Compositional Structure of Partial Evaluations

Carmen Constantin¹ Tobias Fritz² Paolo Perrone³ Brandon Shapiro⁴

¹Oxford University

²Universität Innsbruck

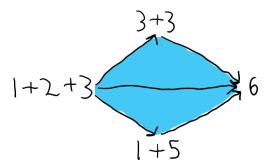
³Massachusetts Institute of Technology

⁴Cornell University

MIT Categories Seminar 9/10/20

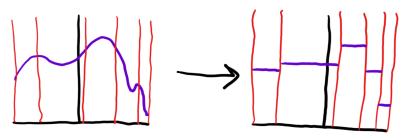
Partial Evaluations

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a directed space of formal expressions
- How does this space relate to algebra? Computation?



Partial Evaluations

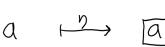
- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a directed space of formal expressions
- How does this space relate to algebra? Computation?
- Probability?



A *monad* is a functor $T:\mathcal{C}\to\mathcal{C}$ where TX describes formal expressions on X,

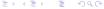
A *monad* is a functor $T: \mathcal{C} \to \mathcal{C}$ where TX describes formal expressions on X, where we have:

ullet A natural "unit" map $\eta:X o TX$



A *monad* is a functor $T: \mathcal{C} \to \mathcal{C}$ where TX describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \to TX$
- ullet A natural "multiplication" map $\mu: TTX o TX$



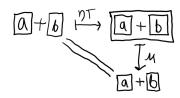
A *monad* is a functor $T: \mathcal{C} \to \mathcal{C}$ where TX describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \to TX$
- A natural "multiplication" map $\mu: TTX \to TX$
- Unit and associativity equations:

$$TX \xrightarrow{\eta T} TTX$$

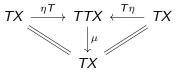
$$\downarrow^{\mu}$$

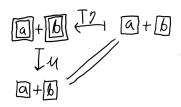
$$TX$$

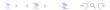


A *monad* is a functor $T: \mathcal{C} \to \mathcal{C}$ where TX describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \to TX$
- ullet A natural "multiplication" map $\mu: TTX o TX$
- Unit and associativity equations:

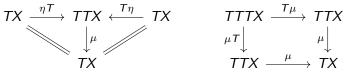


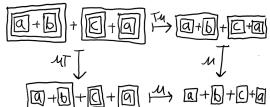




A *monad* is a functor $T: \mathcal{C} \to \mathcal{C}$ where TX describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \to TX$
- A natural "multiplication" map $\mu: TTX \to TX$
- Unit and associativity equations:





A *monad* is a functor $T: \mathcal{C} \to \mathcal{C}$ where TX describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \to TX$
- ullet A natural "multiplication" map $\mu: TTX o TX$
- Unit and associativity equations:

$$TX \xrightarrow{\eta T} TTX \xleftarrow{T\eta} TX$$

$$\downarrow^{\mu}$$

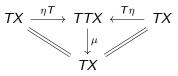
$$TX$$

$$\begin{array}{ccc} TTTX & \xrightarrow{T\mu} & TTX \\ \mu T & & \mu \\ TTX & \xrightarrow{\mu} & TX \end{array}$$

Example: Distribution monad

A *monad* is a functor $T: \mathcal{C} \to \mathcal{C}$ where TX describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \to TX$
- A natural "multiplication" map $\mu: TTX \to TX$
- Unit and associativity equations:



$$TTTX \xrightarrow{T\mu} TTX$$

$$\mu T \downarrow \qquad \qquad \mu \downarrow$$

$$TTX \xrightarrow{\mu} TX$$

Example: Distribution monad



A *monad* is a functor $T: \mathcal{C} \to \mathcal{C}$ where TX describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \to TX$
- A natural "multiplication" map $\mu: TTX \to TX$
- Unit and associativity equations:

$$TX \xrightarrow{\eta T} TTX \xleftarrow{T\eta} TX \qquad TTTX \xrightarrow{T\mu} TTX$$

