### Compositional Structure of Partial Evaluations

#### Carmen Constantin<sup>1</sup> Tobias Fritz<sup>2</sup> Paolo Perrone<sup>3</sup> Brandon Shapiro<sup>4</sup>

<sup>1</sup>Oxford University

<sup>2</sup>Universität Innsbruck

<sup>3</sup>Massachusetts Institute of Technology

<sup>4</sup>Cornell University

MIT Categories Seminar 9/10/20

Constantin, Fritz, Perrone, Shapiro Compositional Structure of Partial Evaluations

æ

A B F A B F

• Algebra is all about evaluating formal expressions

伺 ト イヨ ト イヨト

э

• Algebra is all about evaluating formal expressions

# 1+2+3

伺 ト く ヨ ト く ヨ ト

э

• Algebra is all about evaluating formal expressions



・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated



向下 イヨト イヨト

э

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated



A B M A B M

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated



- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a directed space of formal expressions



- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a directed space of formal expressions



- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a directed space of formal expressions
- How does this space relate to algebra? Computation?



- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a directed space of formal expressions
- How does this space relate to algebra? Computation?
- Probability?



- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a directed space of formal expressions
- How does this space relate to algebra? Computation?
- Probability?



- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a directed space of formal expressions
- How does this space relate to algebra? Computation?
- Probability?



æ

A monad is a functor  $T : C \to C$  where TX describes formal expressions on X,

・ 同 ト ・ ヨ ト ・ ヨ ト

э

A monad is a functor  $T : C \to C$  where TX describes formal expressions on X,

Example: "Free (commutative) monoid" monad

何 ト イヨ ト イヨ ト

э

A monad is a functor  $T : C \to C$  where TX describes formal expressions on X,

 $\{a,b,c\}$ 

A monad is a functor  $T : C \to C$  where TX describes formal expressions on X,



A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

• A natural "unit" map  $\eta: X \to TX$ 



A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

• A natural "unit" map  $\eta: X \to TX$ 

Example: "Free (commutative) monoid" monad

ТX

A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

• A natural "unit" map  $\eta: X \to TX$ 



A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$



A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$



A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$



A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:



A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:



$$a+b$$

A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:



A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:



$$\begin{array}{c} (A+b) \xrightarrow{\gamma T} & (A+b) \\ & \downarrow M \\ & \downarrow M \\ & A+b \end{array}$$

A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:



A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:



Example: "Free (commutative) monoid" monad



Constantin, Fritz, Perrone, Shapiro

Compositional Structure of Partial Evaluations

A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:



Example: Distribution monad

A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





Example: Distribution monad



A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





Example: Distribution monad



「× 回 ∮@+逢国 ≩@+븣国+美回

Compositional Structure of Partial Evaluations

A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





Example: Distribution monad



「× 回 ∮@+┊匾 ┊@+;囸+ ;⊡

Compositional Structure of Partial Evaluations

A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:



Example: Distribution monad



A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





Example: Distribution monad



A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





Example: Distribution monad



A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:





Example: Distribution monad



A monad is a functor  $T : C \to C$  where TX describes formal expressions on X, where we have:

- A natural "unit" map  $\eta: X \to TX$
- A natural "multiplication" map  $\mu : TTX \rightarrow TX$
- Unit and associativity equations:



Example: Free S-module monad (S a semiring)





< ロ > < 回 > < 回 > < 回 > < 回 >

æ

An algebra for a monad T is an object A equipped with a map
 e : TA → A sending each formal expression to its evaluation

 An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation

Example: (Commutative) monoid  $\mathbb{N}$ 

 An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation

#### Example: (Commutative) monoid $\mathbb N$



A1

 An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation

#### Example: (Commutative) monoid $\mathbb N$

 $TN \qquad N$   $1+2+3 \mapsto 1+2+3=6$ 

伺 と く ヨ と く ヨ と

э

- An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation
- *e* must satisfy the following equations:

#### Example: (Commutative) monoid $\mathbb N$

 $TN \qquad N$   $1+2+3 \mapsto 1+2+3=6$ 

伺 と く ヨ と く ヨ と

- An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation
- *e* must satisfy the following equations:



Example: (Commutative) monoid  $\mathbb N$ 

 $TN \qquad N$   $1+2+3 \mapsto 1+2+3=6$ 

伺 と く ヨ と く ヨ と

- An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation
- *e* must satisfy the following equations:



Example: (Commutative) monoid  $\mathbb N$ 



 An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation
 e must satisfy the following equations:



Example: (Commutative) monoid  $\mathbb{N}$ 



. . . . . . . .

