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Introduction
My research lies at the intersection of Poisson geometry and representation theory. Beginning

in the 1980’s, important connections were found between these two subjects through geometric
quantization; one example is Kostant’s presentation [Kos09] of the Borel-Weil-Bott theorem using
the symplectic geometry of coadjoint orbits. Around the same time, the discovery of quantum
groups and their canonical bases gave new tools in the representation theory of Lie groups [Lus90].
The semiclassical limits of quantum groups carry a natural multiplicative Poisson structure; these
are called Poisson-Lie groups.

The broad theme of my research is to continue to develop the relationship between the represen-
tation theory of a compact Lie group K and the geometry of Hamiltonian K-manifolds, using new
techniques from Lie theory and algebraic geometry. The main examples are the coadjoint orbits of
K and toric symplectic manifolds. These are important and well studied examples of symplectic
manifolds, and both are examples of multiplicity-free spaces.

The first part of my research employs the potential cones (also called string cones) of [BK06,
BZ01], which parametrize the canonical bases of irreducible K-modules as the lattice points of a
polyhedral cone. These cones have been used to give formulas for the multiplicities of irreducible
summands in tensor products of K-modules, in terms of the lattice points of a convex polytope.
When K � U(n), the potential cone coincides with the moment map image of the Gelfand-Cetlin
integrable system on the linear Poisson manifold k∗ � u(n)∗. It remains unknown if an analogous
statement holds for general K.

Togetherwith collaborators, I have previously constructed an object called a partial tropicalization,
which gives a new and explicit connection between the Poisson geometry of k∗ and the potential
cone of K [ABHL18a, ABHL18b]. The construction uses techniques from cluster theory as well as
Poisson-Lie theory. We have used partial tropicalizations to prove new theorems in symplectic ge-
ometry [AHLL19, AHLL18]. Going forward, my first research goal is to give a stratified, monoidal
version of this construction. It should be stratified in that it takes into account the boundary of the
potential cone. It should be monoidal in that it relates products of coadjoint orbits with the convex
polytopes describing tensor product multiplicities.

The second part ofmy research concernsHamiltonian actions on a class of singular spaces called
symplectic stacks [HS18]. In particular, I previously defined toric symplectic stacks, which are natural
generalizations of toric symplectic manifolds. They admit an action by a type of singular group
called a stacky torus. I showed that toric symplectic stacks are classified up to isomorphism by their
moment polytopes (together with some combinatorial data) [Hof19]. These moment polytopes
often fail to be rational.

If M is a toric symplectic manifold, its equivariant cohomology can be read from its moment
polytope; if M is additionally prequantizable then its geometric quantization can be read off from
the moment polytope as well. Going forward, my second research goal is to make sense of these
invariants for toric symplectic stacks, and express them in terms of the moment polytope.

The results ofmyproposed future research have immediate applications in symplectic geometry.
Partial tropicalizations have already given a new approach to providing lower bounds for the
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Gromovwidth of regularmultiplicity-free K-spaces; a stratified version of the theorywould extend
this approach to all multiplicity-free K-spaces. This would also be a step toward constructing
new integrable systems on linear Poisson spaces, analogous to the Gelfand-Cetlin system on
u(n)∗. Finally, achieving the first research goal would establish new connections between Poisson
geometry and cluster algebras. The potential cones of Berenstein-Zelevinsky and Berenstein-
Kazhdan are examples of cones built by [GHKK17], which is evidence that partial tropicalization
may have further connections with mirror symmetry.

Quantization is a central theme in Poisson geometry, and achieving my second research goal
would be a natural addition to the theory of quantization of Hamiltonian spaces. At the same time,
stacks have foundmany applications in symplectic and Poisson geometry in recent years [PTVV13],
and in the course ofworking towards this goal it would be necessary to better develop basic parts of
this theory, including the connection between differentiable stacks and noncommutative geometry.

