Nonnegative holomorphic sectional curvature: some examples

Bo Yang

Xiamen University

03/19/2018, Monday, Wuhan
Outline of the talk

- Holomorphic sectional curvature.
- Examples on Hirzebruch manifolds.
- Examples on BSV tori.
Almost-Hermitian manifolds

We begin with a $2n$-dimensional Riemannian manifold M. We call it (M, J) an *almost complex manifold* if there exists $J : TM \to TM$ such that $J^2 = -\text{Id}$.

Let g be a Riemannian metric on an almost complex manifold M, we call (M, J, g) an *almost Hermitian manifold* if J is compatible with g in the sense that $g(X, Y) = g(JX, JY)$.

Next we define the *Kähler form* on an almost Hermitian manifold (M, J, g) by $\omega(X, Y) = g(JX, Y)$, and the *Nijenhuis tensor* $N : TM \times TM \to TM$ is defined by

Almost-Hermitian manifolds

We begin with a $2n$-dimensional Riemannian manifold M, We call it (M, J) an *almost complex manifold* if there exists $J : TM \to TM$ such that $J^2 = -\text{Id}$.

Let g be a Riemannian metric on an almost complex manifold M, we call (M, J, g) an *almost Hermitian manifold* if J is compatible with g in the sense that $g(X, Y) = g(JX, JY)$.

Next we define the *Kähler form* on an almost Hermitian manifold (M, J, g) by $\omega(X, Y) = g(JX, Y)$, and the *Nijenhuis tensor* $N : TM \times TM \to TM$ is defined by

Integrability of an almost complex manifold

When an almost complex manifold is a complex manifold?
In 1957 Newlander-Nirenberg proved that if $N = 0$ on an almost complex manifold (M, J), then it can be realized as a complex manifold in the following sense:
There exists a collection of open cover (U_α, z_α) of M where $z_\alpha : U_\alpha \rightarrow \mathbb{C}^n$ is a homeomorphism onto its image, and the transition map

$$f_{\alpha\beta} = z_\beta \cdot z_\alpha^{-1} : z_\alpha(U_\alpha \cap U_\alpha) \rightarrow z_\beta(U_\alpha \cap U_\alpha)$$

is a biholomorphism onto its image. At $p \in U_\alpha$ we write $i-$th component $z_i(p) = x_i(p) + \sqrt{-1}y_i(p)$, then

$$T_p(M) = \text{Span}\{ \frac{\partial}{\partial x_i}, \frac{\partial}{\partial y_i} \},$$

and

$$J(\frac{\partial}{\partial x_i}) = \frac{\partial}{\partial y_i} \quad \text{and} \quad J(\frac{\partial}{\partial y_i}) = -\frac{\partial}{\partial x_i}.$$
Hermitian manifolds

From now on, we will consider integrable almost Hermitian manifold \((M, g, J)\), we call it is a *Hermitian manifold*.

Basic question: How to study curvatures on Hermitian manifolds?

The first thing is to introduce connections on Hermitian manifolds. There are at least 3 connections much studied on Hermitian manifolds.
Hermitian manifolds

From now on, we will consider integrable almost Hermitian manifold \((M, g, J)\), we call it is a **Hermitian manifold**.

Basic question: How to study curvatures on Hermitian manifolds?

The first thing is to introduce connections on Hermitian manifolds. There are at least 3 connections much studied on Hermitian manifolds.
Hermitian manifolds

From now on, we will consider integrable almost Hermitian manifold \((M, g, J)\), we call it a Hermitian manifold.

Basic question: How to study curvatures on Hermitian manifolds?

The first thing is to introduce connections on Hermitian manifolds. There are at least 3 connections much studied on Hermitian manifolds.
Hermitian manifolds

From now on, we will consider integrable almost Hermitian manifold \((M, g, J)\), we call it is a \textit{Hermitian manifold}.

Basic question: How to study curvatures on Hermitian manifolds?

The first thing is to introduce connections on Hermitian manifolds. There are at least 3 connections much studied on Hermitian manifolds.
Three connections

- **Levi-Civita (Riemannian) connection** ∇, which is uniquely determined by $\nabla g = 0$ and the vanishing torsion tensor $T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$.