э

 An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation
 e must satisfy the following equations:



 An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation
 e must satisfy the following equations:





 An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation
 e must satisfy the following equations:





 An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation
 e must satisfy the following equations:





 An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation
 e must satisfy the following equations:





 An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation
 e must satisfy the following equations:



Example: Trivial S-module

 An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation
 e must satisfy the following equations:



Example: Trivial S-module



{\*}

 An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation
 e must satisfy the following equations:



Example: Trivial S-module

 An algebra for a monad T is an object A equipped with a map e : TA → A sending each formal expression to its evaluation
 e must satisfy the following equations:



Example: Trivial S-module

$$T \{ \star \} \cong S \qquad \{ \star \}$$

$$s \boxtimes \qquad \longmapsto \qquad \star$$

Constantin, Fritz, Perrone, Shapiro Compositional Structure of Partial Evaluations

æ

★ ∃ ► < ∃ ►</p>

• Consider a *T*-algebra (A, e) and formal expressions  $p, q \in TA$ 

伺 ト イヨト イヨト

э

• Consider a *T*-algebra (A, e) and formal expressions  $p, q \in TA$ 

#### Example: (Commutative) monoid $\mathbb{N}$





- Consider a T-algebra (A, e) and formal expressions  $p, q \in TA$
- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q

[]+2+3]+[]



- Consider a *T*-algebra (A, e) and formal expressions  $p, q \in TA$
- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q

Example: (Commutative) monoid  $\mathbb{N}$ 



- Consider a T-algebra (A, e) and formal expressions  $p, q \in TA$
- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- If p partially evaluated to q, then e(p) = e(q)

Example: (Commutative) monoid  $\mathbb{N}$ 



- Consider a T-algebra (A, e) and formal expressions  $p, q \in TA$
- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- If p partially evaluated to q, then e(p) = e(q)

Example: (Commutative) monoid  $\mathbb{N}$ 



- Consider a T-algebra (A, e) and formal expressions  $p, q \in TA$
- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- If p partially evaluated to q, then e(p) = e(q)
- There is always a partial evaluation  $\eta(p)$  from p to  $\eta e(p)$ Example: (Commutative) monoid  $\mathbb{N}$



- Consider a T-algebra (A, e) and formal expressions  $p, q \in TA$
- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- If p partially evaluated to q, then e(p) = e(q)
- There is always a partial evaluation  $\eta(p)$  from p to  $\eta e(p)$ Example: (Commutative) monoid  $\mathbb{N}$



- Consider a T-algebra (A, e) and formal expressions  $p, q \in TA$
- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- If p partially evaluated to q, then e(p) = e(q)
- There is always a partial evaluation  $\eta(p)$  from p to  $\eta e(p)$ Example: (Commutative) monoid  $\mathbb{N}$



Do partial evaluations compose?

Constantin, Fritz, Perrone, Shapiro Compositional Structure of Partial Evaluations

э

A B M A B M

A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q

. . . . . . . .

- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:

- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial S-module:

$$T_{\{y\}} \qquad T_{\{x\}} \qquad T_{\{x\}} \qquad T_{\{x\}}$$

. . . . . . . .

- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:



何 ト イヨ ト イヨ ト

- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:

$$T_{\{y\}} \xrightarrow{\mu} T_{\{x\}} \xrightarrow{Te} T_{\{x\}}$$

$$(s_1 c_1 + \dots + s_n c_n) \boxtimes \xrightarrow{s_1 c_1 \oplus \dots + s_n c_n \boxtimes} (s_1 + \dots + s_n) \boxtimes$$

- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:

• Let 
$$S = \mathbb{N}[\sqrt{2}] = \{n + m\sqrt{2}\}$$

- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:

$$T_{\{k\}} \xrightarrow{\mathcal{M}} T_{\{k\}} \xrightarrow{\mathsf{Te}} T_{\{k\}}$$

$$S_{1} [\underline{\Gamma, \mathbb{B}} + \dots + S_{n}] \xrightarrow{\mathsf{r}_{n} [\underline{r}_{n}]} (S_{1} + \dots + S_{n}) \underbrace{\mathsf{S}} (S_{1} + \dots + S_$$