$$\downarrow^{\mu} \qquad \qquad \downarrow^{\mu} \downarrow^{\mu}$$

$$TX \qquad TTX \xrightarrow{\mu} TX$$

Example: Distribution monad

A *monad* is a functor $T: \mathcal{C} \to \mathcal{C}$ where TX describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \to TX$
- A natural "multiplication" map $\mu: TTX \to TX$
- Unit and associativity equations:

$$TX \xrightarrow{\eta T} TTX \xleftarrow{T\eta} TX \qquad TTTX \xrightarrow{T\mu} TTX$$

$$\downarrow^{\mu} \qquad \downarrow^{\mu} \downarrow^{\mu} \downarrow^{\mu}$$

$$TX \xrightarrow{TTX} \xrightarrow{\mu} TX$$

Example: Free S-module monad (S a semiring)

An algebra for a monad T is an object A equipped with a map
 e: TA → A sending each formal expression to its evaluation

Example: (Commutative) monoid $\mathbb N$

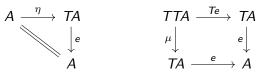
$$TN \qquad N$$

$$1+2+3=6$$

- An algebra for a monad T is an object A equipped with a map
 e: TA → A sending each formal expression to its evaluation
- *e* must satisfy the following equations:

Example: (Commutative) monoid $\mathbb N$

- An algebra for a monad T is an object A equipped with a map
 e: TA → A sending each formal expression to its evaluation
- *e* must satisfy the following equations:



Example: (Commutative) monoid \mathbb{N}

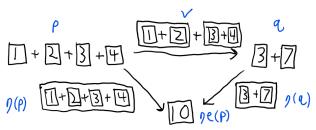
- An algebra for a monad T is an object A equipped with a map
 e: TA → A sending each formal expression to its evaluation
- *e* must satisfy the following equations:

Example: Trivial S-module

Partial evaluations

- ullet Consider a T-algebra (A,e) and formal expressions $p,q\in TA$
- A partial evaluation from p to q is a doubly nested expression $v \in TTA$ with $\mu(v) = p$ and Te(v) = q
- If p partially evaluated to q, then e(p) = e(q)
- There is always a partial evaluation $\eta(p)$ from p to $\eta e(p)$

Example: (Commutative) monoid $\mathbb N$

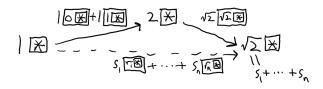


• Do partial evaluations compose?

Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in TTA$ with $\mu(v) = p$ and Te(v) = q
- Consider the trivial S-module:

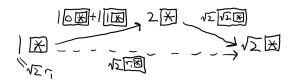
• Let $S = \mathbb{N}[\sqrt{2}] = \{n + m\sqrt{2}\}$



Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in TTA$ with $\mu(v) = p$ and Te(v) = q
- Consider the trivial S-module:

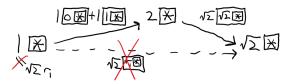
• Let $S = \mathbb{N}[\sqrt{2}] = \{n + m\sqrt{2}\}$



Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in TTA$ with $\mu(v) = p$ and Te(v) = q
- Consider the trivial S-module:

• Let $S = \mathbb{N}[\sqrt{2}] = \{n + m\sqrt{2}\}$



• (CFPS) Partial evaluations don't always compose

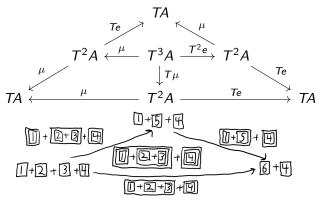
Bar Construction

- Partial evaluations fit into a richer structure, called the Bar Construction of a T-algebra A
- Relations between monad and algebra maps...

$$TA \stackrel{\mu}{\longleftarrow} T^2A \stackrel{Te}{\longrightarrow} TA$$

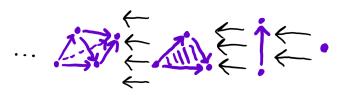
Bar Construction

- Partial evaluations fit into a richer structure, called the Bar Construction of a T-algebra A
- Relations between monad and algebra maps...