- **Chern connection** ∇^c, which is uniquely determined by $\nabla^c g = 0$, $\nabla^c J = 0$, and after complexification $\nabla^c \frac{\partial}{\partial z_j} \frac{\partial}{\partial z_i} = 0$.

- **Bismut connection** ∇^b. which is uniquely determined by $\nabla^b g = 0$, $\nabla^b J = 0$, and the torsion form $g(T^b(X, Y), Z)$ is skew-symmetric.
The structural equation of a Hermitian connection ∇ on Hermitian manifold (M, J, g). Let $\{e_1, \cdots, e_n\}$ be the frame and $\{\varphi^1, \cdots, \varphi^n\}$ coframe of $T^{1,0}M$.

\[
\nabla e_i = \theta^k_i \otimes e_k,
\]
\[
d\varphi^i = \varphi^k \wedge \theta^i_k + \tau^i,
\]
\[
d\theta^i_j = \theta^k_i \wedge \theta^j_k + \Theta^i_j.
\]

If we choose ∇ as the Chern connection ∇^c, then the torsion $\tau^i = T^i_{jk} \varphi^j \wedge \varphi^k$ is of $(2, 0)$ type and the curvature tensor is of $(1, 1)$ type and $R_{i\bar{j}k\bar{l}} = \Theta^p_i(e_k, \bar{e}_l)g_{p\bar{l}}$.
The structural equation of a Hermitian connection ∇ on Hermitian manifold (M, J, g). Let $\{e_1, \cdots, e_n\}$ be the frame and $\{\varphi^1, \cdots, \varphi^n\}$ coframe of $T^{1,0}M$.

$$\nabla e_i = \theta^k_i \otimes e_k,$$
$$d\varphi^i = \varphi^k \wedge \theta^i_k + \tau^i,$$
$$d\theta^i_j = \theta^k_j \wedge \theta^i_k + \Theta^i_j.$$

If we choose ∇ as the Chern connection ∇^c, then the torsion $\tau^i = T^i_{jk} \varphi^j \wedge \varphi^k$ is of $(2, 0)$ type and the curvature tensor is of $(1, 1)$ type and $R_{i\bar{j}k\bar{l}} = \Theta^p_i (e_k, \bar{e}_j) g_{p\bar{l}}$.

Bo Yang Xiamen University

Nonnegative holomorphic sectional curvature: some examples
Holomorphic sectional curvature: part II

- We define the **holomorphic sectional curvature** of a real-2 plane \(\pi = \{X, JX\} \) by

\[
H(\pi) = H(V) = \frac{R_{ijkl} V^i \overline{V}^j V^k \overline{V}^l}{\|V\|^4}
\]

where \(V = X - \sqrt{-1}JX \in T^{1,0}(M) \). It makes sense to define this notion for any connection with \(\nabla g = 0 \). In this talk, we focus on the Chern holomorphic sectional curvature on Hermitian manifolds.

- We say that \((M, J, g)\) has positive **holomorphic sectional curvature** \((H > 0)\) if \(H(V) > 0\) for any \(V \in T^{1,0}(M)\).
Holomorphic sectional curvature: part II

- We define the *holomorphic sectional curvature* of a real-2 plane \(\pi = \{X, JX\} \) by

\[
H(\pi) = H(V) = \frac{R_{i\bar{j}k\bar{l}}V^i \overline{V}^j V^k \overline{V}^l}{||V||^4}
\]

where \(V = X - \sqrt{-1}JX \in T^{1,0}(M) \). It makes sense to define this notion for any connection with \(\nabla g = 0 \). In this talk, we focus on the Chern holomorphic sectional curvature on Hermitian manifolds.

- We say that \((M, J, g)\) has positive holomorphic sectional curvature \((H > 0)\) if \(H(V) > 0 \) for any \(V \in T^{1,0}(M) \).
Kähler manifolds

- A Kähler manifold is a Hermitian manifold \((M, J, g)\) with its Kähler form \(\omega(X, Y) = g(JX, Y)\) a closed 2-form.

- The above three connections on a Kähler manifold coincide, and in this sense a Kähler manifold is the most natural Hermitian manifold to study. There has been much progress on Kähler geometry. In this talk, we are concerned with positive (nonnegative) holomorphic sectional curvature.
Kähler manifolds

A Kähler manifold is a Hermitian manifold \((M, J, g)\) with its Kähler form \(\omega(X, Y) = g(JX, Y)\) a closed 2-form.

