Compositional Structure of Partial Evaluations

Carmen Constantin ${ }^{1}$ Tobias Fritz ${ }^{2}$ Paolo Perrone ${ }^{3}$ Brandon Shapiro ${ }^{4}$

${ }^{1}$ Oxford University
${ }^{2}$ Universität Innsbruck
${ }^{3}$ Massachusetts Institute of Technology
${ }^{4}$ Cornell University
MIT Categories Seminar 9/10/20

Partial Evaluations

Partial Evaluations

- Algebra is all about evaluating formal expressions

Partial Evaluations

- Algebra is all about evaluating formal expressions

$$
1+2+3
$$

Partial Evaluations

- Algebra is all about evaluating formal expressions

Partial Evaluations

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated

$$
1+2+3 \longrightarrow 6
$$

Partial Evaluations

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated

Partial Evaluations

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a directed space of formal expressions

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a directed space of formal expressions

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a directed space of formal expressions
- How does this space relate to algebra? Computation?

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a directed space of formal expressions
- How does this space relate to algebra? Computation?
- Probability?

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a directed space of formal expressions
- How does this space relate to algebra? Computation?
- Probability?

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a directed space of formal expressions
- How does this space relate to algebra? Computation?
- Probability?

Monads

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X,

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X,

Example: "Free (commutative) monoid" monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X,

Example: "Free (commutative) monoid" monad

$$
\begin{gathered}
X \\
\{a, b, c\}
\end{gathered}
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X ，

Example：＂Free（commutative）monoid＂monad

$$
\begin{array}{cl}
X & T X \\
\{a, b, c\} & \text { 回+回 } \\
\text { +洍+田 }
\end{array}
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X ，where we have：
－A natural＂unit＂map $\eta: X \rightarrow T X$

Example：＂Free（commutative）monoid＂monad

$$
\begin{array}{cl}
X & T X \\
\{a, b, c\} & \text { } \sqrt{b}+\text { 田 } \\
\text { }+\square+b]
\end{array}
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$

Example: "Free (commutative) monoid" monad

a

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$

Example: "Free (commutative) monoid" monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$

Example: "Free (commutative) monoid" monad

a

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$

Example: "Free (commutative) monoid" monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$

Example: "Free (commutative) monoid" monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

$$
a+b
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

$$
a+b \stackrel{n T}{a} a+b
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

$$
\begin{array}{r}
\sqrt{a}+\sqrt{b} \stackrel{n T}{\xrightarrow{a}+\sqrt{b}} \\
\\
\\
\sqrt{a}+\sqrt{b}
\end{array}
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

$$
\sqrt{a}+\sqrt{b} \stackrel{\sqrt{a}+\sqrt{b}}{\sqrt{a}}
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

$$
\sqrt{a}+\sqrt{b} \stackrel{\sqrt{a}+\sqrt{b}}{\sqrt{a}}
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

$$
a+b
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

$$
[a]+b \stackrel{T \eta}{a}+b
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

$$
\begin{aligned}
& \sqrt[a]{a}+\infty) \stackrel{T \eta}{a}+b \\
& I u \\
& a+b
\end{aligned}
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: "Free (commutative) monoid" monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: Distribution monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: Distribution monad

$$
\begin{gathered}
X \\
\{a, b, c\}
\end{gathered}
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: Distribution monad

$$
\left\{\begin{array}{cc}
X & T X \\
\{a, b, c\} & \boxed{a} \\
& \frac{1}{3}\left[a+\frac{2}{3} \sqrt{b}\right. \\
\frac{3}{7}\left[a+\frac{1}{7}[b]+\frac{2}{7}[\right.
\end{array}\right.
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: Distribution monad

$$
\left\{\begin{array}{cc}
X & T X \\
\{a, b, c\} & \boxed{a} \\
& \frac{1}{3}\left[a+\frac{2}{3} \sqrt{b}\right. \\
\frac{3}{7}\left[a+\frac{1}{7}[b]+\frac{2}{7}[\right.
\end{array}\right.
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: Distribution monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: Distribution monad

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: Distribution monad

$$
\begin{gathered}
T T X \\
\frac{1}{2} \frac{1}{3}\left[a+\frac{2}{3} b+\frac{1}{2} \frac{2}{3} a+\frac{1}{3} a\right.
\end{gathered}
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: Distribution monad

$$
\begin{gathered}
T T X \\
\frac{1}{2}\left[\frac { 1 } { 3 } \left[a+\frac{2}{3} \sqrt{a}+\frac{1}{2} \frac{2}{3}\left[a+\frac{1}{3} a\right.\right.\right. \\
\hline
\end{gathered}
$$

Monads

A monad is a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ where $T X$ describes formal expressions on X, where we have:

- A natural "unit" map $\eta: X \rightarrow T X$
- A natural "multiplication" map $\mu: T T X \rightarrow T X$
- Unit and associativity equations:

Example: Free S-module monad (S a semiring)

$$
\begin{array}{cc|c}
T T X \\
\frac{1}{2}\left[\frac { 1 } { 3 } \left[a+\frac{2}{3}\left[b+\frac{1}{2}\left[\frac { 2 } { 3 } \left[a+\frac{1}{3} a\right.\right.\right.\right.\right.
\end{array} \xrightarrow{\mu} \frac{1}{2} a+\frac{1}{3}\left[b+\frac{1}{6} a c\right.
$$