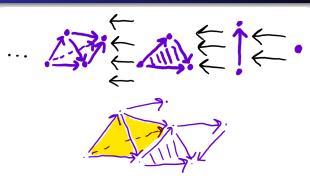
Bar Construction

- Partial evaluations fit into a richer structure, called the Bar Construction of a T-algebra A
- Relations between monad and algebra maps...

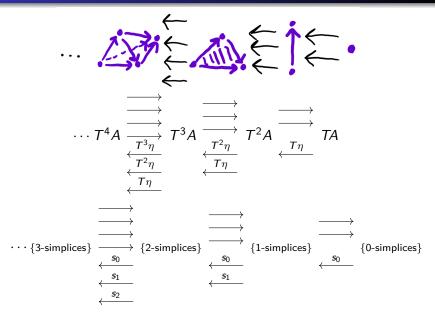


$$\cdots T^{4}A \xrightarrow{\begin{array}{c} T^{3}e \\ \hline T^{2}\mu \\ \hline \mu \\ \hline \end{array}} T^{3}A \xrightarrow{\begin{array}{c} T^{2}e \\ \hline T\mu \\ \hline \end{array}} T^{2}A \xrightarrow{\begin{array}{c} Te \\ \hline \end{array}} TA$$

...are given by the simplicial identities.

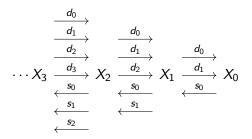


$$\cdots \{3\text{-simplices}\} \xrightarrow[-d_3]{d_1} \underbrace{\begin{array}{c} d_0 \\ d_1 \\ d_2 \\ d_3 \\ \end{array}} \{2\text{-simplices}\} \xrightarrow[-d_2]{d_0} \{1\text{-simplices}\} \xrightarrow[-d_1]{d_0} \{0\text{-simplices}\}$$



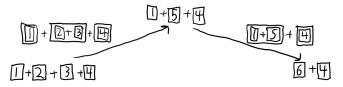
• The simplex category Δ is the category of finite nonempty ordered sets and order preserving functions.

ullet A simplicial object X in a category ${\mathcal C}$ is a functor $\Delta^{op} o {\mathcal C}$.



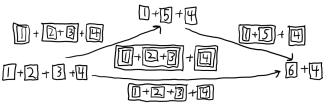
• A simplicial object X in a category $\mathcal C$ is a functor $\Delta^{op} \to \mathcal C$. Like the bar construction $Bar_T(A)$

• 1-simplices in this simplicial set are partial evaluations:



• A simplicial object X in a category $\mathcal C$ is a functor $\Delta^{op} \to \mathcal C$. Like the bar construction $Bar_T(A)$

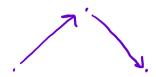
2-simplices in this simplicial set are "composition strategies":



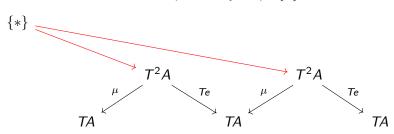
 When do successive partial evaluations have a composition strategy?

ullet Partial evaluations are equivalently maps $\{*\}
ightarrow \mathcal{T}^2 A$

 When do successive partial evaluations have a composition strategy?

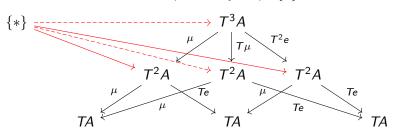


• Partial evaluations are equivalently maps $\{*\} \to T^2A$

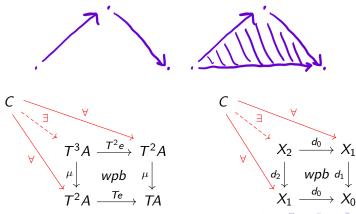


 When do successive partial evaluations have a composition strategy?