Background
Let (M, ω) be a compact connected symplectic manifold, and assume there is a Hamiltonian

action of a compact Lie group K on M withmoment map µ : M → k∗. Here k is the Lie algebra of K,
and k∗ is its linear dual. If the cohomology class of ω is integral, then M is prequantizable. Given a
prequantizable K-manifold (plus some additional data), the procedure of geometric quantization
associates to M a finite dimensional unitary K representation. Often, properties of the quantization
of M are reflected in itsmomentmap image µ(M) ⊂ k∗, which is a convexpolytope. A fruitful thread
of research has been the study of the relationship between the geometry of M, the representation
theory of K, and the polytope µ(M).

Gelfand-Cetlin systems A first example of this thread concerns a completely integrable system
discovered byGuillemin-Sternberg [GS83]. Let K � U(n), and consider the linear Poissonmanifold
(k∗ , πk∗); one may think of k∗ as the union of its coadjoint orbits together with their standard
symplectic forms. Identify k∗ with the set H(n) of n × n Hermitian matrices using an invariant
inner product on k. Given a Hermitian matrix A ∈ H(n), let µi

k(A) be the ith largest eigenvalue
of the k × k principal submatrix of A. The µi

k collectively determine a map µ : H(n) → Rn(n+1)/2,
which is smooth on a dense subset of H(n). The map µ generates a free Hamiltonian action of
(S1)n(n−1)/2 on its smooth locus, and its image µ(H(n)) is a convex polyhedral cone. The cone
CGC � µ(H(n)) is the Gelfand-Cetlin cone, and (H(n), πk∗ , K, µ) is the Gelfand-Cetlin system.

There is a natural projection hw: CGC → Rn , which simply extracts the eigenvalues µi
n , i �

1, . . . , n. The symplectic leaves of H(n) are orbits under the conjugation action of K, and they
coincide with fibers of hw ◦µ. Let T be the standard maximal torus of U(n), and let t be its Lie
algebra. Making identifications appropriately, one may think of Rn as the set t∗ of weights of
G � GLn(C). The prequantizable orbits of H(n) are the fibers Oλ over λ ∈ Zn . For λ ∈ Zn , the
lattice points of hw−1(λ) coincide with the Bohr-Sommerfeld set of Oλ, and it turns out that they
count the dimension of the irreducible G-representation Vλ with highest weight λ. There is a
similar symplectic recipe to count the dimensions of weight subspaces of Vλ.

For other reductive complex algebraic groups G, there are cones analogous to CGC constructed
in a purely algebro-geometric fashion by [BK06, BZ01]. Beginning with an open embedding of a
torus θ : (C×)m ↪→ B into the positive Borel subgroup, Berenstein-Kazhdan construct an associated
polyhedral cone C called a potential cone. The cone C ⊂ Rm is cut out by inequalities given by
a tropicalized potential function, and its integral points count dimensions of highest weight G-
representations. (The results of [BK06] are in reality much stronger; they give C∩Zm the structure
of a Kashiwara crystal).



RESEARCH STATEMENT 3

The partial tropicalization theory outlined below is an approach to unifying these two construc-
tions. A goal of the program is to build integrable systems on the linear Poisson manifold (k∗ , πk∗)
for general K, whose moment map image is the Berenstein-Kazhdan potential cone.

Toric symplectic manifolds A compact connected symplectic manifold (M, ω) with an effective
Hamiltonian action of a torus T is called toric if dim M � 2 dim T. A celebrated theorem of Delzant
[Del88] says that a toric manifold (M, ω, T, µ) is determined up to isomorphism by its moment
map image µ(M). The image is a convex polytope which has the properties of being “simple”,
“rational”, and “smooth.” Conversely, any simple, rational, and smooth polytope is the moment
map image of some toric manifold.

Toric manifolds are well studied examples of Hamiltonian T-manifolds, in part due to the
fact that many of their geometric properties are reflected in the combinatorics of their moment
polytopes. For one, the equivariant cohomology ring of a toric manifold is isomorphic to the face
ring of its moment polytope. If a toric manifold is prequantizable, then additionally the unitary
irreducible T-representationswhich appear in the quantization of M are exactly given by the lattice
points µ(M) ∩Hom(T, S1).

