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CHAPTER 1

Categorical Construction

The bar construction is a very useful tool to compute cohomology for general algebraic
theories (groups, algebras, Lie algebras, etc), as well as for other things like constructing
classifying bundles. Given any monad M and an M -algebra X, the bar construction is an
efficient machine that produces a ‘free resolution’ of X, to which one can then apply the
machinery of derived functors to compute the cohomology of X.1

1. Monad

Definition 1.1. A monad on a category C consists of
• an endofunctor T : C→ C,
• a unit natural transformation η : 1C ⇒ T , and
• a multiplication natural transformation µ : T 2 ⇒ T ,

so that the following diagrams commute in CC = Fun(C,C).

T 3 T 2 T T 2 T

T 2 T T

Tµ

µT µ

ηT

1T
µ

Tη

1T
µ

Remark. A monad on C is precisely a monoid in the monoidal category CC of endofunctors
on C, where the binary functor ◦ : CC × CC → CC is composition, and the unit object is the
identity endofunctor 1C ∈ CC.

1.1. Motivation Example: Adjunction. One source of intuition is that a monad is
the “shadow” cast by an adjunction on the category appearing as the codomain of the right
adjoint. Consider the adjunction

Set Ab,
F

U

a

η : 1Set ⇒ UF, ε : FU ⇒ 1Ab

and suppose we have forgotten entirely about the category of abelian groups. What structure
remains visible on the category of sets? First, there is an endofunctor, UF , which sends a
set to the set of finite formal sums of elements with integer coefficients. There is also the
natural transformation η, the “unit map” whose component ηS : S → UFS sends an element
of the set S to the corresponding singleton sum. However, the ”evaluation map” ε, whose
component εA : FUA→ A is the group homomorphism that evaluates a finite formal sum
of elements of the abelian group A to its actual sum in A, is not directly visible. There is,
however, a related natural transformation (UεF )S : UFUFS → UFS between endofunctors
of Set, which is the evaluation map regarded as a function of sets of finite formal sum, not a
group homomorphism, and considered only in the special case of free abelian groups.

1A wonderful notes on what is bar construction and how to understand it is here.
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For any adjunction, this triple of data defines a monad:

Lemma 1.2. Any adjunction

C D,
F

U

a

η : 1C ⇒ UF, ε : FU ⇒ 1D

gives rise to a monad on the category C serving as the domain of the left adjoint, with
• the endofunctor T defined to be UF ,
• the unit η : 1C ⇒ UF serving as the unit η : 1C ⇒ T or the monad, and
• the whiskered counit UεF : UFUF ⇒ UF serving as the multiplication µ : T 2 ⇒ T
for the monad.

Example 1.3. (1) The free monoid monad is induced by the free a forgetful ad-
junction between monoids and sets. The endofunctor T : Set → Set is defined
by

TA =
∐
n≥0

An

that is, TA is the set of finite lists of elements in A; in computer science contexts, this
monad is often called the list monad. The components of the unit ηA : A→ TA are
defined by the coproduct inclusions, sending each element of A to the corresponding
singleton list. The components of the multiplication µA : T 2A → TA are the
concatenation functions, sending a list of lists to the composite list. In general, the
free monoid monad can also be defined in any monoidal category with coproducts
that distribute over the monoidal product.

(2) The free a forgetful adjunction between sets and the category of R-modules induces
the free R-module monad R[−] : Set → Set. Define R[A] to be the set of
finite formal R-linear combinations of elements of A. Formally, a finite R-linear
combination is a finitely supported function χ : A→ R, meaning a function for which
only finitely many elements of its domain take non-zero values. Such a function
might be written as

∑
a∈A χ(a) · a. The components ηA : A→ R[A] of the unit send

an element a ∈ A to the singleton formal R-linear combination corresponding to the
function χa : A → R that sends a to 1 ∈ R and every other element to zero. The
components µA : R[R[A]]→ R[A] of the multiplication are defined by distributing
the coefficients in a formal sum of formal sums. Special cases of interest include the
free abelian group monad and the free vector space monad.