• Let 
$$S = \mathbb{N}[\sqrt{2}] = \{n + m\sqrt{2}\}$$

- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:



• Let  $S = \mathbb{N}[\sqrt{2}] = \{n + m\sqrt{2}\}$ 



- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:



• Let  $S = \mathbb{N}[\sqrt{2}] = \{n + m\sqrt{2}\}$ 



伺 ト イ ヨ ト イ ヨ ト

- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:

$$T_{\{*\}} \xrightarrow{\mu} T_{\{*\}} \xrightarrow{Te} T_{\{*\}}$$

$$S_1 [\Gamma_{\mathbb{B}} + \dots + S_n [r_n] \times (S_1 + \dots + S_n] \times (S_1 + \dots + S_$$



- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:

$$T_{\{*\}} \xrightarrow{\mu} T_{\{*\}} \xrightarrow{Te} T_{\{*\}}$$

$$S_1 [\Gamma_{\mathbb{B}} + \dots + S_n [r_n] \times (S_1 + \dots + S_n] \times (S_1 + \dots + S_$$



- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:

$$T \{ \underbrace{*}_{1} \underbrace{}_{\mathcal{F}_{1}} \xrightarrow{}_{\mathcal{F}_{2}} T T \underbrace{}_{\mathcal{F}_{2}} \xrightarrow{}_{\mathcal{F}_{2}} T \underbrace{}_{\mathcal{F}_{2}} \xrightarrow{}_{\mathcal{F}_{2}} T \underbrace{}_{\mathcal{F}_{2}} \xrightarrow{}_{\mathcal{F}_{2}} \xrightarrow{}_{\mathcal{F}_{2}$$



- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:

$$T \{ * \} \xrightarrow{\mu} T T \{ * \} \xrightarrow{Te} T \{ * \}$$

$$S_{1} [\Gamma, \textcircled{B} + \dots + S_{n} [r_{n} \fbox{K}]$$

$$(S_{1} (\Gamma_{1} + \dots + S_{n} \Gamma_{n}) \fbox{K} \xrightarrow{(S_{1} + \dots + S_{n}) \r{K}}$$



- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:

$$T_{\{*\}} \xrightarrow{\mu} T_{\{*\}} \xrightarrow{Te} T_{\{*\}}$$

$$S_1 [f_{\mathbb{B}} + \dots + S_n [r_n] \times (S_1 + \dots + S_n] \times (S_n] \times (S_n]$$



- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:

$$T_{\{*\}} \xrightarrow{\mu} T_{\{*\}} \xrightarrow{Te} T_{\{*\}}$$

$$S_1 [f_{\mathbb{B}} + \dots + S_n [r_n] \times (S_1 + \dots + S_n] \times (S_n] \times (S_n]$$



- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:



• Let  $S = \mathbb{N}[\sqrt{2}] = \{n + m\sqrt{2}\}$ 



• (CFPS) Partial evaluations don't always compose

• Partial evaluations fit into a richer structure, called the *Bar Construction* of a *T*-algebra *A* 

伺 ト イヨト イヨト

э

- Partial evaluations fit into a richer structure, called the *Bar Construction* of a *T*-algebra *A*
- Relations between monad and algebra maps...

伺 ト イヨ ト イヨト

- Partial evaluations fit into a richer structure, called the *Bar Construction* of a *T*-algebra *A*
- Relations between monad and algebra maps...

$$TA \xleftarrow{\mu} T^2A \xrightarrow{Te} TA$$

伺 ト イヨ ト イヨト

- Partial evaluations fit into a richer structure, called the *Bar Construction* of a *T*-algebra *A*
- Relations between monad and algebra maps...



- Partial evaluations fit into a richer structure, called the *Bar Construction* of a *T*-algebra *A*
- Relations between monad and algebra maps...



- Partial evaluations fit into a richer structure, called the *Bar Construction* of a *T*-algebra *A*
- Relations between monad and algebra maps...



- Partial evaluations fit into a richer structure, called the *Bar Construction* of a *T*-algebra *A*
- Relations between monad and algebra maps...



... are given by the simplicial identities.

- Partial evaluations fit into a richer structure, called the *Bar Construction* of a *T*-algebra *A*
- Relations between monad and algebra maps...