Algebras

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation

Example: (Commutative) monoid \mathbb{N}

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation

Example: (Commutative) monoid \mathbb{N}

$$
\begin{gathered}
T N \\
N+2
\end{gathered}
$$

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation

Example: (Commutative) monoid \mathbb{N}

$$
\begin{array}{clc}
T N & & \mathbb{N} \\
{[1+2]+3} & \stackrel{e}{\mapsto} & 1+2+3=6
\end{array}
$$

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation - e must satisfy the following equations:

Example: (Commutative) monoid \mathbb{N}

$$
\begin{gathered}
T N \\
\square+2
\end{gathered}+\mathbb{N}
$$

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation
- e must satisfy the following equations:

Example: (Commutative) monoid \mathbb{N}

$$
\begin{array}{ccc}
T \mathbb{N} & \mathbb{N} \\
1+2 & \stackrel{e}{\longrightarrow} & 1+2+3=6
\end{array}
$$

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation
- e must satisfy the following equations:

Example: (Commutative) monoid \mathbb{N}

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation
- e must satisfy the following equations:

Example: (Commutative) monoid \mathbb{N}

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation
- e must satisfy the following equations:

Example: (Commutative) monoid \mathbb{N}

$$
\left[10+[2]+\left[\begin{array}{l}
{[0]}
\end{array}\right.\right.
$$

Algebras

－An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation
－e must satisfy the following equations：

Example：（Commutative）monoid \mathbb{N}

$$
\begin{aligned}
& \text { [1]+[2]+[迥+四 } \\
& \text { nI } \\
& \text { [1) }+2]+ \text { 园 }+4
\end{aligned}
$$

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation
- e must satisfy the following equations:

Example: (Commutative) monoid \mathbb{N}

$$
\begin{aligned}
& \text { nI } \\
& \text { (1) }+2]+3+\text { 田 }
\end{aligned}
$$

Algebras

－An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation
－e must satisfy the following equations：

Example：（Commutative）monoid \mathbb{N}

$$
\begin{aligned}
& \text { [[1+[迆] [[} \\
& \text { nI } \\
& \text { (1) }+2]+ \text { 园 }+4
\end{aligned}
$$

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation
- e must satisfy the following equations:

Example: (Commutative) monoid \mathbb{N}

$$
\begin{aligned}
& \text { [[1+[2] + [} \\
& \text { nI } \\
& \text { eI } \\
& [1+2]+3]+ \text { 四 } \quad \text { e }
\end{aligned}
$$

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation
- e must satisfy the following equations:

Example: Trivial S-module

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation
- e must satisfy the following equations:

Example: Trivial S-module

$$
\begin{aligned}
& T\{*\} \\
& S *
\end{aligned}
$$

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation
- e must satisfy the following equations:

Example: Trivial S-module

$$
\begin{aligned}
& T\{*\} \cong S \\
& S *
\end{aligned}
$$

Algebras

- An algebra for a monad T is an object A equipped with a map $e: T A \rightarrow A$ sending each formal expression to its evaluation
- e must satisfy the following equations:

Example: Trivial S-module

$$
\begin{array}{lll}
T\{*\} \cong S & & \{*\} \\
s * & e & *
\end{array}
$$

Partial evaluations

Partial evaluations

- Consider a T-algebra (A, e) and formal expressions $p, q \in T A$

Partial evaluations

- Consider a T-algebra (A, e) and formal expressions $p, q \in T A$

Example: (Commutative) monoid \mathbb{N}

$$
\begin{array}{cc}
p & q \\
[1+2]+4]
\end{array}
$$

- Consider a T-algebra (A, e) and formal expressions $p, q \in T A$
- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$

Example: (Commutative) monoid \mathbb{N}

$$
\begin{array}{cc}
p & q \\
\hline 1+2]+3]
\end{array}
$$

- Consider a T-algebra (A, e) and formal expressions $p, q \in T A$
- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$

Example: (Commutative) monoid \mathbb{N}

$$
\stackrel{p}{1+2+3+4} \xrightarrow{(1+2+3+4}+\begin{gathered}
q \\
3+7
\end{gathered}
$$

- Consider a T-algebra (A, e) and formal expressions $p, q \in T A$
- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- If p partially evaluated to q, then $e(p)=e(q)$

Example: (Commutative) monoid \mathbb{N}

$$
\stackrel{p}{1+2+3+4+2} \xrightarrow{(1)+2}+3+4
$$

- Consider a T-algebra (A, e) and formal expressions $p, q \in T A$
- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- If p partially evaluated to q, then $e(p)=e(q)$

Example: (Commutative) monoid \mathbb{N}

$$
\begin{gathered}
p \\
\square+2+3+4+2 \\
\hline 3+3+4
\end{gathered} \begin{gathered}
q \\
\hline 3+7
\end{gathered}
$$

$10 \mathrm{ge}(\mathrm{p})$

- Consider a T-algebra (A, e) and formal expressions $p, q \in T A$
- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- If p partially evaluated to q, then $e(p)=e(q)$
- There is always a partial evaluation $\eta(p)$ from p to $\eta e(p)$

Example: (Commutative) monoid \mathbb{N}

$$
\begin{gathered}
p \\
\square+2+3+4+2 \\
\hline 3+3+4
\end{gathered} \begin{gathered}
q \\
\hline 3+7
\end{gathered}
$$

$10 \mathrm{ge}(\mathrm{p})$

- Consider a T-algebra (A, e) and formal expressions $p, q \in T A$
- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- If p partially evaluated to q, then $e(p)=e(q)$
- There is always a partial evaluation $\eta(p)$ from p to $\eta e(p)$

Example: (Commutative) monoid \mathbb{N}

- Consider a T-algebra (A, e) and formal expressions $p, q \in T A$
- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- If p partially evaluated to q, then $e(p)=e(q)$
- There is always a partial evaluation $\eta(p)$ from p to $\eta e(p)$ Example: (Commutative) monoid \mathbb{N}

- Do partial evaluations compose?