The above three connections on a Kähler manifold coincide, and in this sense a Kähler manifold is the most natural Hermitian manifold to study. There has been much progress on Kähler geometry. In this talk, we are concerned with positive (nonnegative) holomorphic sectional curvature.
Kähler manifolds

- A Kähler manifold is a Hermitian manifold \((M, J, g)\) with its Kähler form \(\omega(X, Y) = g(JX, Y)\) a closed 2-form.

- The above three connections on a Kähler manifold coincide, and in this sense a Kähler manifold is the most natural Hermitian manifold to study. There has been much progress on Kähler geometry. In this talk, we are concerned with positive (nonnegative) holomorphic sectional curvature.
Kähler manifolds

▶ A Kähler manifold is a Hermitian manifold \((M, J, g)\) with its Kähler form \(\omega(X, Y) = g(JX, Y)\) a closed 2-form.

▶ The above three connections on a Kähler manifold coincide, and in this sense a Kähler manifold is the most natural Hermitian manifold to study. There has been much progress on Kähler geometry. In this talk, we are concerned with positive (nonnegative) holomorphic sectional curvature.
Question (S.-T. Yau)

Consider a compact Kähler manifold with $H > 0$, is it unirational? Is it projective? If a projective manifold is obtained by blowing up a compact manifold with positive holomorphic sectional curvature along a subvariety, does it still carry a metric with positive holomorphic sectional curvature? In general, can we find a geometric criterion to distinguish the concept of unirationality and rationality?
Basic question on compact Kähler manifolds with $H > 0$

Question (S.-T. Yau)

Consider a compact Kähler manifold with $H > 0$, is it unirational? Is it projective? If a projective manifold is obtained by blowing up a compact manifold with positive holomorphic sectional curvature along a subvariety, does it still carry a metric with positive holomorphic sectional curvature? In general, can we find a geometric criterion to distinguish the concept of unirationality and rationality?
Recent Progress on Yau’s question

- Tsukamoto 1957: $H > 0$ implies simply connected. A generalization of this argument (Ni-Zheng 2018) shows any holomorphic isometry must have one fixed point.
- Berger 1966: $H > 0$ implies positive scalar curvature $S > 0$. A vanishing result (Kobayashi-Wu 1970) shows $S > 0$ implies the pluri-canonical ring vanishes, in particular $Kod = -\infty$.
- Hitchin 1975: Kähler surface with $H > 0$ implies projective and rational.
- Heier-Wong 2015: (assuming projective) rationally connected.
- Xiaokui Yang 2017: projective and rationally connected.
Recent Progress on Yau’s question

- Tsukamoto 1957: $H > 0$ implies simply connected. A generalization of this argument (Ni-Zheng 2018) shows any holomorphic isometry must have one fixed point.

- Berger 1966: $H > 0$ implies positive scalar curvature $S > 0$. A vanishing result (Kobayashi-Wu 1970) shows $S > 0$ implies the pluri-canonical ring vanishes, in particular $Kod = -\infty$.

- Hitchin 1975: Kähler surface with $H > 0$ implies projective and rational.

- Heier-Wong 2015: (assuming projective) rationally connected.

- Xiaokui Yang 2017: projective and rationally connected.
Recent Progress on Yau’s question

- Tsukamoto 1957: $H > 0$ implies simply connected. A generalization of this argument (Ni-Zheng 2018) shows any holomorphic isometry must have one fixed point.
- Berger 1966: $H > 0$ implies positive scalar curvature $S > 0$. A vanishing result (Kobayashi-Wu 1970) shows $S > 0$ implies the pluri-canonical ring vanishes, in particular $Kod = -\infty$.
- Hitchin 1975: Kähler surface with $H > 0$ implies projective and rational.
- Heier-Wong 2015: (assuming projective) rationally connected.
- Xiaokui Yang 2017: projective and rationally connected.
'Metric moduli space’ for $H > 0$?

In this talk we focus on differential-geometrics aspect of $H > 0$, let us propose the following question.

Question

Given a fixed compact Kähler manifold, what can we say about the space of all Kähler metrics with $H > 0$? Is it path-connected?

Similar questions have been posed in several contexts in differential geometry (Chen-Tian, Marques, Kreck-Stolz and etc.).