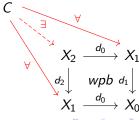
ullet Partial evaluations are equivalently maps $\{*\}
ightarrow \mathcal{T}^2 \mathcal{A}$



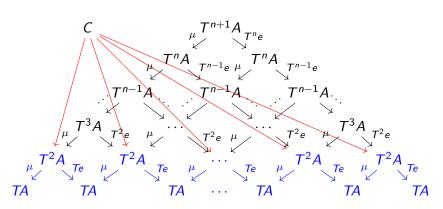
- If the square is a *weak pullback* (aka *weakly cartesian*), the dashed map always exists but not necessarily uniquely
- In a simplicial set *X*, this property corresponds to having all inner 2-horn fillers



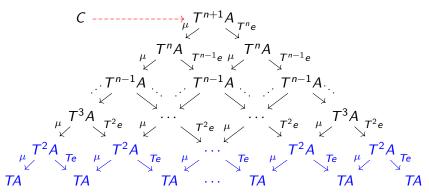
- If the square is a weak pullback (aka weakly cartesian), the dashed map always exists but not necessarily uniquely
- In a simplicial set *X*, this property corresponds to having all inner 2-horn fillers
- If the square is a (strong) pullback, the fillers are unique
- When is $Bar_T(A)$ the nerve of a category? A quasicategory?



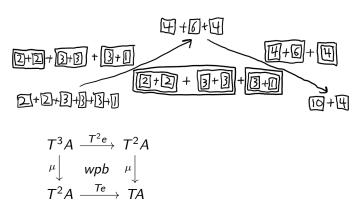
- When do partial evaluations form a category?
- ullet If the naturality squares of μ are cartesian
- For $X = Bar_T(A)$, this means $X_n \cong X_1 \times_{X_0} \stackrel{n}{\cdots} \times_{X_0} X_1$



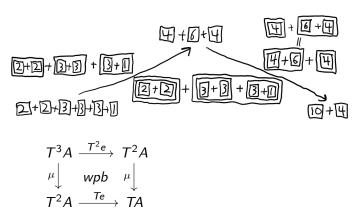
- When do partial evaluations form a category?
- ullet If the naturality squares of μ are cartesian
- For $X = Bar_T(A)$, this means $X_n \cong X_1 \times_{X_0} \stackrel{n}{\cdots} \times_{X_0} X_1$
- This makes Bar_T(A) the nerve of a category with formal expressions as objects and partial evaluations as morphisms



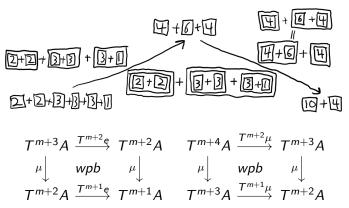
- ullet Free monoid monad (or any plain operad) has cartesian μ
- ullet Free comm. monoid monad ${\cal T}$ has only weakly cartesian μ



- ullet Free monoid monad (or any plain operad) has cartesian μ
- ullet Free comm. monoid monad ${\cal T}$ has only weakly cartesian μ



- ullet Free monoid monad (or any plain operad) has cartesian μ
- ullet Free comm. monoid monad ${\cal T}$ has only weakly cartesian μ



- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ
- T also preserves weak pullbacks
- Such BC monads include distribution, any symmetric operad
- (CFPS) $Bar_T(\mathbb{N})$ is not a quasicategory

$$T^{l+m+3}A \xrightarrow{T^{l+m+2}e} T^{l+m+2}A \qquad T^{l+m+4}A \xrightarrow{T^{l+m+2}\mu} T^{l+m+3}A$$

$$T^{l}\mu \downarrow \qquad wpb \qquad T^{l}\mu \downarrow \qquad wpb \qquad T^{l}\mu \downarrow$$

$$T^{l+m+2}A \xrightarrow{T^{l+m+1}e} T^{l+m+1}A \qquad T^{l+m+3}A \xrightarrow{T^{l+m+1}\mu} T^{l+m+2}A$$

$$T^{l+m+4}A \xrightarrow{T^{l+m+2}\mu} T^{l+m+3}A$$

$$T^{l}\mu \downarrow \qquad wpb \qquad T^{l}\mu \downarrow$$

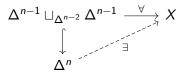
$$T^{l+m+3}A \xrightarrow{T^{l+m+1}\mu} T^{l+m+2}A$$