Do Partial Evaluations Compose?

Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$

Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- Consider the trivial S-module:

Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- Consider the trivial S-module:

Do Partial Evaluations Compose？

－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\left(s_{1} r_{1}+\cdots+s_{n} r_{n}\right) \xrightarrow{T\{*\} \stackrel{\mu}{s_{1} r_{1} ⿴ 囗 十 ⿴ 囗 十 ⿴}+\cdots+s_{n} r_{n} \text { 図 }} T\{*\}
$$

Do Partial Evaluations Compose？

－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{gathered}
T\{*\} \stackrel{\mu}{\leftarrow} T T\{*\} \stackrel{T e}{\longleftrightarrow} T\{*\} \\
\left(s_{1} r_{1}+\cdots+s_{n} r_{n}\right) \text { 図 } \xrightarrow{s_{1} \text { r团 }+\cdots+s_{n} r_{n} \text { 团 }}\left(s_{1}+\cdots+s_{n}\right) \text { 目 }
\end{gathered}
$$

Do Partial Evaluations Compose？

－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{aligned}
& T\{*\} \stackrel{\mu}{\longleftrightarrow} T T\{*\} \xrightarrow{T e} T\{*\} \\
& s_{1} r_{1} \text { 团 }+\cdots+s_{n} r_{n} \text { 园 } \\
& \left(S_{1} r_{1}+\cdots+S_{n} r_{n}\right) \text { 図 }\left(S_{1}+\cdots+S_{n}\right) \text { 図 }
\end{aligned}
$$

－Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose？

－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{aligned}
& T\{*\} \stackrel{\mu}{\longleftrightarrow} T T\{*\} \xrightarrow{T e} T\{*\} \\
& s_{1} r_{1} \text { 团 }+\cdots+s_{n} r_{n} \text { 园 } \\
& \left(S_{1} r_{1}+\cdots+S_{n} r_{n}\right) \text { 図 }\left(S_{1}+\cdots+S_{n}\right) \text { 図 }
\end{aligned}
$$

－Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

図

Do Partial Evaluations Compose？

－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{aligned}
& T\{*\} \stackrel{\mu}{\longleftrightarrow} T T\{*\} \xrightarrow{T e} T\{*\} \\
& s_{1} r_{1} \text { 团 }+\cdots+s_{n} r_{n} \text { 园 } \\
& \left(S_{1} r_{1}+\cdots+S_{n} r_{n}\right) \text { 図 }\left(S_{1}+\cdots+S_{n}\right) \text { 図 }
\end{aligned}
$$

－Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose？

－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{aligned}
& T\{*\} \stackrel{\mu}{\longleftrightarrow} T T\{*\} \xrightarrow{T e} T\{*\} \\
& s_{1} r_{1} \text { 团 }+\cdots+s_{n} r_{n} \text { 园 } \\
& \left(S_{1} r_{1}+\cdots+S_{n} r_{n}\right) \text { 図 }\left(s_{1}+\cdots+S_{n}\right) \text { 図 }
\end{aligned}
$$

－Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose？

－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{aligned}
& T\{*\} \stackrel{\mu}{\longleftrightarrow} T T\{*\} \xrightarrow{T e} T\{*\} \\
& s_{1} r_{1} \text { 团 }+\cdots+s_{n} r_{n} \text { 园 } \\
& \left(S_{1} r_{1}+\cdots+S_{n} r_{n}\right) \text { 図 }\left(s_{1}+\cdots+S_{n}\right) \text { 図 }
\end{aligned}
$$

－Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose？
－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{aligned}
& T\{*\} \stackrel{\mu}{\leftarrow} T T\{*\} \xrightarrow{T e} T\{*\} \\
& \left(s_{1} r_{1}+\cdots+s_{n} r_{n}\right) \text { 図 } \xrightarrow{s_{1} r_{1} \text { 团 }+\cdots+s_{n} r_{n} \text { 园 }}\left(s_{1}+\cdots+s_{n}\right) \text { 园 }
\end{aligned}
$$

－Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose？
－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{aligned}
& T\{*\} \stackrel{\mu}{\rightleftarrows} T T\{*\} \xrightarrow{T e} T\{*\} \\
& \left(s_{1} r_{1}+\cdots+s_{n} r_{n}\right) \text { 因 } \xrightarrow{s_{1} r_{1} \text { 目 }+\cdots+s_{n} r_{n} \text { 园 }}\left(s_{1}+\cdots+s_{n}\right) \text { 目 } \\
& \text { - Let } S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\} \\
& 1 \text { 图 }
\end{aligned}
$$

Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- Consider the trivial S-module:

- Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- Consider the trivial S-module:

- Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- Consider the trivial S-module:

- Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- Consider the trivial S-module:

- Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

- (CFPS) Partial evaluations don't always compose

Bar Construction

- Partial evaluations fit into a richer structure, called the Bar Construction of a T-algebra A

Bar Construction

- Partial evaluations fit into a richer structure, called the Bar Construction of a T-algebra A
- Relations between monad and algebra maps...