... are given by the simplicial identities.

を加きた  $\cdots T^{4}A \xrightarrow[\mu]{\xrightarrow{T^{2}e}} T^{3}A \xrightarrow[\mu]{\xrightarrow{T^{2}e}} T^{2}A \xrightarrow[\mu]{\xrightarrow{T}e} TA$ 

・ 同 ト ・ ヨ ト ・ ヨ ト …

э







• • = • • = •

э









∃ ► < ∃ ►</p>

э





• The simplex category  $\Delta$  is the category of finite nonempty ordered sets and order preserving functions.

• The *simplex category* Δ is the category of finite nonempty ordered sets and order preserving functions.



• The *simplex category* Δ is the category of finite nonempty ordered sets and order preserving functions.



• A simplicial object X in a category  $\mathcal{C}$  is a functor  $\Delta^{op} \to \mathcal{C}$ .

• The *simplex category* Δ is the category of finite nonempty ordered sets and order preserving functions.



• A simplicial object X in a category  $\mathcal{C}$  is a functor  $\Delta^{op} \to \mathcal{C}$ .



• The simplex category  $\Delta$  is the category of finite nonempty ordered sets and order preserving functions.



• A simplicial object X in a category C is a functor  $\Delta^{op} \to C$ . Like the bar construction  $Bar_T(A)$ 



• A simplicial object X in a category C is a functor  $\Delta^{op} \to C$ . Like the bar construction  $Bar_T(A)$ 



• A simplicial object X in a category C is a functor  $\Delta^{op} \to C$ . Like the bar construction  $Bar_T(A)$ 



• 1-simplices in this simplicial set are partial evaluations:



• A simplicial object X in a category C is a functor  $\Delta^{op} \to C$ . Like the bar construction  $Bar_T(A)$ 



• 2-simplices in this simplicial set are "composition strategies":



• A simplicial object X in a category C is a functor  $\Delta^{op} \to C$ . Like the bar construction  $Bar_T(A)$ 



• 2-simplices in this simplicial set are "composition strategies":



• A simplicial object X in a category C is a functor  $\Delta^{op} \to C$ . Like the bar construction  $Bar_T(A)$ 



• 2-simplices in this simplicial set are "composition strategies":



э

伺 ト イヨ ト イヨト





∃ ► < ∃ ►</p>





























Constantin, Fritz, Perrone, Shapiro Compositional Structure of Partial Evaluations

• If the square is a *weak pullback* (aka *weakly cartesian*), the dashed map always exists but not necessarily uniquely



Constantin, Fritz, Perrone, Shapiro Compositional Structure of Partial Evaluations

• If the square is a *weak pullback* (aka *weakly cartesian*), the dashed map always exists but not necessarily uniquely



- If the square is a *weak pullback* (aka *weakly cartesian*), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property



- If the square is a *weak pullback* (aka *weakly cartesian*), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property



Compositional Structure of Partial Evaluations

- If the square is a *weak pullback* (aka *weakly cartesian*), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property corresponds to having all inner 2-horn fillers



Compositional Structure of Partial Evaluations

- If the square is a *weak pullback* (aka *weakly cartesian*), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property corresponds to having all inner 2-horn fillers



Compositional Structure of Partial Evaluations

- If the square is a *weak pullback* (aka *weakly cartesian*), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property corresponds to having all inner 2-horn fillers



- If the square is a *weak pullback* (aka *weakly cartesian*), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property corresponds to having all inner 2-horn fillers



- If the square is a *weak pullback* (aka *weakly cartesian*), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property corresponds to having all inner 2-horn fillers
- If the square is a (strong) pullback, the fillers are unique



- If the square is a *weak pullback* (aka *weakly cartesian*), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property corresponds to having all inner 2-horn fillers
- If the square is a (strong) pullback, the fillers are unique
- When is  $Bar_T(A)$  the nerve of a category? A quasicategory?



• When do partial evaluations form a category?

