Orthogonal Spectra
Last time: sequential spectra

Quillon pair play nicely with homstopy theory

HA
with $n^{\text {th }}$ space $K(A, n)$
H faithfully embeds $A D$ into Spectra

Spectra

Aring is a monoid in $(A b, \otimes, \mathbb{Z})$
Need to define a symmetric monoidal product on Sp

Problem: there is a finite list of desirecable properties for a category e with ho (e) the stable homotopy category
such as
a monoidal product

Lewis proves you can only ever have 4 ot 5
properties. Impossible to hove all of them.
Remark: Actually, you can with oo-cats
Models of Spectra: a category e that has

- symmetric spectra
- orthogonal spectra
- EKMM spectra
- -spaces - a spectromtis connective if $\pi_{n} x=0$ for $n<0$ Γ-spaces only give. connective spectra

Def: An orthogonal ${ }_{N}$ spectrum X consists of the following
data: $G \times O(n)$-orthogonal gp of.

- pointed spaces X_{n} with $O(n)$-action $n \times{ }^{\text {m matrices }}$

$$
\ldots \text { maps } \sigma_{n}: X_{n} \wedge S^{\prime} \longrightarrow X_{n+1}
$$

such that the composite $\sigma_{n+m-1} 0 \cdots 0 \sigma_{n}$

$$
\begin{aligned}
& G \times O_{(0)} C_{X} \wedge S^{m^{2} O(m)} \longrightarrow X_{n+m}^{\mathcal{E}^{x} O(n+m)} \\
& \text { is } O(n) \times O(m) \subseteq O(n+m) \text {-equivariant } \\
& G \times O(n) \times O(m)
\end{aligned}
$$

$O(m) \mathrm{C}^{m}$ if we think of S^{m} as the 1-pt compactification of \mathbb{R}^{m}.

$$
O(n) \times O(n) \quad \because O(n+n)
$$

block diagaral $\left[\begin{array}{ll}A_{n} & 0 \\ 0 & A_{n}\end{array}\right]$
Def: A morphism of orthogonal spectra $f: X \rightarrow Y$ is a sequence of $f^{-x} O(n)$ - equivariart maps $X_{n} \xrightarrow{f_{n}} Y_{n}$ such that the following diagram commutes?

$$
\begin{aligned}
& X_{n} \wedge S^{m} \xrightarrow{f_{n} \wedge i d} Y_{n} \wedge S^{m} \\
& \int_{X_{n+m} \sigma} \xrightarrow{f_{n+m}} y_{n+m} \sigma
\end{aligned}
$$

Examples: $n^{\text {th }}$ space $S^{n}=1$-pt compactification ring spectrum
ring spectrum

Eilenberg-Maclane Spectra HA

$$
\text { If } A \text { is } H A=A\left[S^{n}\right]=\left\{\begin{array}{l|l}
\sum a_{i} \delta^{i} & a_{i} \in A \\
s_{i} \in S^{n}
\end{array}\right\}
$$ is a ring spectrum

think $A\left[\mathbb{R}^{n}\right] \cup A \cdot\{00\}$
Suspension Spectra: $\sum^{\infty} X$
$n^{\text {th }}$ space $\int_{O(n)}^{n} \wedge X^{n}$
$O(n)$ trivial action

Def: An orthogonal ring spectrom R is an orthogonal spectrum R together with
"graded multiplication" $\mu_{n, m}: R_{n} \wedge R_{m}$
$\longrightarrow R_{n+m} O(n) \times O^{\prime}(m)$ - equivariart
$i_{n}: S^{n} \longrightarrow R_{n} \quad$ for $n \geq 0 \quad O(n)$-equivariont
has associativity, unit properties