2. Comonad

Definition 2.1. A comonad on C is a monad on Cop: explicitly, a comonad consists of an
endofunctor K : C→ C together with natural transformations ε : K ⇒ 1C and δ : K ⇒ K2

so that the diagrams dual to Definition 1.1 commute in CC.
A comonad on a category D consists of
• an endofunctor K : D→ D,
• a counit natural transformation ε : K ⇒ 1D, and
• a comultiplication natural transformation δ : K ⇒ K2,
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so that the following diagrams commute in DD = Fun(D,D).

K3 K2 K K2 K

K2 K K

Kδ Kε εK

δK

δ

δ δ
1K 1K

Similarly we have

Lemma 2.2. Any adjunction

C D,
F

U

a

η : 1C ⇒ UF, ε : FU ⇒ 1D

gives rise to a comonad on the category D serving as the domain of the right adjoint, with
• the endofunctor T defined to be UF ,
• the unit η : 1C ⇒ UF serving as the unit η : 1C ⇒ T or the monad, and
• the whiskered counit UεF : UFUF ⇒ UF serving as the multiplication µ : T 2 ⇒ T
for the monad.

3. Algebra Over A Monad

Definition 3.1. Let C be a category with a monad (T, η, µ). The Eilenberg-Moore
category for T or the category of T -algebras is the category CT whose:

• objects are pairs (A ∈ Ob(C), a : TA→ A), called T -algebras, so that the diagrams

A TA T 2A TA

A TA A

ηA

1A
a

µA

Ta a

a

commutes in C, and
• morphisms f : (A, a)→ (A, a′) are T -algebra homomorphisms: maps f : A→ A in
C so that the square

TA TA′

A A′

Tf

a a′

f

commutes, with composition and identities as in C.

Lemma 3.2. For any monad (T, η, µ) acting on a category C, there is an adjunction

C CT ,
FT

UT

a

between C and the Eilenberg-Moore category whose induced monad is (T, η, µ).

Proof. The functor UT : CT → C is the forgetful functor. The functor F T : C → CT

carries an object A in C to the free T -algebra

(TA, µA : T 2A→ TA)
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and carries a morphism f : A→ A′ to the free T -algebra morphism

F Tf : TA
Tf−→ TB.

Note that UTF T = T .
The unit of the adjunction F T a UT is given by the natural transformation η : 1C ⇒ T .

The counit ε : F TUT ⇒ 1CT is defined as follows:

ε(A,a) : (TA, µA)
a−→ (A, a),

T 2A TA

TA A

Ta

µA a

a

Note, in particular, that UT εF T
A = µA, so that the monad underlying the adjunction F T a UT

is (T, η, µ). �

4. Coalgebra Over A Comonad

Definition 4.1. Let D be a category with a comonad (K, ε, δ). The co-Eilenberg-Moore
category for K or the category of K-coalgebras is the category DK whose:

• objects are pairs (B ∈ Ob(D), b : B → KB), called K-coalgebras, so that the
diagrams

B KB K2B KB

B KB B

εB δB

b
1B

Kb

b

b

commutes in D, and
• morphisms g : (B, b)→ (B′, b′) are K-algebra homomorphisms: maps g : B → B′ in
D so that the square

KB KB′

B B′

Kg

b b′

g

commutes, with composition and identities as in D.

Remark. An (c)algebra over a (c)monad is a special case of a (c0)module over a (co)monad
in a bicategory.

5. Bar Construction

5.1. (Augmented) Simplicial Objects. A simplicial object in a category C is a
functor X : ∆op → C. An augmented simplicial object is a simplicial object X : ∆op → C

together an object X−1 ∈ Ob(C) and an arrow ε : X0 → X−1 such that εd0 = εd1 : X1 → X−1.
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5.1.1. Moore Complex. When A is an abelian category, a simplicial object S in A gives
homology via a suitable “boundary” operation. We have a chain complex

S0 S1 S2 · · ·∂ ∂ ∂

called Moore complex, where the boundary homomorphism ∂ : Sn → Sn−1 is defined as the
alternating sum ∂ =

∑n
i=0(−1)idi. Then Hn(S) is the n-th homology of S.

Example 5.1 (Singular Homology). Consider the singular chain complex functor

S : Top sSet

with left adjoint geometric realization

sSet Top
|−|

S

a
We can compose it with the levelwise free abelian group functor

S : Top sSet sAbZ

which assigns to each topoligical space X an (augmented) simplicial object S = S(X), where
each Sn is the free abelian group generated by all the n-simplices in X. The associated chain
complex is the singular homology chain complex of X, with its homology the singular
homology.