Previous Results
Partial tropicalizations Let K be a compact connected Lie group with Lie algebra k. There is
a multiplicative Poisson bivector πK on K called the standard Poisson-Lie structure. We use an
interpolating object (K∗ , πK∗), which is a dual Poisson-Lie group to (K, πK), to connect the potential
cones of [BK06] with (k∗ , πk∗). The idea is to introduce coordinates on K∗ which depend on a
parameter s > 0. Brackets of coordinate functions become log-canonical, on a region controlled by
the potential cone of K, in the s →∞ limit.

Let G be the complexification of K, and assume a choice of positive roots has beenfixed. Consider
the Iwasawa decomposition G � KAN , where N ⊂ B is the unipotent radical of the positive Borel
subgroup and A � exp(

√
−1t). Here t is the Lie algebra of the maximal torus T of K. The Lie group

K∗ can be identified with AN . In particular, if K � U(n) then K∗ is the group of upper triangular
n × n matrices with positive real entries along the diagonal.

The connection with (k∗ , πk∗) comes from the surprising fact that there exists a Poisson isomor-
phism

(1) GWs : (k∗ , πk∗) → (K∗ , sπK∗)
for any scaling parameter s > 0 [GW92]. A construction of GWs was given in [Ale97].

The connection with the work of [BK06] is more involved. We first consider the variety Ge ,w0 �

B∩B−w0B− ⊂ G, which is an example of a double Bruhat cellofG. Its coordinate algebraC[Ge ,w0]may
be enrichedwith the structure of a cluster algebra [BFZ05]. There is a collectionof seeds σ of the cluster
algebra C[Ge ,w0], and each seed comes with a set of distinguished regular functions x1 , . . . , xm ∈
C[Ge ,w0] called cluster variables. Together they determine an open embedding θσ : C×m → Ge ,w0 .
Restricting to AN ∩ Ge ,w0 , we have an open embedding Rr × (C×)m−r ↪→ AN � K∗. Here r is the
dimension of the maximal torus of K. Making the s-dependent change of variables xi � e sξi+

√
−1ϕi ,

for s ∈ R\{0}, gives the map

(2) Lσs : Rm × T ↪→ AN � K∗.

We write T � (S1)m−r . Let πσs � (Lσs )∗(sπK∗) be the scaled Poisson bivector in this new coordinate
system.

For any seed σ for the cluster algebra C[Ge ,w0], consider the interior C̊σ ⊂ Rm of the potential
cone associated to the toric chart θσ : C×m → Ge ,w0 ⊂ B. The first connection between the Poisson
manifold (K∗ , sπK∗) and the potential cones of [BK06] is the following.
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Theorem 3 (Alekseev-Berenstein-Hoffman-Li [ABHL18b]). Let σ be any seed for the cluster algebra
C[Ge ,w0]. Then on C̊σ × T, the limit

πσ∞ :� lim
s→∞

πσs |C̊σ×T
exists. It is a constant Poisson bivector on C̊σ × T.

Theorem 3 was originally proved for specific cluster seeds σ associated to reduced words for the
longest element of the Weyl group w0; in [AHLL19] we extend it to all other cluster charts. The
Poisson manifold (C̊σ × T, πσ∞) is called a partial tropicalization of K∗.

Previously, it has been shown that a cluster variety comes with a compatible Poisson structure,
meaning that the Poisson brackets of cluster variables are log-canonical [FG09]. The manifold
(K∗ , πK∗) is not a cluster variety. However the Poisson brackets of the functions xi (and their
complex conjugates x i) on C̊σ × T are log-canonical, up to some terms which go to zero as s →∞.
This generalizes the notion of a compatible Poisson structure and is the main idea behind the proof
of Theorem 3.

The Poisson bracket πσ∞ was computed explicitly in [ABHL18a]. Properties of (k∗ , πk∗) persist in
the partial tropicalization: there is a linear highest weight map hw: Rm → t∗, which is part of the
Kashiwara crystal structure on Cσ ∩ Zm , and it cuts out the symplectic leaves of πσ∞.