Bar Construction

- Partial evaluations fit into a richer structure, called the Bar Construction of a T-algebra A
- Relations between monad and algebra maps...

$$
T A \stackrel{\mu}{\longleftarrow} T^{2} A \xrightarrow{T e} T A
$$

- Partial evaluations fit into a richer structure, called the Bar Construction of a T-algebra A
- Relations between monad and algebra maps...

- Partial evaluations fit into a richer structure, called the Bar Construction of a T-algebra A
- Relations between monad and algebra maps...

- Partial evaluations fit into a richer structure, called the Bar Construction of a T-algebra A
- Relations between monad and algebra maps...

- Partial evaluations fit into a richer structure, called the Bar Construction of a T-algebra A
- Relations between monad and algebra maps...

...are given by the simplicial identities.
- Partial evaluations fit into a richer structure, called the Bar Construction of a T-algebra A
- Relations between monad and algebra maps...

...are given by the simplicial identities.

Simplicial Sets

Simplicial Sets

- The simplex category Δ is the category of finite nonempty ordered sets and order preserving functions.

Simplicial Sets

- The simplex category Δ is the category of finite nonempty ordered sets and order preserving functions.

Simplicial Sets

- The simplex category Δ is the category of finite nonempty ordered sets and order preserving functions.

- A simplicial object X in a category \mathcal{C} is a functor $\Delta^{O P} \rightarrow \mathcal{C}$.

Simplicial Sets

- The simplex category Δ is the category of finite nonempty ordered sets and order preserving functions.

- A simplicial object X in a category \mathcal{C} is a functor $\Delta^{O P} \rightarrow \mathcal{C}$.

Simplicial Sets

- The simplex category Δ is the category of finite nonempty ordered sets and order preserving functions.

- A simplicial object X in a category \mathcal{C} is a functor $\Delta^{O P} \rightarrow \mathcal{C}$. Like the bar construction $\operatorname{Bar}_{T}(A)$

$$
\begin{aligned}
& \xrightarrow[{\xrightarrow{\xrightarrow{T^{2} \mu}}}]{\substack{T^{3} e}} \xrightarrow{T^{2} e} \\
& \cdots T^{4} A \underset{T^{2} \eta}{\stackrel{T^{3} \eta}{\leftrightarrows}} \underset{T}{\stackrel{\mu}{\leftrightarrows}} T^{3} A \underset{T^{2} \eta}{\stackrel{\mu}{\leftrightarrows}} T^{2} A \underset{T \eta}{\stackrel{\mu}{\leftrightarrows}} T A
\end{aligned}
$$

Simplicial Sets

- A simplicial object X in a category \mathcal{C} is a functor $\Delta^{O P} \rightarrow \mathcal{C}$. Like the bar construction $\operatorname{Bar}_{T}(A)$

Simplicial Sets

－A simplicial object X in a category \mathcal{C} is a functor $\Delta^{O P} \rightarrow \mathcal{C}$ ． Like the bar construction $\operatorname{Bar}_{T}(A)$
－1－simplices in this simplicial set are partial evaluations：

$$
\begin{aligned}
& {[1+[5]+\text { 田 }} \\
& \text { (17) }+ \text { (2) }+ \text { 国 }+ \text { 囲 } \\
& [1]+2]+[3]
\end{aligned}
$$

Simplicial Sets

- A simplicial object X in a category \mathcal{C} is a functor $\Delta^{O P} \rightarrow \mathcal{C}$. Like the bar construction $\operatorname{Bar}_{T}(A)$
- 2-simplices in this simplicial set are "composition strategies":

$$
\begin{aligned}
& {[1+[5]} \\
& \text { (四+ [[} 2 \text { + } \\
& \text { [1] + [} 2+\text { [3) }+4
\end{aligned}
$$

Simplicial Sets

- A simplicial object X in a category \mathcal{C} is a functor $\Delta^{O P} \rightarrow \mathcal{C}$. Like the bar construction $\operatorname{Bar}_{T}(A)$
- 2-simplices in this simplicial set are "composition strategies":

$$
\begin{aligned}
& {[1+[5]+\text { 田 }} \\
& \text { (10) } \text { + [2] + } \\
& \text { [1] + [} 2+\text { [3) }+\mathbb{4}
\end{aligned}
$$

Simplicial Sets

－A simplicial object X in a category \mathcal{C} is a functor $\Delta^{O P} \rightarrow \mathcal{C}$ ． Like the bar construction $\operatorname{Bar}_{T}(A)$
－2－simplices in this simplicial set are＂composition strategies＂：

$$
\begin{aligned}
& {[1+[5]+\text { 而 }} \\
& \text { (四+ [[} 2 \text { + } \\
& \text { [1+ [2] }+ \text { [3] }
\end{aligned}
$$

Compositions

- When do successive partial evaluations have a composition strategy?

Compositions

- When do successive partial evaluations have a composition strategy?

Compositions

- When do successive partial evaluations have a composition strategy?

Compositions

- When do successive partial evaluations have a composition strategy?

- Partial evaluations are equivalently maps $\{*\} \rightarrow T^{2} A$

Compositions

- When do successive partial evaluations have a composition strategy?

- Partial evaluations are equivalently maps $\{*\} \rightarrow T^{2} A$

Compositions

- When do successive partial evaluations have a composition strategy?