5.2. Bar Construction. Let C be a category, (T, η, µ) is a monad on C. we have the
adjunction

C CT ,
FT

UT

a

This in turn gives a comonad FU acting on T -algebras, that is to say, a comonoid in a
monoidal category of endofunctors. By the dual of Lemma ??, there is a unique monoidal
functor

BarT : ∆op → Fun(CT ,CT )

which sends the comonoid [1] in ∆op to FU . This is the bar construction.
Applying the functor which evaluates at a T -algebra (A, a), we have an augmented

simplicial object

BarT (A) =

[
· · · T 3A T 2A TA ATµA

µTA

T 2a

µA

Ta

a

]
.

When C is an abelian category, there is a chain complex QA associated with BarT (A), with
augmentation a : QA→ A.

This complex is a standard resolution of A in the sense of homological algebra, and so
may be used to construct derived functors; in particular, various cohomology functors.

Example 5.2 (Cohomology of groups). Let U : Rng→ Mon be the forgetful functor which
forgets the addition. It has a left adjoint Z : Mon→ Rng which sends each monoid M to the
monoid ring Z[M ]. In particular, when M = G is a group, Z[G] is the group ring.
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Let Mod(Z[G]) be the category of left Z[G]-modules. The forgetful functor U : Mod(Z[G])→
Ab has a left adjoint

F = Z[G]⊗− : Ab Mod(Z[G])

B Z[G]⊗Z B

with unit
η = {ηB : B → Z[G]⊗Z B, b 7→ 1⊗ b}

and counit
ε = {εA : Z[G]⊗Z UA→ A, x⊗ a 7→ xa}.

The composite Mod(Z[G])
U−→ Ab

F−→ Mod(Z[G]) determines a comonad 〈L = UF, ε, δ =
UηF 〉 in the category Mod(Z[G]), where

δA : LA = Z[G]⊗ A L2A = Z[G]⊗ Z[G]⊗ A

x⊗ a x⊗ 1⊗ a

Take A = Z viewed as a trivial Z[G]-module, the simplicial object is

BarL(Z) =
[
Z[G] Z[G]⊗2 Z[G]⊗3 · · ·

]
with face maps di : Z[G]⊗(n+1) → Z[G]⊗n given by

di(x[x1| · · · |xn]) =


xx1[x2| · · · |xn], i = 0,

x[x1| · · · |xixi+1| · · · |xn], 0 < i < n,

x[x1| · · · |xn−1], i = n.

and degeneracy maps si : Z[G]⊗n → Z[G]⊗(n+1) given by

si(x[x1| · · · |xn]) = x[x1| · · · |xi−1|1|xi| · · · |xn].

This (augmented) simplicial object determines an augmented chain complex in Mod(Z[G])

Z Z[G] Z[G]⊗2 · · · Z[G]⊗n · · ·

which is a free resolution of the trivial Z[G]-module Z.
The cohomology of G is obtained from the resolution as follows. By applying the functor

HomG(−, A) : Mod(Z[G])op → Ab to the chain complex (dropping the augmentation) we get
a cochain complex

HomG(Z[G], A) HomG(Z[G]⊗2, A) · · · HomG(Z[G]⊗n, A) · · ·

The cohomology groups of this complex are the cohomology groups Hn(G,A) of the group G
with coefficients in A.

For example,
H0(G,A) = {a ∈ A|xa = a,∀x ∈ G} = AG,

and H1(G,A) is the group of crossed homomorphisms G→ A modulo the principal crossed
homomorphisms, and H2(G,A) is the group of all group extensions of the additive group
A by the multiplicative group G, with operation (conjugation) given by the Z[G]-module
structure of A.
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The homology of G with coefficients in a right Z[G]-module C can be constructed in a
similar way. Apply the contravariant functor C ⊗Z[G] (−) : Mod(Z[G])→ Ab to the chain
complex, we get a chain complex in Ab, whose homology groups are the homology groups of
G with coefficients in C.

In order to see the resolution property of bar construction, we will review some simplicial
methods.

6. Décalage and Resolutions

To explain why the bar construction BarT (A) is an acyclic resolution of (the constant
simplicial object) A, we recall the fundamental décalage construction.