Theorem (F. Zheng and myself, 2016)

Given a Hirzebruch manifold $M_{n,k} = \mathbb{P}(H^k \oplus 1_{\mathbb{CP}^{n-1}})$, there exists a Kähler metric of $H > 0$ in each of its Kähler classes. Moreover, the space of of all $U(n)$-invariant Kähler metrics of $H > 0$ on $M_{n,k}$ is path-connected.
‘Metric moduli space’ for $H > 0$?

In this talk we focus on differential-geometrics aspect of $H > 0$, let us propose the following question.

Question

Given a fixed compact Kähler manifold, what can we say about the space of all Kähler metrics with $H > 0$? Is it path-connected?

Similar questions have been posed in several contexts in differential geometry (Chen-Tian, Marques, Kreck-Stolz and etc.).

Theorem (F. Zheng and myself, 2016)

Given a Hirzebruch manifold $M_{n,k} = \mathbb{P}(H^k \oplus 1_{\mathbb{C}P^{n-1}})$, there exists a Kähler metric of $H > 0$ in each of its Kähler classes. Moreover, the space of all $U(n)$-invariant Kähler metrics of $H > 0$ on $M_{n,k}$ is path-connected.
‘Metric moduli space’ for $H > 0$?

In this talk we focus on differential-geometrics aspect of $H > 0$, let us propose the following question.

Question

Given a fixed compact Kähler manifold, what can we say about the space of all Kähler metrics with $H > 0$? Is it path-connected?

Similar questions have been posed in several contexts in differential geometry (Chen-Tian, Marques, Kreck-Stolz and etc.).

Theorem (F. Zheng and myself, 2016)

Given a Hirzebruch manifold $M_{n,k} = \mathbb{P}(H^k \oplus 1_{\mathbb{CP}^{n-1}})$, there exists a Kähler metric of $H > 0$ in each of its Kähler classes. Moreover, the space of of all $U(n)$-invariant Kähler metrics of $H > 0$ on $M_{n,k}$ is path-connected.
Holomorphic pinching rigidity

If Yau’s conjecture is true, then how do we study complexities of rational varieties which admit Kähler metrics with $H > 0$? A naive thought is that the global and local holomorphic pinching constants of H should give a stratification among all such rational varieties.

Theorem (X. Cao and myself, 2017)

For any integer $n \geq 2$, there exists a positive constant $\epsilon(n)$ such that any compact Kähler manifold with $\frac{1}{2} - \epsilon(n) \leq H \leq 1$ of dimension n is biholomorphic to one of the following:

1. \mathbb{CP}^n,
2. $\mathbb{CP}^k \times \mathbb{CP}^{n-k}$,
3. An irreducible rank-2 compact Hermitian symmetric space of dimension n.
Holomorphic pinching rigidity

If Yau’s conjecture is true, then how do we study complexities of rational varieties which admit Kähler metrics with $H > 0$? A naive thought is that the global and local holomorphic pinching constants of H should give a stratification among all such rational varieties.

Theorem (X. Cao and myself, 2017)

For any integer $n \geq 2$, there exists a positive constant $\epsilon(n)$ such that any compact Kähler manifold with $\frac{1}{2} - \epsilon(n) \leq H \leq 1$ of dimension n is biholomorphic to one of the following:

1. \mathbb{CP}^n,
2. $\mathbb{CP}^k \times \mathbb{CP}^{n-k}$,
3. An irreducible rank-2 compact Hermitian symmetric space of dimension n.
Holomorphic pinching rigidity

If Yau’s conjecture is true, then how do we study complexities of rational varieties which admit Kähler metrics with $H > 0$? A naive thought is that the global and local holomorphic pinching constants of H should give a stratification among all such rational varieties.

Theorem (X. Cao and myself, 2017)

For any integer $n \geq 2$, there exists a positive constant $\epsilon(n)$ such that any compact Kähler manifold with $\frac{1}{2} - \epsilon(n) \leq H \leq 1$ of dimension n is biholomorphic to one of the following

1. \mathbb{CP}^n,
2. $\mathbb{CP}^k \times \mathbb{CP}^{n-k}$,
3. An irreducible rank-2 compact Hermitian symmetric space of dimension n.
Essentially not much known on $H > 0$

A natural question is to look for the next threshold for holomorphic pinching constants. Another question which shows how little we know on $H > 0$ is

Question (A special case of Yau’s question)

Does \mathbb{CP}^2 with two points blown up admit a Kähler metric with $H > 0$?