- Partial evaluations are equivalently maps $\{*\} \rightarrow T^{2} A$

Compositions

- When do successive partial evaluations have a composition strategy?

- Partial evaluations are equivalently maps $\{*\} \rightarrow T^{2} A$

Compositions

- When do successive partial evaluations have a composition strategy?

- Partial evaluations are equivalently maps $\{*\} \rightarrow T^{2} A$

Compositions

- When do successive partial evaluations have a composition strategy?

- Partial evaluations are equivalently maps $\{*\} \rightarrow T^{2} A$

TA

Compositions

- When do successive partial evaluations have a composition strategy?

- Partial evaluations are equivalently maps $\{*\} \rightarrow T^{2} A$

Compositions

Compositions

- If the square is a weak pullback (aka weakly cartesian), the dashed map always exists but not necessarily uniquely

Compositions

- If the square is a weak pullback (aka weakly cartesian), the dashed map always exists but not necessarily uniquely

Compositions

- If the square is a weak pullback (aka weakly cartesian), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property

Compositions

- If the square is a weak pullback (aka weakly cartesian), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property

Compositions

- If the square is a weak pullback (aka weakly cartesian), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property corresponds to having all inner 2-horn fillers

Compositions

- If the square is a weak pullback (aka weakly cartesian), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property corresponds to having all inner 2-horn fillers

Compositions

- If the square is a weak pullback (aka weakly cartesian), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property corresponds to having all inner 2-horn fillers

Compositions

- If the square is a weak pullback (aka weakly cartesian), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property corresponds to having all inner 2-horn fillers

Compositions

- If the square is a weak pullback (aka weakly cartesian), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property corresponds to having all inner 2-horn fillers
- If the square is a (strong) pullback, the fillers are unique

Compositions

- If the square is a weak pullback (aka weakly cartesian), the dashed map always exists but not necessarily uniquely
- In a simplicial set X, this property corresponds to having all inner 2-horn fillers
- If the square is a (strong) pullback, the fillers are unique
- When is $\operatorname{Bar}_{T}(A)$ the nerve of a category? A quasicategory?

Compositions

- When do partial evaluations form a category?

Compositions

- When do partial evaluations form a category?
- If the naturality squares of μ are cartesian

Compositions

- When do partial evaluations form a category?
- If the naturality squares of μ are cartesian

Compositions

- When do partial evaluations form a category?
- If the naturality squares of μ are cartesian
- For $X=\operatorname{Bar}_{T}(A)$, this means $X_{n} \cong X_{1} \times X_{0}{ }^{n} \times x_{X_{0}} X_{1}$

Compositions

- When do partial evaluations form a category?
- If the naturality squares of μ are cartesian
- For $X=\operatorname{Bar}_{T}(A)$, this means $X_{n} \cong X_{1} \times X_{0}{ }^{n} \times x_{X_{0}} X_{1}$

Compositions

- When do partial evaluations form a category?
- If the naturality squares of μ are cartesian
- For $X=\operatorname{Bar}_{T}(A)$, this means $X_{n} \cong X_{1} \times X_{0}{ }^{n} \times x_{X_{0}} X_{1}$

Compositions

- When do partial evaluations form a category?
- If the naturality squares of μ are cartesian
- For $X=\operatorname{Bar}_{T}(A)$, this means $X_{n} \cong X_{1} \times X_{0}{ }^{n} \times x_{X_{0}} X_{1}$

Compositions

- When do partial evaluations form a category?
- If the naturality squares of μ are cartesian
- For $X=\operatorname{Bar}_{T}(A)$, this means $X_{n} \cong X_{1} \times X_{0}{ }^{n} \times x_{X_{0}} X_{1}$

Compositions

- When do partial evaluations form a category?
- If the naturality squares of μ are cartesian
- For $X=\operatorname{Bar}_{T}(A)$, this means $X_{n} \cong X_{1} \times X_{0}{ }^{n} \times x_{X_{0}} X_{1}$

Compositions

- When do partial evaluations form a category?
- If the naturality squares of μ are cartesian
- For $X=\operatorname{Bar}_{T}(A)$, this means $X_{n} \cong X_{1} \times X_{0}{ }^{n} \times x_{X_{0}} X_{1}$

Compositions

- When do partial evaluations form a category?
- If the naturality squares of μ are cartesian
- For $X=\operatorname{Bar}_{T}(A)$, this means $X_{n} \cong X_{1} \times X_{0}{ }^{n} \cdot \times_{X_{0}} X_{1}$
- This makes $\operatorname{Bar}_{T}(A)$ the nerve of a category with formal expressions as objects and partial evaluations as morphisms

BC Monads

BC Monads

- Free monoid monad (or any plain operad) has cartesian μ

BC Monads

- Free monoid monad (or any plain operad) has cartesian μ

$$
\begin{aligned}
& T^{3} A \xrightarrow{T^{2} e} T^{2} A \\
& { }^{\mu} \downarrow \quad p b \quad{ }^{\mu} \downarrow \\
& T^{2} A \xrightarrow{T e} T A
\end{aligned}
$$

BC Monads

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ

$$
\begin{aligned}
& T^{3} A \xrightarrow{T^{2} e} T^{2} A \\
& \mu \downarrow \\
& \downarrow \\
& T^{2} A \xrightarrow{\mu} A \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