御下 くほと くほど

э

- When do partial evaluations form a category?
- $\bullet\,$  If the naturality squares of  $\mu$  are cartesian

• • = • • = •

- When do partial evaluations form a category?
- If the naturality squares of  $\boldsymbol{\mu}$  are cartesian



- When do partial evaluations form a category?
- If the naturality squares of  $\mu$  are cartesian
- For  $X = Bar_T(A)$ , this means  $X_n \cong X_1 \times_{X_0} \stackrel{n}{\cdots} \times_{X_0} X_1$



- When do partial evaluations form a category?
- If the naturality squares of  $\mu$  are cartesian
- For  $X = Bar_T(A)$ , this means  $X_n \cong X_1 \times_{X_0} \stackrel{n}{\cdots} \times_{X_0} X_1$



- When do partial evaluations form a category?
- If the naturality squares of  $\mu$  are cartesian
- For  $X = Bar_T(A)$ , this means  $X_n \cong X_1 \times_{X_0} \stackrel{n}{\cdots} \times_{X_0} X_1$



- When do partial evaluations form a category?
- If the naturality squares of  $\mu$  are cartesian
- For  $X = Bar_T(A)$ , this means  $X_n \cong X_1 \times_{X_0} \stackrel{n}{\cdots} \times_{X_0} X_1$



- When do partial evaluations form a category?
- If the naturality squares of  $\mu$  are cartesian
- For  $X = Bar_T(A)$ , this means  $X_n \cong X_1 \times_{X_0} \stackrel{n}{\cdots} \times_{X_0} X_1$



- When do partial evaluations form a category?
- If the naturality squares of  $\mu$  are cartesian
- For  $X = Bar_T(A)$ , this means  $X_n \cong X_1 \times_{X_0} \stackrel{n}{\cdots} \times_{X_0} X_1$



- When do partial evaluations form a category?
- If the naturality squares of  $\mu$  are cartesian
- For  $X = Bar_T(A)$ , this means  $X_n \cong X_1 \times_{X_0} \stackrel{n}{\cdots} \times_{X_0} X_1$



- When do partial evaluations form a category?
- If the naturality squares of  $\mu$  are cartesian
- For  $X = Bar_T(A)$ , this means  $X_n \cong X_1 \times_{X_0} \stackrel{n}{\cdots} \times_{X_0} X_1$
- This makes  $Bar_T(A)$  the nerve of a category with formal expressions as objects and partial evaluations as morphisms



Constantin, Fritz, Perrone, Shapiro Compositional Structure of Partial Evaluations

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

ullet Free monoid monad (or any plain operad) has cartesian  $\mu$ 

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

ullet Free monoid monad (or any plain operad) has cartesian  $\mu$ 

$$\begin{array}{ccc} T^{3}A \xrightarrow{T^{2}e} T^{2}A \\ \mu & pb & \mu \\ T^{2}A \xrightarrow{Te} TA \end{array}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

- ullet Free monoid monad (or any plain operad) has cartesian  $\mu$
- $\bullet\,$  Free comm. monoid monad  ${\cal T}$  has only weakly cartesian  $\mu$

$$\begin{array}{ccc} T^{3}A \xrightarrow{T^{2}e} T^{2}A \\ \mu & pb & \mu \\ T^{2}A \xrightarrow{Te} TA \end{array}$$

伺 ト イヨ ト イヨト

- ullet Free monoid monad (or any plain operad) has cartesian  $\mu$
- $\bullet\,$  Free comm. monoid monad  ${\cal T}$  has only weakly cartesian  $\mu$

$$\begin{array}{ccc} T^{3}A & \xrightarrow{T^{2}e} & T^{2}A \\ \mu & & wpb & \mu \\ T^{2}A & \xrightarrow{Te} & TA \end{array}$$

伺 ト イヨ ト イヨト

- ullet Free monoid monad (or any plain operad) has cartesian  $\mu$
- ullet Free comm. monoid monad  ${\cal T}$  has only weakly cartesian  $\mu$



- ullet Free monoid monad (or any plain operad) has cartesian  $\mu$
- $\bullet\,$  Free comm. monoid monad  ${\cal T}$  has only weakly cartesian  $\mu$



$$\begin{array}{ccc} T^{3}A & \xrightarrow{T^{2}e} & T^{2}A \\ \mu & & wpb & \mu \\ T^{2}A & \xrightarrow{Te} & TA \end{array}$$

• • = • • = •

- Free monoid monad (or any plain operad) has cartesian  $\mu$
- $\bullet\,$  Free comm. monoid monad  ${\cal T}$  has only weakly cartesian  $\mu$



$$\begin{array}{ccc} T^{3}A & \xrightarrow{T^{2}e} & T^{2}A \\ \mu & & wpb & \mu \\ T^{2}A & \xrightarrow{Te} & TA \end{array}$$