Very few is known in higher dimension. Alvarez-Heier-Zheng 2016 proved a generalization of Hitchin’s construction on Hirzebruch surfaces that any projectivization of a vector boundle on a compact Kähler manifold with $H > 0$ admits Kähler metrics with $H > 0$.
Essentially not much known on $H > 0$

A natural question is to look for the next threshold for holomorphic pinching constants. Another question which shows how little we know on $H > 0$ is

Question (A special case of Yau’s question)

Does \mathbb{CP}^2 with two points blown up admit a Kähler metric with $H > 0$?

Very few is known in higher dimension. Alvarez-Heier-Zheng 2016 proved a generalization of Hitchin’s construction on Hirzebruch surfaces that any projectivization of a vector boundle on a compact Kähler manifold with $H > 0$ admits Kähler metrics with $H > 0$.
Essentially not much known on $H > 0$

A natural question is to look for the next threshold for holomorphic pinching constants. Another question which shows how little we know on $H > 0$ is

Question (A special case of Yau’s question)

Does $\mathbb{C}P^2$ with two points blown up admit a Kähler metric with $H > 0$?

Very few is known in higher dimension. Alvarez-Heier-Zheng 2016 proved a generalization of Hitchin’s construction on Hirzebruch surfaces that any projectivization of a vector boundle on a compact Kähler manifold with $H > 0$ admits Kähler metrics with $H > 0$.
BSV tori: definition

Given a real 6-torus $T^6_\mathbb{R}$, we will define a complex structure (orthogonal with respect to the flat metric) in the following way:

Fix an elliptic curve $M_1 = (T^2_\mathbb{R}, J_1)$. Note that $\mathbb{CP}^1 = SO(4)/U(2)$ is the space of all orthogonal complex structures on the flat $T^4_\mathbb{R}$, let $f : M_1 \to \mathbb{CP}^1$ be a nonconstant holomorphic map, one may consider a warped almost complex structure at $(y_1, y_2) \in T^2_\mathbb{R} \times T^2_\mathbb{R}$

$$J = J_1 + J_f(y_1)$$

It can be shown J is integrable since f is holomorphic.

BSV tori have been studied by Blanchard, Calabi, Atiyah, Sommese, and more recently by Borisov-Salamon-Viaclovsky.
BSV tori: definition

Given a real 6-torus $T^6_\mathbb{R}$, we will define a complex structure (orthogonal with respect to the flat metric) in the following way:

Fix an elliptic curve $M_1 = (T^2_\mathbb{R}, J_1)$. Note that $\mathbb{CP}^1 = SO(4)/U(2)$ is the space of all orthogonal complex structures on the flat $T^4_\mathbb{R}$, let $f : M_1 \to \mathbb{CP}^1$ be a nonconstant holomorphic map, one may consider a warped almost complex structure at $(y_1, y_2) \in T^2_\mathbb{R} \times T^2_\mathbb{R}$

$$J = J_1 + J_f(y_1)$$

It can be shown J is integrable since f is holomorphic.

BSV tori have been studied by Blanchard, Calabi, Atiyah, Sommese, and more recently by Borisov-Salamon-Viaclovsky.
BSV tori: definition

Given a real 6-torus $T^6_\mathbb{R}$, we will define a complex structure (orthogonal with respect to the flat metric) in the following way:

Fix an elliptic curve $M_1 = (T^2_\mathbb{R}, J_1)$. Note that $\mathbb{CP}^1 = SO(4)/U(2)$ is the space of all orthogonal complex structures on the flat $T^4_\mathbb{R}$, let $f : M_1 \to \mathbb{CP}^1$ be a nonconstant holomorphic map, one may consider a warped almost complex structure at $(y_1, y_2) \in T^2_\mathbb{R} \times T^2_\mathbb{R}$

$$J = J_1 + J_f(y_1)$$

It can be shown J is integrable since f is holomorphic.