Theorem 4 (Alekseev-Berenstein-Hoffman-Li [ABHL18a]). The symplectic leaves of (C̊σ ×T, πσ∞) are
all of the form

Pλ :� (hw−1(λ) ∩ C̊σ) × T,
where λ is a regular dominant weight of G. The symplectic volume of Pλ equals the symplectic volume of
the coadjoint orbit Oλ. For any p ∈ Pλ, the distance from the point GW−1

s ◦ Lσs (p) to the coadjoint orbit Oλ
approaches 0 as s →∞.

Theorems 3 and 4 are evidence for the following.

Conjecture 5. For any cluster seed σ, the limit

lim
s→∞

(
GW−1

s ◦ Lσs
)

: (C̊σ × T, πσ∞) → (k∗ , πk∗)

exists, and is a smooth Poisson embedding onto an open dense subset of k∗.

Applications of partial tropicalizations Partial tropicalizations are a new tool for proving theo-
rems in in symplectic geometry. The following is a slightly weaker form of Conjecture 5. It says
that there is an exhaustion of any regular coadjoint orbit by toric domains. (In [AHLL19] we prove
a T-equivariant version of Theorem 6 for all regular multiplicity-free K-spaces).

Theorem 6 (Alekseev-Hoffman-Lane-Li [AHLL19]). Let λ be a regular dominant weight of G, and let
σ be a cluster seed of C[Ge ,w0]. For any δ > 0, there exists a symplectic embedding Pδλ ↪→ Oλ, where
Pδλ ⊂ Pλ is the product of a convex subset of hw−1(λ) ∩ Cσ and the torus T. The symplectic volume Oλ is
at most δ greater than the symplectic volume of Pδλ.

An important invariant of a symplectic manifold is its Gromov width, which measures the size of
the largest ball that can be symplectically embedded in a manifold. It has been an open problem to
determine the Gromov width of the coadjoint orbits of a compact group; using toric degeneration
techniques the authors of [FLP18] found an answer for those coadjoint orbits Oλ with λ lying on
a rational line through the origin. A consequence of Theorem 6 is the following, which avoids the
rationality constraint.

Theorem 7 (Alekseev-Hoffman-Lane-Li [AHLL19]). Let λ ∈ t∗ lie on the interior of a Weyl chamber.
Then the Gromov width of Oλ equals

min{|〈λ, α∨〉| | α∨ is a coroot with 〈λ, α∨〉 , 0}.
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Asecond application is a description of the limiting behavior of a certain family of cohomologous
symplectic forms ωλs on the homogenous space K/T. The forms ωλs were studied in [Lu00] as
examples Poisson structures coming from dynamical r-matrices. The behavior of these forms as
s → ∞ was partially known due to a result in [LT17], but it was unknown how the symplectic
volume of the form ωλs arranged itself in the limit. Using partial tropicalizations we proved the
following.
Theorem 8 (Alekseev-Hoffman-Lane-Li [AHLL18]). As s → ∞, the symplectic volume of (K/T, ωλs )
concentrates around the point eT.
Hamiltonian actions on stacks Let (M, ω,G, µ) be a Hamiltonian G-manifold. In general, the
reduced space µ−1(0)/G fails to be a manifold. If 0 is a regular value of µ, then it does make sense
to work with the stack [µ−1(0)/G] of torsors for the action Lie groupoid G n µ−1(0). With Reyer
Sjamaar, we built the foundations of the theory of Hamiltonian actions of étale Lie group stacks
on étale differentiable stacks. In this setting, the G-invariant form ω |µ−1(0) descends to a symplectic
structure on [µ−1(0)/G]. More generally, let H ↪→ G be an immersed Lie subgroup with map of
Lie algebras ι : h→ g. The Lie group stack [G/H] acts on the reduced space [(ι∗ ◦ µ)−1(0)/H]. The
action is Hamiltonian, with moment map µ : [(ι∗ ◦ µ)−1(0)/H] → (g/h)∗.