- What properties does Bar_T(A) have when T is BC?
- Let n > 2, i i > 1
- A simplicial set X with this property

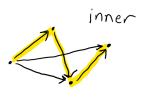
$$T^{n+1}A \xrightarrow{T^{n-i}\mu} T^nA$$
 $T^{n-j}\mu \downarrow wpb \downarrow T^{n-j}\mu$
 $T^nA \xrightarrow{T^{n-i-1}\mu} T^{n-1}A$

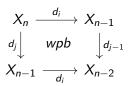
- What properties does $Bar_T(A)$ have when T is BC?
- Let $n \ge 2$, j i > 1
- A simplicial set X with this property is inner span complete

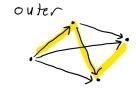
$$egin{aligned} X_n & \stackrel{d_i}{\longrightarrow} & X_{n-1} \ d_j igg| & wpb & igg| d_{j-1} \ X_{n-1} & \stackrel{d_i}{\longrightarrow} & X_{n-2} \end{aligned}$$



- What properties does $Bar_T(A)$ have when T is BC?
- Let $n \ge 2$, j i > 1
- A simplicial set X with this property is inner span complete





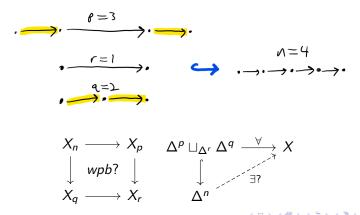


$$X_{n} \xrightarrow{d_{i}} X_{n-1} \qquad \Delta^{n-1} \sqcup_{\Delta^{n-2}} \Delta^{n-1} \xrightarrow{\forall} X$$

$$\downarrow d_{j} \qquad wpb \qquad \downarrow d_{j-1} \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_{n-1} \xrightarrow{d_{i}} X_{n-2} \qquad \Delta^{n}$$

- What properties does $Bar_T(A)$ have when T is BC?
- Let $n \ge 2$, j i > 1
- A simplicial set X with this property is inner span complete
- (CFPS) X then has fillers for all spans containing the spine



- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^n$:
 - S contains the spine of Δ^n
 - The 1-skeleton of *S* is *chordal*
 - S has $\partial \Delta^k \hookrightarrow \Delta^k$ fillers for $2 \le k \le n$
- Does not include any horns



- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^n$:
 - S contains the spine of Δ^n
 - The 1-skeleton of *S* is *chordal*
 - S has $\partial \Delta^k \hookrightarrow \Delta^k$ fillers for $2 \le k \le n$
- Does not include any horns
- Includes spine inclusions

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^n$:
 - S contains the spine of Δ^n
 - The 1-skeleton of *S* is *chordal*
 - S has $\partial \Delta^k \hookrightarrow \Delta^k$ fillers for $2 \le k \le n$
- Does not include any horns
- Includes spine inclusions and 2-Segal inclusions

Parting Thoughts...

- We can also describe when partial evaluations do or don't have inverses
- Inner span completeness is not a homotopical property
- How do properties of $Bar_T(A)$ relate to computation?
- Higher order rewriting?

Thank you!

References

- Carmen Constantin, Tobias Fritz, Paolo Perrone, and Brandon Shapiro. Partial evaluations and the compositional structure of the bar construction. Coming soon.
- Tobias Fritz and Paolo Perrone. Monads, partial evaluations, and rewriting. *Proceedings of MFPS 36, ENTCS,* 2020.
- Maria Manuel Clementino, Dirk Hofmann, and George Janelidze. The monads of classical algebra are seldom weakly Cartesian. J. Homotopy Relat. Struct., 9(1):175–197, 2014.
- Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the Desirability of Acyclic Database Schemes. Journal of the ACM, 30, 479-, 1983.