6.1. The Décalage (or Shift) Functor.
6.1.1. Definition. If you take a simplicial set and ’throw away’ the last face and degeneracy,

and relabel, shifting everything down one ’notch’, you get a new simplicial set. This is what
is called the dëcalage (shift in French) of a simplicial set.

Let ∆a be the autgmented simplicial category, i.e. the simplex category ∆ together
with the additional object [−1], the empty set (the initial object of ∆a). We will write
asC = Fun(∆a,C) for the category of augmented simplicial objects in a category C, which we
will assume to be complete and cocomplete.

∆a is a monoidal category with unit [−1] under the operation of ordinal sum, which
operation we will denote by σ, if [m], [n] ∈ Ob(∆a), then σ([m], [n]) = [m+ n+ 1], and the
operation σ gives rise to a bifunctor

σ : ∆a ×∆a → ∆a

which sends a morphism (α, β) : ([m], [n])→ [m′], [n′]) in ∆a ×∆a to the morphism α(α, β)
defined by

α(α, β)(i) =

{
α(i), 0 ≤ i ≤ n,

β(i−m− 1) +m′ + 1, n < i ≤ m+ n+ 1.

Note (∆a, σ) is not a symmetric monoidal category.
The monoidal structure on ∆a allows us to define a functor σ(−, [0]) : ∆a → ∆ which

sends [n] ∈ Ob(∆a) to σ([n], [0]) = [n+ 1] ∈ Ob(∆).

Definition 6.1 ([I]). Define Dec0 : sC → asC to be the functor given by restriction along
σ0 = σ(−, [0]) : ∆a → ∆, so that if X is a simplicial object in C then Dec0X is the augmented
simplicial object obtained by shifting every dimension down by one, ’forgetting’ the last face
and degeneracy of X in each dimension:

• Dec0Xn := Xn+1,
• dn,Dec0X

k := dn+1
k ,

• sn,Dec0X
k := sn+1

k .

Thus the augmented simplicial object Dec0X can be pictured as

X0 X1 X2 X3 · · ·
d0 s0

d0

d1

d1

d0

d2

Note that the simplicial identity d0d1 = d0d0 shows that d0 : X1 → X0 is an augmentation.
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There is an analogous functor Dec0 : sC → asC given by restriction along the functor
σ([0],−) : ∆a → ∆ thus Dec0 is the functor which forgets the bottom face and degeneracy
map at each level.

The functors Dec0 and Dec0 are usually called the décalage or shifting functors. More
generally we can define functors Decn : sC→ asC and Decn : sC→ asC induced by restriction
along σ(−, [n]) : ∆a → ∆.

The relation between Decn and Decn can be easily understood through the notion of the
opposite simplicial object.

(DecnX)op = Decn(Xop).

There are canonical comonads underlying the functors Dec0 and Dec0, when these functors
are thought of as endofunctors on sC by forgetting augmentations. And we see that the
functors Decn and Decn (also thought of as endofunctors on sC) are given by Decn = (Dec0)

n

and Decn = (Dec0)n respectively.

6.2. Path Object. Décalage is essentially a kind of path space construction, i.e., in the
case C = Set it is a simplicial sets analogue of a topological pullback

PX XI X

|X| X

y·
ev1

ev0

id

where id : |X| → X is the identity inclusion of the underlying set with the discrete topology.
PX is essentially a sum of spaces of based paths α : (I, 0)→ (X, x0) over all possible choices
of basepoint x0, fibered over X by taking α to α(1). Each space of based paths is contractible
and therefore PX is acyclic.

Definition 6.2. An acyclic structure on a simplicial object X is a P-coalgebra structure
X → Dec0(X).

A Dec0-coalgebra structure on X is the same as a right σ0-coalgebra (or σ0-comodule)
structure, given by a simplicial map h : X → X ◦ σ0 satisfying certain equations. Explicitly,
it consists of a series of maps hn : X([n])→ X([n+ 1]) satisfying suitable equations.

The map h : X → X ◦ σ0 may be viewed as a homotopy. The coalgebra structure
h : X → Dec0(X) has a retraction given by the counit ε :: Dec0X → X, so X becomes a
retract of an acyclic space, hence acyclic itself.

