorname{SpO}_{2n}(\mathbb{R}) = (2n^2 + n) - (n^2 + n) = n^2$.