• • = • • = •

- ullet Free monoid monad (or any plain operad) has cartesian  $\mu$
- $\bullet\,$  Free comm. monoid monad  ${\cal T}$  has only weakly cartesian  $\mu$



• • = • • = •

- ullet Free monoid monad (or any plain operad) has cartesian  $\mu$
- $\bullet\,$  Free comm. monoid monad  ${\cal T}$  has only weakly cartesian  $\mu$



$$\begin{array}{ccc} T^{3}A & \xrightarrow{T^{2}e} & T^{2}A \\ \mu & & wpb & \mu \\ T^{2}A & \xrightarrow{Te} & TA \end{array}$$

- E - E

- ullet Free monoid monad (or any plain operad) has cartesian  $\mu$
- $\bullet\,$  Free comm. monoid monad  ${\cal T}$  has only weakly cartesian  $\mu$



- E - E

- Free monoid monad (or any plain operad) has cartesian  $\mu$
- ullet Free comm. monoid monad  ${\cal T}$  has only weakly cartesian  $\mu$



Constantin, Fritz, Perrone, Shapiro Compositional Structure of Partial Evaluations

- Free monoid monad (or any plain operad) has cartesian  $\mu$
- Free comm. monoid monad  ${\cal T}$  has only weakly cartesian  $\mu$
- T also preserves weak pullbacks



Constantin, Fritz, Perrone, Shapiro Compositional Structure of Partial Evaluations

- Free monoid monad (or any plain operad) has cartesian  $\mu$
- Free comm. monoid monad  ${\cal T}$  has only weakly cartesian  $\mu$
- T also preserves weak pullbacks



Constantin, Fritz, Perrone, Shapiro Compositional

- ullet Free monoid monad (or any plain operad) has cartesian  $\mu$
- Free comm. monoid monad  ${\cal T}$  has only weakly cartesian  $\mu$
- T also preserves weak pullbacks
- Such BC monads include distribution, any symmetric operad



$$T^{l+m+3}A \xrightarrow{T^{l+m+2}e} T^{l+m+2}A \qquad T^{l+m+4}A \xrightarrow{T^{l+m+2}\mu} T^{l+m+3}A$$

$$T^{l}\mu \downarrow \qquad wpb \qquad T^{l}\mu \downarrow \qquad T^{l}\mu \downarrow \qquad wpb \qquad T^{l}\mu \downarrow$$

$$T^{l+m+2}A \xrightarrow{T^{l+m+1}e} T^{l+m+1}A \qquad T^{l+m+3}A \xrightarrow{T^{l+m+1}\mu} T^{l+m+2}A$$

- $\bullet\,$  Free monoid monad (or any plain operad) has cartesian  $\mu$
- ullet Free comm. monoid monad  ${\cal T}$  has only weakly cartesian  $\mu$
- T also preserves weak pullbacks
- Such BC monads include distribution, any symmetric operad
- (CFPS)  $Bar_T(\mathbb{N})$  is not a quasicategory

$$T^{l+m+3}A \xrightarrow{T^{l+m+2}e} T^{l+m+2}A \qquad T^{l+m+4}A \xrightarrow{T^{l+m+2}\mu} T^{l+m+3}A$$

$$T^{l}\mu \downarrow \qquad wpb \qquad T^{l}\mu \downarrow \qquad T^{l}\mu \downarrow \qquad wpb \qquad T^{l}\mu \downarrow$$

$$T^{l+m+2}A \xrightarrow{T^{l+m+1}e} T^{l+m+1}A \qquad T^{l+m+3}A \xrightarrow{T^{l+m+1}\mu} T^{l+m+2}A$$

$$(\Box) \land (\Box) \land$$

- Free monoid monad (or any plain operad) has cartesian  $\mu$
- Free comm. monoid monad T has only weakly cartesian  $\mu$
- T also preserves weak pullbacks
- Such BC monads include distribution, any symmetric operad
- (CFPS)  $Bar_T(\mathbb{N})$  is not a quasicategory



$$\begin{array}{cccc} T^{l+m+3}A \xrightarrow{T^{l+m+2}e} T^{l+m+2}A & T^{l+m+4}A \xrightarrow{T^{l+m+2}\mu} T^{l+m+3}A \\ T^{l}\mu & wpb & \tau^{l}\mu & T^{l}\mu & wpb & \tau^{l}\mu \\ T^{l+m+2}A \xrightarrow{T^{l+m+1}e} T^{l+m+1}A & T^{l+m+3}A \xrightarrow{T^{l+m+1}\mu} T^{l+m+2}A \end{array}$$