In our case, there is a homotopy

h : U BarT TU BarT = U BarT D
ηU BarT

which is an acyclic structure, i.e., a right σ0-coalgebra structure. Thus U BarT is acyclic.
Next we will check directly that U BarT (A) is acyclic by direct computation. In order

to do that, we will use a standard homological algebra trick. Explicitly, we will forget the
augmentation of U BarT (A), and consider A = U BarT (A)[−1] as a constant simplicial object,
and show the natural map U BarT (A)→ A is a homotopy equivalence.

6.3. Homotopy of Simplicial Maps.

Definition 6.3 ([M1],Definition 5.1). Let f.g : K → L be simplicial maps between simplicial
sets. Then f is homotopic to g, written f ' g, if there exists hi : Kn → Ln+1 for 0 ≤ i ≤ n,
satisfying
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(1) ∂0h0 = f , ∂n+1hn = g,
(2) ∂ihj = hj−1∂i for i < j, and ∂i+1hi+1 = ∂i+1hi, and ∂ihj = hj∂i−1 for i > j + 1.
(3) sihj = hj+1si for i ≤ j and sihj = hjsi−1 for i > j.

h is called a homotopy from f to g.

Proposition 6.4 ([M1], Proposition 6.2). Let f.g : K → L be simplicial maps between
simplicial sets. Then f ' g if and only if there is a simplicial map H : K ×∆[1]→ L such
that

• H(x, 0) = g(x),∀x ∈ X, and
• H(x, 1) = f(x),∀x ∈ X.

Proposition 6.5 ([M1], Corollary 6.11). Homotopy is an equivalence relation on maps into
Kan complexes.

6.4. Contractibility of the Décalage Functor. It is an important fact that Dec0X
and Dec0X are not just augmented simplicial objects, they are actually contractible aug-
mented simplicial objects in the following sense.

Definition 6.6. Let ε : X → X−1 be an augmented simplicial object in C. The augmentation
map σ is a deformation retraction if there exists a simplicial map s : X−1 → X (with
X−1 is regarded as a constant simplicial object) which is a section of the projection ε and is
such that sε is simplicially homotopic to the identity map on X.

A sufficient condition for sε to be simplicially homotopic to the identity map on X is
that there exist for each n ≥ −1, maps sn+1 : Xn → Xn+1 with s0 = s, which act as ’extra
degeneracies on the right’ in the sense that the following identities hold:

disn+1 = sndi, 0 ≤ i ≤ n,

dn+1sn+1 = id,

sisn = sn+1si,

Given the data of such a collection of maps sn+1 as above, we define maps hi : Xn → Xn+1

by the formula
hi = sn−i0 sn+1d

n−i
0 .

The hi then piece together to define a simplicial homotopy h : X ×∆[1]→ X from sε to the
identity on X.

Lemma 6.7. Let σ : X → X−1 be a contractible augmented simplicial object in C. Then
there is a simplicial homotopy h : X ⊗∆[1]→ X in sC between Sε and 1X .

Lemma 6.8. For any simplicial object X in C , the augmentation d0 : Dec0X → X0 is a
deformation retract. An analogous statement is true for Dec0X.

A prime example where simplicial objects with extra degeneracies appear is in the
construction of simplicial comonadic resolutions. Suppose that L is a comonad on a category
C, and X is an object of C. Then L determines an augmented simplicial object L∗X whose
object of n-simplices is LnX and whose face and degeneracy maps are defined by

di = LiεLn−i, sj = LiδLn−i−1.

respectively, where ε : L→ 1 denotes the counit and δ : L→ L2 denotes the comultiplication
of the comonad. Suppose that there exists a section s : A→ LA of the counit a : LA→ A.
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Then σ determines extra degeneracies sn+1 : LnX → Ln+1X given by sn+1 = Lnσ. It follows
from the discussion above that there is a simplicial homotopy h : L∗X ×∆[1]→ L∗X in sC
between sε and the identity on L∗X. In the case of bar construction, ηA : A→ TA gives a
desired section, so the augmentation is in fact a homotopy equivalence.

7. Two-sided Bar Construction

7.1. Left and Right Modules. Let B be a 2-category, and let M : B → B be a monad
with multiplication m : M2 →M and unit u : 1B →M .