After establishing the foundations of the theory, we defined the symplectic reduction of a
Hamiltonian stack by a Lie group stack. We proved a stacky Duistermaat-Heckman theorem, and
established the following criterion for the symplectic reduction to exist.
Theorem 9 (Hoffman-Sjamaar [HS18]). Let G be an étale Lie group stack, and assume there is a
Hamiltonian action of G on a symplectic stack (X , ω) with moment map µ : X → Lie(G)∗. The symplectic
reduction (µ−1(0)/G , ωred) exists (as a differentiable stack) if and only if a certain higher-order freeness
condition is satisfied.

In the course of developing this theory we proved several technical results which may be of
independent interest. For instance, the appropriate notion of an action of a Lie group stack on
a differentiable stack is 2-categorical, meaning that the diagrams giving the axioms of an action
commute only up to a given 2-isomorphism. If these 2-isomorphism are in fact the identity, then
the action is strict.
Theorem 10 (Hoffman-Sjamaar [HS18]). If an étale Lie group stack G acts on an étale differentiable stack
X, then the action G ×X → X is always 2-isomorphic to a strict action.

As an application, I defined the notion of a toric symplectic stack (X , ω,T, µ), which generalizes
the notion of a toric symplectic manifold. Here T is a stacky torus, which is a stacky quotient of a
compact torus T by any Lie group immersion N → T; an example is the circle S1 divided by the
subgroup generated by an irrational rotation. In contrast to previous approaches [RZ17, Pra01],
the definition of a toric symplectic stack is intrinsic, meaning it does not depend on the properties
any particular groupoid presentation of X. The moment image µ(X) is always a simple convex
polytope, and may fail to be rational.

A stacky polytope (∆,T, {vi}i) is a simple polytope ∆, a stacky torus T, and a normal vector vi for
each facet of ∆. The normal vectors are required to live inside the cocharacter group of T.
Theorem 11 (Hoffman [Hof19]). The set of toric symplectic stacks is in bĳection with the set of stacky
polytopes (both up to appropriately defined isomorphism).

This generalizes results of Delzant [Del88] and Lerman-Tolman [LT97].

Research Objectives
A stratified andmonoidal partial tropicalization As it currently stands, the partial tropicalization
theory does not account for two important features which appear in the potential cones of [BK06]
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and the Gelfand-Cetlin theory. As a result, applications are restricted in scope to regular coadjoint
orbits (or regular multiplicity-free spaces, more generally). My first research goal is to remedy this
situation.

The first feature which needs to be accounted for is the boundary of the cone Cσ. For each open
face τ ⊂ t∗+ of the positive Weyl chamber, let k∗τ � tλ∈τOλ be the Poisson manifold of coadjoint
orbits through τ. The manifold GWs(k∗τ) ⊂ K∗ is independent of s.

The present construction does not give enough control of the Poisson bracket on this manifold
to prove, for instance, an analogue of Theorem 3. However, based on some promising initial
computations I expect the following to be true: there is a family of distinguished coordinate
systems Rn × (S1)k ↪→ GWs(k∗τ), which are closely related to the cluster algebra structure on a
double Bruhat cell Ge ,u � B ∩ B−uB−. For each such coordinate system, there is a submanifold
C̊ × (S1)k ⊂ Rn × (S1)k on which the Poisson bracket sπK∗ is controlled as s → ∞. The cones C
are constructed in [BK06], and they are indexed by the open faces of the positive Weyl chamber.
Ultimately, the aim is to prove analogues of Theorems 3 and 4 for the manifolds C̊ × (S1)k .

An immediate application would be a computation of the Gromov width of all coadjoint orbits
of K, generalizing Theorem 7. This would involve the combinatorics of embedding simplices in
the cones C.