BC Monads

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ

$$
\begin{aligned}
& T^{3} A \xrightarrow{T^{2} e} T^{2} A \\
& \mu \downarrow \begin{array}{ll}
\text { wpb } & \mu \\
T^{2} A \xrightarrow{T e} & T A
\end{array} \\
& T^{2} A
\end{aligned}
$$

BC Monads

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ

$$
\begin{aligned}
& \text { (4) +6 }+ \text { 四 } \\
& {[2]+[2]+[3]+3+3+[3+[3+[4]} \\
& T^{3} A \xrightarrow{T^{2} e} T^{2} A \\
& { }^{\mu} \downarrow \quad \text { wpb } \quad{ }^{\mu} \downarrow \\
& T^{2} A \xrightarrow{T e} T A
\end{aligned}
$$

BC Monads

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ
田+ $+6+4$

$$
\begin{aligned}
& T^{3} A \xrightarrow{T^{2} e} T^{2} A \\
& { }^{\mu} \downarrow \begin{array}{cc}
w p b & \mu \\
\downarrow & \downarrow \\
T^{2} A \xrightarrow{T e} & T A
\end{array}
\end{aligned}
$$

BC Monads

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ

$$
\begin{aligned}
& \text { (4) +6 }+ \text { 四 }
\end{aligned}
$$

$$
\begin{aligned}
& T^{3} A \xrightarrow{T^{2} e} T^{2} A \\
& { }^{\mu} \downarrow \quad \text { wpb } \quad{ }^{\mu} \downarrow \\
& T^{2} A \xrightarrow{T e} T A
\end{aligned}
$$

BC Monads

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ

$$
\text { 田 }+\boxed{6}+\mathbb{4}
$$

$$
T^{3} A \xrightarrow{T^{2} e} T^{2} A
$$

$$
{ }^{\mu} \downarrow \quad \begin{array}{cc}
\text { wpb } & \mu \downarrow
\end{array}
$$

$$
T^{2} A \xrightarrow{T e} T A
$$

BC Monads

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ

$$
\begin{aligned}
& T^{3} A \xrightarrow{T^{2} e} T^{2} A \\
& { }^{\mu} \downarrow \begin{array}{ll}
w p b & \mu \\
\downarrow & \\
T^{2} A \xrightarrow{T e} & T A
\end{array}
\end{aligned}
$$

BC Monads

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ

BC Monads

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ

BC Monads

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ
- T also preserves weak pullbacks

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ
- T also preserves weak pullbacks

$$
\begin{aligned}
& \text { [4] }+\sqrt{6}+4 \text { [4] }+[6
\end{aligned}
$$

$$
\begin{aligned}
& T^{I+m+3} A \xrightarrow{T^{I+m+2} e} T^{I+m+2} A \quad T^{I+m+4} A \xrightarrow{T^{I+m+2} \mu} T^{I+m+3} A \\
& T^{\prime} \mu \downarrow \quad w p b \quad T^{\prime} \mu \downarrow \quad T^{\prime} \mu \downarrow \quad \text { wpb } \quad T^{\prime} \mu \downarrow \\
& T^{I+m+2} A \xrightarrow{T^{I+m+1} e} T^{I+m+1} A \quad T^{I+m+3} A \xrightarrow{T^{I+m+1} \mu} T^{I+m+2} A
\end{aligned}
$$

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ
- T also preserves weak pullbacks
- Such BC monads include distribution, any symmetric operad

$$
\begin{aligned}
& 4+6+4
\end{aligned}
$$

$$
\begin{aligned}
& T^{I+m+3} A \xrightarrow{I^{\prime+m+2} e} T^{I+m+2} A \quad T^{\prime+m+4} A \xrightarrow{T^{\prime+m+2}} T^{\prime+m+3} A \\
& T^{\prime} \mu \downarrow \quad \text { wpb } \quad T^{\prime} \mu \downarrow \quad T^{\prime} \mu \downarrow \quad \text { wpb } \quad T^{\prime} \mu \downarrow \\
& T^{\prime+m+2} A \xrightarrow{l^{\prime+m+1} e} T^{\prime+m+1} A \quad T^{I+m+3} A \xrightarrow{T^{\prime+m+1} \mu} T^{\prime+m+2} A
\end{aligned}
$$

BC Monads

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ
- T also preserves weak pullbacks
- Such BC monads include distribution, any symmetric operad
- (CFPS) $\operatorname{Bar}_{T}(\mathbb{N})$ is not a quasicategory

$$
\begin{array}{lll}
T^{I+m+3} A \xrightarrow{T^{I+m+2} e} T^{I+m+2} A & T^{I+m+4} A \xrightarrow{T^{I+m+2} \mu} T^{I+m+3} A \\
T^{\prime} \mu \downarrow & w p b & T^{\prime} \mu \downarrow \\
T^{\prime} \mu \downarrow & w p b & T^{\prime} \mu \downarrow \\
T^{I+m+2} A \xrightarrow{\text { wi+m+1} e} T^{I+m+1} A & T^{\prime+m+3} A \xrightarrow{T^{I+m+1} \mu} T^{I+m+2} A
\end{array}
$$