**г**/+m+2 ∆

- ullet Free monoid monad (or any plain operad) has cartesian  $\mu$
- ullet Free comm. monoid monad  ${\cal T}$  has only weakly cartesian  $\mu$
- T also preserves weak pullbacks
- Such BC monads include distribution, any symmetric operad
- (CFPS)  $Bar_T(\mathbb{N})$  is not a quasicategory



• What properties does  $Bar_T(A)$  have when T is BC?

・ 戸 ト ・ ヨ ト ・ ヨ ト

э

• What properties does  $Bar_T(A)$  have when T is BC?

$$T^{l+m+3}A \xrightarrow{T^{l+m+2}e} T^{l+m+2}A$$
$$T^{l}\mu \downarrow \qquad wpb \qquad \qquad \downarrow T^{l}\mu$$
$$T^{l+m+2}A \xrightarrow{T^{l+m+1}e} T^{l+m+1}A$$

$$T^{l+m+4}A \xrightarrow{T^{l+m+2}\mu} T^{l+m+3}A$$

$$T^{l}\mu \downarrow \qquad wpb \qquad \qquad \downarrow T^{l}\mu$$

$$T^{l+m+3}A \xrightarrow{T^{l+m+1}\mu} T^{l+m+2}A$$

Constantin, Fritz, Perrone, Shapiro Compositional Structure of Partial Evaluations

- What properties does Bar<sub>T</sub>(A) have when T is BC?
- Let n > 2, i i > 1





- What properties does Bar<sub>T</sub>(A) have when T is BC?
- Let n > 2, i i > 1
- A simplicial set X with this property





- What properties does  $Bar_T(A)$  have when T is BC?
- Let  $n \ge 2, j i > 1$
- A simplicial set X with this property



何 と く ヨ と く ヨ と

3

- What properties does  $Bar_T(A)$  have when T is BC?
- Let  $n \ge 2, j i > 1$
- A simplicial set X with this property



$$egin{array}{ccc} X_n & & \stackrel{d_i}{\longrightarrow} & X_{n-1} \ d_j & wpb & & & \downarrow d_{j-1} \ X_{n-1} & & \stackrel{d_i}{\longrightarrow} & X_{n-2} \end{array}$$

A B M A B M

- What properties does  $Bar_T(A)$  have when T is BC?
- Let  $n \ge 2, j i > 1$
- A simplicial set X with this property



- What properties does  $Bar_T(A)$  have when T is BC?
- Let  $n \ge 2, j i > 1$
- A simplicial set X with this property



- What properties does  $Bar_T(A)$  have when T is BC?
- Let  $n \ge 2, j i > 1$
- A simplicial set X with this property is *inner span complete*



- What properties does  $Bar_T(A)$  have when T is BC?
- Let  $n \ge 2, j i > 1$
- A simplicial set X with this property is *inner span complete*



- What properties does  $Bar_T(A)$  have when T is BC?
- Let  $n \ge 2, j i > 1$
- A simplicial set X with this property is *inner span complete*



Constantin, Fritz, Perrone, Shapiro Compositional Structure of Partial Evaluations

- What properties does  $Bar_T(A)$  have when T is BC?
- Let  $n \ge 2, j i > 1$
- A simplicial set X with this property is *inner span complete*



- What properties does  $Bar_T(A)$  have when T is BC?
- Let  $n \ge 2, j i > 1$
- A simplicial set X with this property is inner span complete



- What properties does  $Bar_T(A)$  have when T is BC?
- Let  $n \ge 2, j i > 1$
- A simplicial set X with this property is *inner span complete*
- (CFPS) X then has fillers for all spans containing the spine



- What properties does  $Bar_T(A)$  have when T is BC?
- Let  $n \ge 2, j i > 1$
- A simplicial set X with this property is inner span complete
- (CFPS) X then has fillers for all spans containing the spine



- What properties does  $Bar_T(A)$  have when T is BC?
- Let  $n \ge 2, j i > 1$
- A simplicial set X with this property is inner span complete
- (CFPS) X then has fillers for all spans containing the spine



• What other fillers do inner span complete simplicial sets have?