The second feature is the product operation on coadjoint orbits, on one hand, and on points of
the potential cone Cσ, on the other. On the coadjoint orbits side, a classical problem studied by
Weyl and Horn asks: given weights λ, ν, η, is the set

Mλ,ν,η � {(A, B, C) ∈ Oλ × Oν × Oη | A + B � C}
nonempty? One may also study the symplectic quotient Mλ,ν,η/K for the diagonal action of K on
Mλ,ν,η.

An analogous problem asks for the multiplicities of irreducible summands in tensor products
of K-modules. There is a piecewise-linear multiplication Cσ × Cσ → Cσ on cones, which was used
by [BZ01] to give an answer to this problem in terms of lattice points of convex polytopes. An
elegant solution to the Weyl-Horn problem for the case K � U(n)was given in [KT99] using a new
description of the cone Cσ.

Using results of [ABHL18b, BK06, BZ01], one can define a product mt on any partial tropical-
ization C̊σ × T of K∗. The partially tropicalized Weyl-Horn problem asks when the manifolds

Mt
λ,ν,η � {(x , y , z) ∈ Pλ × Pν × Pη | mt(x , y) � z}

are nonempty. The aim is to describe the manifolds Mt
λ,ν,η, as well as their symplectic quotients

Mt
λ,ν,η/K, using the techniques developed in [AHLL19].
The spaces Mλ,ν,η/K are of independent interest: for small λ, ν, η they are symplectomorphic to

the moduli space of flat k-connections with fixed holonomy, on a sphere with three holes [AM98].
An application would be to build symplectic embeddings of balls into the manifolds Mλ,ν,η/K.

Toric stacks, quantization, and non-commutative geometry Given the description of the equi-
variant cohomology and quantization of a toric manifold in terms of its moment polytope, it is
natural to ask for analogous statements about toric symplectic stacks. This is my second research
goal. Both questions involve careful consideration of the role of the stacky torus T.

On thequantization side, the lattice points of themomentpolytope µ(M) are not the right thing to
look at; in general Hom(T, S1) consists of only the trivial character. A promising approach is to use
the convolution C∗-algebras associatedwith Lie groupoids presenting the stacks in question. These
are noncommutative algebras which stand in for the algebra of smooth functions on the (typically
singular) coarse moduli space of a stack. C∗-algebras also arise when quantizing Hamiltonian
G-manifolds with noncompact G [HL08].
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The convolution algebra approach to quantization will involve developing the connection be-
tween stacks and C∗-algebras, in the spirit of [Lan01]. The group structure of a stacky torus
should translate into a Hopfish algebra structure on its convolution algebra in [TWZ05]. Previous
approaches to Hopfish algebras have been purely algebraic, and as a result C∗ algebras of some
stacky Lie groups are not quite Hopfish. A more analytical approach may remedy this situation,
and this would be a first step toward the goals of the project.

On the cohomology side, for a stacky torus T, the notion of T-equivariant cohomology must
be interpreted correctly. One expects that the T-equivariant cohomology of a toric stack should
be given as the face ring of the irrational moment polytope. It should be a module over the
T-equivariant cohomology of a point.

Outlook and connections with other fields The goals outlined above are part of a program
which extends beyond the immediate future. One of the most interesting possible extensions is to
understand how partial tropicalizations fit into the story of cluster algebras and mirror symmetry.
Given a cluster variety, there is a canonical basis for its coordinate ring parametrized by the
integral tropical points of a mirror variety. More generally, given a partial compactification of a
cluster variety, a canonical basis is sometimes parametrized by the points of a polyhedral cone in
the tropicalized mirror variety [GHKK17]. The cones of [BK06] are examples of this phenomenon
[Mag15]. At the same time, the (uncompactified) cluster varieties always carry a compatible Poisson
structure [FG09]. Partial tropicalizations are a first step towards extending notion of compatible
Poisson structures to partial compactifications of cluster varieties. It would be interesting to find
other examples of Poisson manifolds whose Poisson bracket is controlled on a potential cone as in
Theorem 3. An account of the partial tropicalization of non-regular coadjoint orbits (as described
above) would be a first step in this direction.
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