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ
- T also preserves weak pullbacks
- Such BC monads include distribution, any symmetric operad
- (CFPS) $\operatorname{Bar}_{T}(\mathbb{N})$ is not a quasicategory

$$
\begin{array}{cc}
T^{\prime+m+3} A \xrightarrow{T^{\prime+m+2} e} T^{\prime+m+2} A & T^{\prime+m+4} A \xrightarrow{T^{\prime+m+2} \mu} T^{\prime+m+3} A \\
T^{\prime} \mu \downarrow & \begin{array}{ll}
w p b & T^{\prime} \mu \downarrow \\
T^{\prime} \mu & \text { wpb }
\end{array} \\
T^{\prime} \mu \downarrow \\
T^{\prime+m+2} A \xrightarrow{I^{\prime+m+1} e} T^{\prime+m+1} A & T^{\prime+m+3} A \xrightarrow{T^{\prime+m+1} \mu} T^{\prime+m+2} A
\end{array}
$$

BC Monads

- Free monoid monad (or any plain operad) has cartesian μ
- Free comm. monoid monad T has only weakly cartesian μ
- T also preserves weak pullbacks
- Such BC monads include distribution, any symmetric operad
- (CFPS) $\operatorname{Bar}_{T}(\mathbb{N})$ is not a quasicategory

$$
\begin{array}{ccc}
T^{\prime+m+3} A \xrightarrow{T^{\prime+m+2} e} T^{\prime+m+2} A & T^{\prime+m+4} A \xrightarrow{T^{\prime+m+2} \mu} T^{\prime+m+3} A \\
T^{\prime} \mu \downarrow & T^{\prime} \mu \downarrow & T^{\prime} \mu \downarrow \\
T^{\prime+m+2} A \xrightarrow{w p b} & T^{\prime} \mu \downarrow \\
T^{\prime+m+1} e & T^{\prime+m+1} A & T^{\prime+m+3} A \xrightarrow{T^{\prime+m+1} \mu} \\
T^{\prime+m+2} A
\end{array}
$$

Filler Conditions

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is $B C$?

Filler Conditions

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is $B C$?

$$
\begin{aligned}
& T^{I+m+3} A \xrightarrow{T^{I+m+2} e} T^{I+m+2} A \\
& T^{\prime} \mu \downarrow \quad \text { wpb } \quad T^{\prime} \mu \\
& T^{I+m+2} A \underset{T^{I+m+1} e}{ } T^{I+m+1} A
\end{aligned}
$$

Filler Conditions

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is $B C$?
- Let $n \geq 2, j-i>1$

$$
\begin{aligned}
& T^{n+1} A \xrightarrow{T^{n} e} T^{n} A \\
& T^{n+1} A \xrightarrow{T^{n-i} \mu} T^{n} A \\
& T^{n-j} \mu \downarrow \text { wpb } \quad \downarrow T^{n-j} \mu \quad T^{n-j} \mu \downarrow \quad \text { wpb } \quad \downarrow^{n-j} \mu \\
& T^{n} A \xrightarrow[T^{n-1} e]{ } T^{n-1} A \\
& T^{n} A \underset{T^{n-i-1} \mu}{ } T^{n-1} A
\end{aligned}
$$

Filler Conditions

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is $B C$?
- Let $n \geq 2, j-i>1$
- A simplicial set X with this property

$$
\begin{aligned}
& T^{n+1} A \xrightarrow{T^{n} e} T^{n} A \\
& T^{n+1} A \xrightarrow{T^{n-i} \mu} T^{n} A \\
& T^{n-j} \mu \downarrow \text { wpb } \quad \downarrow T^{n-j} \mu \quad T^{n-j} \mu \downarrow \quad \text { wpb } \quad \downarrow^{T^{n-j} \mu} \\
& T^{n} A \xrightarrow[T^{n-1} e]{ } T^{n-1} A \\
& T^{n} A \xrightarrow[T^{n-i-1} \mu]{ } T^{n-1} A
\end{aligned}
$$

Filler Conditions

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is BC ?
- Let $n \geq 2, j-i>1$
- A simplicial set X with this property

$$
\begin{aligned}
& X_{n} \xrightarrow{d_{i}} X_{n-1} \\
& \stackrel{d_{j}}{\downarrow}{ }_{n-1} \xrightarrow[d_{i}]{\text { wpb }} X_{n-2}^{\downarrow_{j-1}}
\end{aligned}
$$

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is BC ?
- Let $n \geq 2, j-i>1$
- A simplicial set X with this property

$$
\begin{gathered}
X_{n} \xrightarrow{d_{i}} X_{n-1} \\
d_{j} \downarrow \underset{\downarrow}{ }{ }_{w b b}^{\downarrow_{j-1}} \\
X_{n-1} \xrightarrow[d_{i}]{d_{j}}
\end{gathered} X_{n-2}
$$

Filler Conditions

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is $B C$?
- Let $n \geq 2, j-i>1$
- A simplicial set X with this property

$$
\begin{aligned}
& X_{n} \xrightarrow{d_{i}} X_{n-1} \\
& d_{j} \downarrow \quad w p b \quad \downarrow_{j-1} \\
& X_{n-1} \xrightarrow[d_{i}]{ } X_{n-2}
\end{aligned}
$$

Filler Conditions

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is $B C$?
- Let $n \geq 2, j-i>1$
- A simplicial set X with this property

$$
\begin{gathered}
X_{n} \xrightarrow{d_{i}} X_{n-1} \\
d_{j} \downarrow{ }_{w p b}{ }^{\downarrow d_{j-1}} \\
X_{n-1} \xrightarrow[d_{i}]{ }
\end{gathered} X_{n-2}
$$

