MATH 2220 PRELIMINARY EXAM 2 MARCH 24TH, 2015

Name_____

1. Let
$$F(x, y, z) = (x - 1)^2 + y^2 + z^2/4 - 1$$
 and let
 $S = \{(x, y, z) \in \mathbb{R}^3 | F(x, y, z) = 0\}.$

Find all the points $P \in S$ such that the tangent plane to S at P is parallel to the plane

x + y + z = 1. (15pts)

- **2.** Let $f(x, y) = \sin(x + y)$.
 - a) Estimate f(0.1, 0.1) using linear approximation. (5pts)
 - b) Show that the error term in the linear approximation above is less than 0.02. (10pts)
 - c) Can you show that the error term in the linear approximation given above is actually less than 0.002? (5pts) **Omit 2c**

3. Let

$$D = \{(x, y) \mid x^2 + (y - 1)^2 \le 4\}$$

and let $f: D \longrightarrow \mathbb{R}$ be given by

$$f(x,y) = 3x - x^3 + y^2 - 2y.$$

Find the maximum and minimum of f on D. (20pts)

4. Let

$$F_1(x, y, u, v) = e^x y^2 + v \sin(x + u)$$

and

$$F_2(x, y, u, v) = x + y + v \cos(x + u).$$

Show that the equations $F_1 = 0 = F_2$ can be used to find u and v in terms of x and y in a neighborhood of (-1, 0, 1, 1). (15pts)

5. Let $\mathbf{c}(t) = (t, t^2, 2t^3/3)$ for $t \in [0, 1]$. Compute the arc length of the curve defined by the path \mathbf{c} . (15pts)

6. Let D be the region bounded by the triangle with vertices (0,0), (1,0) and (1,1). Compute

$$\iint_D \sqrt{1-x^2} \, dA. \qquad (15\text{pts})$$