Associative

$$
\begin{aligned}
& R_{n} \wedge R_{m} \cap R_{p} \stackrel{\mid \mu}{\longrightarrow} R_{n} \wedge R_{m+p} \\
& \omega^{\mu} \wedge \mu \\
& R_{n+m} \wedge R_{p} \xrightarrow{ } R_{n+m+p}
\end{aligned}
$$

unit

$$
R_{n} \cong R_{n} \wedge S^{0} \xrightarrow{i d \wedge i_{0}} R_{n} \wedge R_{0} \xrightarrow{\mu_{n, 0}} R_{n}
$$

(and the symmetric thing)
multiplicativity $\mu_{n, m} \circ i_{n} \wedge i_{m}=i_{n+m}$

$$
S^{n} \wedge S^{m} \xrightarrow{i_{n} \wedge i_{m}} R_{n} \wedge R_{m} \xrightarrow{\mu} R_{n+m}
$$

Centrality

$$
\begin{aligned}
& R_{m} \wedge S^{n} \xrightarrow{i d \wedge i_{n}} R_{m} \wedge R_{n} \xrightarrow{\mu} R_{m+n} \\
& S^{n} \wedge R_{M} \xrightarrow{i_{n} \wedge i d} R_{n} \wedge R_{m} \xrightarrow{\mu} R_{n+m}^{x_{n, m}} \\
& t_{n m}=\left[\begin{array}{ll}
0 & I_{n} \\
I_{m} & 0
\end{array}\right]
\end{aligned}
$$

Properties of Stable Homettopy Category:
$H_{0}\left(S_{p}\right)$ is the stable hamotopy category

- it is abelion
finite products $=$ finite coproducts
has all Kernels (= fibers)
all cotervels ($=$ coffers)
fiber seas $A \rightarrow B \rightarrow C$ are conifer seas
- it is triangulated - associated who has a shift functor \sum shift in the other direction Ω has a notion of "distinguished triangle" which yields lang exact sequences
- it is closed symmetric monoidal $\Lambda=\otimes_{\Phi}$
has a monoidal product ΛL smash w unit \$
hos on internal ham $F(x, y)$ < function $\begin{aligned} & \text { spectrum }\end{aligned}$

$$
\operatorname{map}(x, y)
$$

$$
F(x \wedge y, z) \simeq F(x, F(y, z))
$$

Spaces $\stackrel{\Sigma_{1}^{\infty}}{\Omega^{\infty}}$ Spectra $^{\frac{1}{4}}$

$$
\Omega^{\infty} X=\operatorname{colim} \Omega^{n} X_{n}
$$

$$
\sum_{+}^{\infty}\left(X \longrightarrow \sum^{2} y\right)
$$

$\operatorname{Hom}_{\mathrm{Ch}_{20}(\mathbb{Z})}\left(A_{0}, B_{0}\right)=Q_{n \in \mathbb{Z}}$ degree n homs
$\operatorname{Hom}_{n_{0}\left(s_{p}\right)}\left(x_{1} y\right)$ includes maps of degree $\neq 0$

$$
x \rightarrow \Sigma^{2} y
$$

$$
\begin{aligned}
& \Omega^{\infty} X=\operatorname{colim}\left(X_{0} \xrightarrow{\tilde{\sigma}} \Omega X_{1} \xrightarrow{\tilde{\sigma}} \Omega^{2} X_{2} \xrightarrow{\tilde{\sigma}} \cdots\right) \\
& \pi_{n} \Omega^{\infty} X=\pi_{n}^{s}(X)=\pi_{n}\left(\Sigma^{\infty} X\right)
\end{aligned}
$$

Cay. Malkiewicz has a good overview on his webpage Stefan Schwede - Lectures on Equinariant Stable nomotopy theory

Birgit Richter - Commutative Ring Spectra
Handbook of Htry theory (on nab)
(real, orthogonal)
G-equivariont spectra should be indexed on G-reps let V be a G-rep, X on orthogonal spectrum

$$
X(V)=\operatorname{lin}\left(\mathbb{R}^{n}, V\right)_{+} \Lambda_{\left.Q_{n}\right)} X_{n}
$$

htry "groups" of G-spectra are Mack finetors