A left module over M consists of a 1-cell X : A→ B and a 2-cell α : MX → X such
that the diagram

X MX M2X MX

X MX X

uX

1X
α

mX

Mα α

α

commute.
A right module over M consists of a 1-cell Y : B → C and a 2-cell β : YM → Y such

that the diagrams

Y YM YM2 YM

X MX X

Y u

1Y
β

Y m

βM β

β

commute.

7.2. Two-sided Bar Construction. Suppose given a 2-category B together with a
monadM : B → B in B, together with a left module X : A → B and a right module
Y : B → C. There is a unique 2-functor I → B which preserves the monad and module
structures, and this induces a functor ∆op = I(0, 2) B(A,C) This functor is the
two-sided bar construction, denoted B(Y,M,X).

The structure of the two-sided bar construction may be given more concretely as follows:

• The n-dimensional component of B(Y,M,X) is

B(Y,M.X)n = YMnX

• The n+ 2 face maps dni : YMn+1X → YMnX

dni =


βMnX, i = 0,

Y M i−1mMn−iX, 1 ≤ i ≤ n,

Y Mnα, i = n+ 1.

• The n+ 1 degeneracy maps sni : YMnX → YMn+1X are YM iuMn−iX, 0 ≤ i ≤ n.
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7.3. Classifying bundle. Consider the cartesian monoidal category Top as a 1-object
bicategory ΣTop (which we may strictify to a 2-category). A topological monoid M is the
same as a monad in ΣTop, and the usual meaning of left and right M -modules is preserved
by thinking of them as modules over the monad.

In particular, M may be regarded as a left or right M -module, and the 1-point space
∗ carries a unique structure of left or right M -module. As a result we may consider the
simplicial space

BM = B(∗,M, ∗)
as base space, and the simplicial space

EM = B(M,M, ∗)
as total space, of a simplicial fibration

B(π,M, ∗) : B(M,M, ∗)→ B(∗,M, ∗)
induced by the unique left module map π : M → ∗. This is the classifying bundle of the
monoid M .

7.4. Cofibrant replacement. If T is a monad and (A, a : TA → A) is a (left-sided)
T -algebra, then with T acting upon itself on the right, there is a simplicial object B(T, T,A)
which may be regarded as a cofibrant replacement of A, a simplicial T -algebra which as a
simplicial object is homotopy-equivalent to the constant simplicial object at A.

7.5. Canonical two-sided bar construction of an adjunction. Suppose given any
adjoint pair

A B,
F

U

a
η : 1C ⇒ UF, ε : FU ⇒ 1D

in a 2-category B. There is an associated monad M = UF : B → B, and a canonical left
M -action on U :

α = Uε : UFU ⇒ U

and a canonical right M -action on F :

β = εF : FUF → F.

We may then form the canonical simplicial object B(F,M,U). By general abstract nonsense,
the tensor product F

⊗
M U is 1A, so if we regard 1A as a constant simplicial object ∆op →

B(A,A), the cofibrant replacement result above specializes as follows.

Proposition 7.1. The canonical simplicial map B(F,M,U)→ 1A is a simplicial homotopy
equivalence.

7.6. Homotopy colimits. Suppose that C is a small category and F : C → Top is a
functor. We may regard C as a monad C : C0 → C0 in the bicategory of spans in Top, where
C0 is the set of objects with the discrete category, and we may regard F as a left module
over the monad C.

As always, the terminal object 1 carries a unique right module structure. The usual
colimit, colimF , may be described as the tensor product

colimF ∼= 1 ◦C F
As a result, we have the cofibrant replacement B(1,C, F ) of colimF . The geometric realization
of the simplicial space B(1, C, F ) is none other than the homotopy colimit of F.
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8. Total Décalage Functor

The ordinal sum map
σ : ∆×∆ ∆

induces a functor
Dec : sSet ssSet

with DecX([m], [n]) = Xm+n+1.
DecX is both row and column augmented. The row augmentation εr : DecX → p∗1X is

given by the map dlast : Dec0X → X, while the column augmentation εc : DecX → p∗2X is
given by the map dfirst : Dec0X → X.

Suppose that X is a simplicial set, and regard DecX as a (vertical) simplicial space whose
rows are the simplicial sets DecnX for n ≥ 0. Then the functor p∗1 : sSet → ssSet which
sends a simplicial set K to the constant simplicial space whose rows are K, has a left adjoint
π0 : ssSet→ sSet.