BSV tori have been studied by Blanchard, Calabi, Atiyah, Sommese, and more recently by Borisov-Salamon-Viaclovsky.
BSV tori: definition

Given a real 6-torus $T^6_\mathbb{R}$, we will define a complex structure (orthogonal with respect to the flat metric) in the following way:

Fix an elliptic curve $M_1 = (T^2_\mathbb{R}, J_1)$. Note that $\mathbb{CP}^1 = SO(4)/U(2)$ is the space of all orthogonal complex structures on the flat $T^4_\mathbb{R}$, let $f : M_1 \rightarrow \mathbb{CP}^1$ be a nonconstant holomorphic map, one may consider a warped almost complex structure at $(y_1, y_2) \in T^2_\mathbb{R} \times T^2_\mathbb{R}$

$$J = J_1 + J_f(y_1)$$

It can be shown J is integrable since f is holomorphic.

BSV tori have been studied by Blanchard, Calabi, Atiyah, Sommese, and more recently by Borisov-Salamon-Viaclovsky.
BSV tori: some properties

It has been known that BSV tori is not Kähler. Recently we note that a BSV tori \((T^6_\mathbb{R}, J)\) admits no pluri-closed Hermitian metrics. (i.e. \(\partial \bar{\partial} \omega = 0\))

The natural projection of \((T^6_\mathbb{R}, J)\) onto the elliptic curve \(M_1\) is a holomorphic submersion, while the fibers, as complex 2-tori, are not biholomorphic to each other in general. Its Kodaira dimension is \(-\infty\). It is interesting to understand more algebro-geometric properties of such non-Kähler manifolds.
BSV tori: some properties

It has been known that BSV tori is not Kähler. Recently we note that a BSV tori \((T^6_\mathbb{R}, J)\) admits no pluri-closed Hermitian metrics. (i.e. \(\partial \bar{\partial} \omega = 0\))

The natural projection of \((T^6_\mathbb{R}, J)\) onto the elliptic curve \(M_1\) is a holomorphic submersion, while the fibers, as complex 2-tori, are not biholomorphic to each other in general. Its Kodaira dimension is \(-\infty\). It is interesting to understand more algebro-geometric properties of such non-Kähler manifolds.
BSV tori are Riemannian flat and of Chern $H \geq 0$

BSV tori are the only ‘nonstandard’ orthogonal complex structure on flat real 6-tori.

Theorem (Khan, Zheng and myself, 2017)

Given a compact Hermitian manifold with zero Riemannian curvature, then it has a finite cover being either a complex torus or a BSV torus.

Applying a monotonicity formula relating H w.r.t. Chern connection to H w.r.t. Riemannian connection (in a previous work of Zheng and myself), we have: The Chern holomorphic sectional curvature of a BSV torus is nonnegative.

One may wonder if there is a reduction theorem on compact Hermitian manifolds with nonnegative Chern holomorphic sectional curvature.
BSV tori are Riemannian flat and of Chern $H \geq 0$

BSV tori are the only ‘nonstandard’ orthogonal complex structure on flat real 6-tori.

Theorem (Khan, Zheng and myself, 2017)

Given a compact Hermitian manifold with zero Riemannian curvature, then it has a finite cover being either a complex torus or a BSV torus.

Applying a monotonicity formula relating H w.r.t. Chern connection to H w.r.t. Riemannian connection (in a previous work of Zheng and myself), we have: The Chern holomorphic sectional curvature of a BSV torus is nonnegative.

One may wonder if there is a reduction theorem on compact Hermitian manifolds with nonnegative Chern holomorphic sectional curvature.
BSV tori are Riemannian flat and of Chern $H \geq 0$

BSV tori are the only ‘nonstandard’ orthogonal complex structure on flat real 6-tori.

Theorem (Khan, Zheng and myself, 2017)

Given a compact Hermitian manifold with zero Riemannian curvature, then it has a finite cover being either a complex torus or a BSV torus.

Applying a monotonicity formula relating H w.r.t. Chern connection to H w.r.t. Riemannian connection (in a previous work of Zheng and myself). we have: The Chern holomorphic sectional curvature of a BSV torus is nonnegative.

One may wonder if there is a reduction theorem on compact Hermitian manifolds with nonnegative Chern holomorphic sectional curvature.
References

4. Bo Yang, Fangyang Zheng; On curvature tensors of Hermitian manifolds. arxiv. Accepted to Communications in Analysis and Geometry.

4. Bo Yang, Fangyang Zheng; On curvature tensors of Hermitian manifolds. arxiv. Accepted to Communications in Analysis and Geometry.
Thank you very much for your attention!