伺 ト イヨト イヨト

э

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations  $S \subset \Delta^n$ :

• • = • • = •

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations  $S \subset \Delta^n$ :
  - S contains the spine of  $\Delta^n$

• • = • • = •

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations  $S \subset \Delta^n$ :
  - S contains the spine of  $\Delta^n$



- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations  $S \subset \Delta^n$ :
  - S contains the spine of  $\Delta^n$
  - The 1-skeleton of S is chordal



- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations  $S \subset \Delta^n$ :
  - S contains the spine of  $\Delta^n$
  - The 1-skeleton of S is chordal



- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations  $S \subset \Delta^n$ :
  - S contains the spine of  $\Delta^n$
  - The 1-skeleton of S is chordal
  - S has  $\partial \Delta^k \hookrightarrow \Delta^k$  fillers for  $2 \le k \le n$



- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations  $S \subset \Delta^n$ :
  - S contains the spine of  $\Delta^n$
  - The 1-skeleton of S is chordal
  - S has  $\partial \Delta^k \hookrightarrow \Delta^k$  fillers for  $2 \le k \le n$



- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations  $S \subset \Delta^n$ :
  - S contains the spine of  $\Delta^n$
  - The 1-skeleton of S is chordal
  - S has  $\partial \Delta^k \hookrightarrow \Delta^k$  fillers for  $2 \le k \le n$
- Does not include any horns



- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations S ⊂ Δ<sup>n</sup>:
  - S contains the spine of  $\Delta^n$
  - The 1-skeleton of S is chordal
  - S has  $\partial \Delta^k \hookrightarrow \Delta^k$  fillers for  $2 \le k \le n$
- Does not include any horns
- Includes spine inclusions



- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations  $S \subset \Delta^n$ :
  - S contains the spine of  $\Delta^n$
  - The 1-skeleton of S is chordal
  - S has  $\partial \Delta^k \hookrightarrow \Delta^k$  fillers for  $2 \le k \le n$
- Does not include any horns
- Includes spine inclusions



- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations  $S \subset \Delta^n$ :
  - S contains the spine of  $\Delta^n$
  - The 1-skeleton of S is chordal
  - S has  $\partial \Delta^k \hookrightarrow \Delta^k$  fillers for  $2 \le k \le n$
- Does not include any horns
- Includes spine inclusions and 2-Segal inclusions



- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations S ⊂ Δ<sup>n</sup>:
  - S contains the spine of  $\Delta^n$
  - The 1-skeleton of S is chordal
  - S has  $\partial \Delta^k \hookrightarrow \Delta^k$  fillers for  $2 \le k \le n$
- Does not include any horns
- Includes spine inclusions and 2-Segal inclusions



御下 くほと くほど

æ

• We can also describe when partial evaluations do or don't have inverses

伺 ト イヨト イヨト

э

- We can also describe when partial evaluations do or don't have inverses
- Inner span completeness is not a homotopical property

• • = • • = •

- We can also describe when partial evaluations do or don't have inverses
- Inner span completeness is not a homotopical property
- How do properties of  $Bar_{\mathcal{T}}(A)$  relate to computation?

- We can also describe when partial evaluations do or don't have inverses
- Inner span completeness is not a homotopical property
- How do properties of  $Bar_T(A)$  relate to computation?
- Higher order rewriting?

- We can also describe when partial evaluations do or don't have inverses
- Inner span completeness is not a homotopical property
- How do properties of  $Bar_T(A)$  relate to computation?
- Higher order rewriting?

Thank you!

- Carmen Constantin, Tobias Fritz, Paolo Perrone, and Brandon Shapiro. Partial evaluations and the compositional structure of the bar construction. Coming soon.
- Tobias Fritz and Paolo Perrone. Monads, partial evaluations, and rewriting. *Proceedings of MFPS 36, ENTCS,* 2020.
- Maria Manuel Clementino, Dirk Hofmann, and George Janelidze. The monads of classical algebra are seldom weakly Cartesian. J. Homotopy Relat. Struct., 9(1):175–197, 2014.
- Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the Desirability of Acyclic Database Schemes. *Journal of the ACM*, 30, 479-, 1983.

伺下 イヨト イヨト