Lemma 8.1. For any simplicial set X, we have π0 DecX = X.

Dec has both a left and right adjoint. The left adjoint of Dec is related to the notion of
the join of simplicial sets. The right adjoint to Dec is denoted T : ssSet→ sSet, called the
total simplicial set functor. It has the following explicit description: if X is a bisimplicial
set then the set (TX)n of n-simplices of the simplicial set TX is given by the equalizer of
some diagram.

Lemma 8.2. Let X be a simplicial set. Then there are isomorphisms Tp∗1X = Tp∗2X = X,
natural in X.

8.1. Kan’s Simplicial Loop Group Construction.

Definition 8.3. Let G be a simplicial group. Then WG is the simplicial set with a single
vertex, and whose set of n-simplices, n ≥ 1, is given by

WGn = Gn−1 × · · · ×G0

with face and degeneracy maps given by

di(gn−1, · · · , g0) =

{
(gn−2, · · · , g0), i = 0,

(dign−1, · · · , d1gn−i+1, gn−id0gn−i, gn−i−2 · · · , g0) i > 0.

and

s(gn−1, · · · , g0) =

{
(1, gn−1, · · · , g0) i = 0,

(si−1gn−1, · · · , s0gn−i, 1, gn−i−1, · · · , g0) i > 0.

Let NG denotes the bisimplicial set which, when viewed as a (vertical) simplicial object
in sSet, has as its object of n-simplices the (horizontal) simplicial set NGn, i.e. the nerve of
the group Gn.

Proposition 8.4. The classifying complex functor W factors as

W = TN,

so that WG = TNG for any simplicial group G.
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9. Simplicial Principal Bundle

9.1. Twisting Function. Let X• be a simplicial set and G• a simplicial group. Then a
twisting function τ : X• → G• is a family of maps ϕ = {τn : Xn → Gn−1, n ≥ 1} such that

d0(τ(x)) = τ(d1(x))τ(d0x)−1,
diτ(x) = τ(di+1x), i > 0,
siτ(x) = τ(si+1x), i ≥ 0,
τ(s0x) = 1G.

9.2. Twisted Cartesian Product. Given a simplicial set Ybullet with left G•-action,
one then defines a twisted Cartesian product, (TCP), X• ×τ Y• with

(X• ×τ Y•)n = Xn × Yn

and
di(x, f) = (dix, dif), i > 0
d0(x, f) = (d0x, τ(x)d0f),
si(x, y) = (six, siy).

By the adjunction between W -bar and the Dwyer-Kan loop groupoid functor, a twisting
function τ : X• → G• corresponds exactly to a simplicial map from X to W (G•) delooping of
the simplicial group. It also corresponds to a morphism of simplicial groupoids G(X•)→ G•.

9.3. Simplicial Principal Bundle.

Definition 9.1. Let G be a simplicial group. For E a Kan complex, an action of G on E

ρ : E ×G→ E

is called principal if it is degreewise principal, i.e. if for all n ∈ N the only elements g inGn

that have any fixed point e ∈ En in that ρ(e, g) = e are the neutral elements.

Definition 9.2. For G a simplicial group, a morphism E → X of Kan complexes equipped
with a G-action on E is called a G-simplicial principal bundle if

• the action is principal;
• the base is isomorphic to the quotient

E/G := eq{ E ×G E
ρ

pr1
}

by the G-action, E/G ' X.

Proposition 9.3 ([M1], Lemma 18.2). A simplicial G-principal bundle P → X is necessarily
a Kan fibration.

Proposition 9.4 ([M1], Proposition 18.4). Let E → B be a twisted cartesian product of the
simplicial set B with a simplicial group G. Then with respect to the canonical G-action this
is a simplicial principal bundle.
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9.4. Universal Simplicial G-Principal Bundle.

Definition 9.5. For G a simplicial group, define the simplicial set WG to be the décalage
of WG

WG := Dec0WG.

For X• any Kan complex, there is an ordinary pullback diagram

P• WG

X• WG
g

We call P• := X• ×g WG the simplicial G-principal bundle corresponding to g.

Proposition 9.6. Let τ be the twisting function corresponding to g : Xbullet → WG. Then the
simplicial set P• := X• ×g WG is explicitly given by the twisted Cartesian product X• ×τ G•.
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