Filler Conditions

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is $B C$?
- Let $n \geq 2, j-i>1$
- A simplicial set X with this property is inner span complete

$$
\begin{gathered}
X_{n} \xrightarrow{d_{i}} X_{n-1} \\
d_{j} \downarrow \underset{w p b}{d_{n-1}} \underset{d_{i}}{d_{j-1}} \\
X_{n-2}^{d_{j}}
\end{gathered}
$$

Filler Conditions

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is $B C$?
- Let $n \geq 2, j-i>1$
- A simplicial set X with this property is inner span complete

$$
\begin{gathered}
X_{n} \xrightarrow{d_{i}} X_{n-1} \\
d_{j} \downarrow{ }_{w p b}{ }^{\downarrow d_{j-1}} \\
X_{n-1} \xrightarrow[d_{i}]{ }
\end{gathered} X_{n-2}
$$

Filler Conditions

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is $B C$?
- Let $n \geq 2, j-i>1$
- A simplicial set X with this property is inner span complete

$X_{n} \xrightarrow{d_{i}} X_{n-1}$
$\underset{X_{n-1}}{d_{j}} \underset{d_{i}}{w p b} X_{n-2}^{\downarrow_{j-1}}$

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is $B C$?
- Let $n \geq 2, j-i>1$
- A simplicial set X with this property is inner span complete

$$
\begin{gathered}
X_{n} \longrightarrow X_{p} \\
\downarrow \begin{array}{l}
w p b ? \\
X_{q} \longrightarrow X_{r}
\end{array} \\
\downarrow
\end{gathered}
$$

Filler Conditions

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is $B C$?
- Let $n \geq 2, j-i>1$
- A simplicial set X with this property is inner span complete

Filler Conditions

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is $B C$?
- Let $n \geq 2, j-i>1$
- A simplicial set X with this property is inner span complete - (CFPS) X then has fillers for all spans containing the spine

outer

Filler Conditions

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is $B C$?
- Let $n \geq 2, j-i>1$
- A simplicial set X with this property is inner span complete
- (CFPS) X then has fillers for all spans containing the spine
$\longrightarrow \cdot \xrightarrow{P=3} \cdot$

Filler Conditions

- What properties does $\operatorname{Bar}_{T}(A)$ have when T is $B C$?
- Let $n \geq 2, j-i>1$
- A simplicial set X with this property is inner span complete
- (CFPS) X then has fillers for all spans containing the spine

$$
p=3
$$

Filler Conditions

- What other fillers do inner span complete simplicial sets have?

Filler Conditions

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n}
- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n}

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n}
- The 1 -skeleton of S is chordal

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n}
- The 1 -skeleton of S is chordal

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n}
- The 1 -skeleton of S is chordal
- S has $\partial \Delta^{k} \hookrightarrow \Delta^{k}$ fillers for $2 \leq k \leq n$

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n}
- The 1 -skeleton of S is chordal
- S has $\partial \Delta^{k} \hookrightarrow \Delta^{k}$ fillers for $2 \leq k \leq n$

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n}
- The 1 -skeleton of S is chordal
- S has $\partial \Delta^{k} \hookrightarrow \Delta^{k}$ fillers for $2 \leq k \leq n$
- Does not include any horns

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n}
- The 1 -skeleton of S is chordal
- S has $\partial \Delta^{k} \hookrightarrow \Delta^{k}$ fillers for $2 \leq k \leq n$
- Does not include any horns
- Includes spine inclusions

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n}
- The 1 -skeleton of S is chordal
- S has $\partial \Delta^{k} \hookrightarrow \Delta^{k}$ fillers for $2 \leq k \leq n$
- Does not include any horns
- Includes spine inclusions

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n}
- The 1 -skeleton of S is chordal
- S has $\partial \Delta^{k} \hookrightarrow \Delta^{k}$ fillers for $2 \leq k \leq n$
- Does not include any horns
- Includes spine inclusions and 2-Segal inclusions

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n}
- The 1 -skeleton of S is chordal
- S has $\partial \Delta^{k} \hookrightarrow \Delta^{k}$ fillers for $2 \leq k \leq n$
- Does not include any horns
- Includes spine inclusions and 2-Segal inclusions

Parting Thoughts...

Parting Thoughts...

- We can also describe when partial evaluations do or don't have inverses
- We can also describe when partial evaluations do or don't have inverses
- Inner span completeness is not a homotopical property
- We can also describe when partial evaluations do or don't have inverses
- Inner span completeness is not a homotopical property
- How do properties of $\operatorname{Bar}_{T}(A)$ relate to computation?
- We can also describe when partial evaluations do or don't have inverses
- Inner span completeness is not a homotopical property
- How do properties of $\operatorname{Bar}_{T}(A)$ relate to computation?
- Higher order rewriting?
- We can also describe when partial evaluations do or don't have inverses
- Inner span completeness is not a homotopical property
- How do properties of $\operatorname{Bar}_{T}(A)$ relate to computation?
- Higher order rewriting?

Thank you!

- Carmen Constantin, Tobias Fritz, Paolo Perrone, and Brandon Shapiro. Partial evaluations and the compositional structure of the bar construction. Coming soon.
- Tobias Fritz and Paolo Perrone. Monads, partial evaluations, and rewriting. Proceedings of MFPS 36, ENTCS, 2020.
- Maria Manuel Clementino, Dirk Hofmann, and George Janelidze. The monads of classical algebra are seldom weakly Cartesian. J. Homotopy Relat. Struct., 9(1):175-197, 2014.
- Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the Desirability of Acyclic Database Schemes. Journal of the ACM, 30, 479-, 1983.

