
To appear in EPTCS.

Dynamic categories, dynamic operads:
From deep learning to prediction markets

Brandon T. Shapiro David I. Spivak

Natural organized systems adapt to internal and external pressures and this happens at all

levels of the abstraction hierarchy. Wanting to think clearly about this idea motivates our

paper, and so the idea is elaborated extensively in the introduction, which should be broadly

accessible to a philosophically-interested audience.

In the remaining sections, we turn to more compressed category theory. We define

the monoidal double category Org of dynamic organizations, we provide definitions of

Org-enriched, or dynamic, categorical structures—e.g. dynamic categories, operads, and

monoidal categories—and we show how they instantiate the motivating philosophical ideas.

We give two examples of dynamic categorical structures: prediction markets as a dynamic

operad and deep learning as a dynamic monoidal category.

1 Introduction

Intuitively, an open dynamical system is a machine or worker with an interface by which to

interact with whatever else is out there. Open dynamical systems can be organized as circuits

or control loops, so that they affect each other by their outward expressions of internal work, and

thereby possibly form a more complex worker. The framework here is fractal—or more precisely

operadic—in its structure: organizations of workers can be nested into arbitrary hierarchies of

abstraction.

𝑋
11

𝑋
12

𝑋
13

𝑌1

𝑋
21

𝑋
22

𝑌2

𝑍

Figure 1: A nesting of interacting open dynamical systems: the 𝑋𝑖 , 𝑗 are wired together to form

the 𝑌𝑖 , which are wired together to form 𝑍; typically these groupings are chosen to create new

abstractions, e.g. in logical circuits or control systems. The permanence of the above-displayed

wiring pattern is exactly what is relaxed in this paper; a dynamic organization is one in which

interactions may change dynamically based on what flows within the system.

But if we think about some things that interact to do work in the real world, we notice

that often the organization itself—the connections themselves—change. Unlike what we see

2 Dynamic categories, dynamic operads

in Fig. 1, the way we connect this hour may be different from the way we connect next hour;

in particular, our interfaces go in and out of contact. At the end of this paragraph, look away

from the page for a few seconds, think about some things you know that interact together or

influence each other, and ask yourself three questions about them: Do these things ever stop

interacting? If so, do they ever start interacting again? And how is it decided?

1.1 Accounting for organizational change

We propose that the metaphysical nature and scope of these questions should be complemented

by some sort of guard rails to keep our contemplation on track. This is the role of mathematics

in our work. It provides a symbolic accounting system which is articulate enough to facilitate

one person in explicating an example and asking questions about it.

The category Poly of polynomial functors in one variable is an ergonomic mathematical

structure with many applications and spin-off categorical gadgets. We will begin in Section 2

by recalling one such gadget from [Spi21]: a category-enriched multicategory Org that will

be the conceptual centerpiece of our accounting system. Its objects are polynomial functors

in one variable, and its morphisms are polynomial coalgebras related to a certain monoidal

closed structure on Poly. We will see that the morphisms in Org are intuitively “collective

organizational patterns that change dynamically”.

Leaving the mathematics aside until Section 2—at which point we will have almost nothing

more to say about the background philosophy—let’s return to the question “how is the orga-

nizational pattern between various systems decided, moment-by-moment?” Let’s mesh this

question with the idea that the so-organized systems can be nested into arbitrary hierarchies of

abstraction. And let’s think about all this in the frame of a certain worldview which we invite

you the reader to engage with like a fictional movie, not intended to convince you of fact but

instead simply to convey an experience. Here goes.

In this worldview, we notice that everything that makes any sense to us happens to be a

collective. A cell body, a human body, an antibody, Topos Institute, an idea, an airport, a

sentence, a mathematical definition, a grain of sand, ... each is a collective of interacting parts

that may themselves be collectives.

It’s quite often the case that these collectives, like the ship of Theseus, are not permanent

organizations that are fixed for all time; they are adapting to forces from within and without

the system. Even a grain of sand can break or melt; even a mathematical definition can be

refactored. So then what’s outside the system, generating these forces that influence it? We

imagine that what’s outside is in fact more of the same kind of stuff as what’s inside, just not as

cohesive perhaps. Let’s go full-on woo: if the universe is a big system, then maybe the sort of

thing that happens in our head is—in some way—just like what happens outside of it. Maybe

the motives that organize Brandon and David into a collaborative thinking and paper-writing

unit are, in the some reasonable account, of the same nature as the motives that organize each

one of them into a body.

But is this right? How could you check such a claim? One would need to give a reasonable

account of it, and since we as authors can’t currently give such an account, we don’t make this

B.T. Shapiro and D.I. Spivak 3

claim. Instead, what we present here is an accounting system in which the woo-person, (or would

it instead be the reductive materialist?) who thought that what went on inside the head was

somehow the same as what went on outside, could endeavor to provide such an account of

their thinking.

1.2 Dynamic categorical structures

Our main definition in this paper is what we call an dynamic categorical structure. We might

poetically say that a dynamic category is one where the morphisms between two objects change

in response to what flows between those objects. To define it, we first refactor the definition

of Org from [Spi21] from an operad to a monoidal double category; we then define a dynamic

thing to be a *thing* enriched in Org. Once these are defined, we give a couple examples:

a prediction market operad and a deep learning monoidal category. In the prediction market, a

population 𝑌 predicts a distribution based on the predictions of its member populations 𝑋𝑖

weighted by their reputations, and the reputations change dynamically based on the returned

outcome. A similar story holds with deep learning.

We thank you the reader for having postponed your counterpoints and counterexamples,

and we ask you to reengage both skepticism and interest as you see fit. We invite you to ask

openly: what’s not a collective of interacting parts that are themselves collectives? Nature, love,

or experience perhaps? It all depends on how you look. What we present here is an accounting

system for making sense of a certain sort of experiential pattern; the matter itself is whatever it

is.

1.3 Acknowledgments

The influences on this paper are too numerous and unranked to name, but in particular we

thank Sophie Libkind for stimulating conversations, and we thank Scott Garrabrant for teaching

us about Kelly betting, which partially inspired Section 4.1.

This material is based upon work supported by the Air Force Office of Scientific Research

under award number FA9550-20-1-0348.

2 The Monoidal Double Category Org

In [Spi21], the second author defined a category-enriched multicategory Org, whose objects

are polynomials and whose morphisms are polynomial coalgebras. In this section, we describe

how Org in fact more naturally takes the form of a monoidal double category, with coalgebras

as horizontal morphisms, maps of polynomials as vertical morphisms, and the Dirichlet tensor

product ⊗ (see (2) below) providing the monoidal structure.1

Before we begin, recall that a polynomial is a functor 𝑝 : Set→ Set which is isomorphic to a

1In fact, Org is a duoidal double category, with a second monoidal structure ⊳, but we will not use that here.

4 Dynamic categories, dynamic operads

sum of representables; following [Spi21], we denote 𝑝, 𝑞 ∈ Poly by

𝑝 =
∑
𝐼∈𝑝(1)

y𝑝[𝐼] and 𝑞 =
∑
𝐽∈𝑞(1)

y𝑞[𝐽]
(1)

and refer to each 𝐼 ∈ 𝑝(1) as a 𝑝-position and to each 𝑖 ∈ 𝑝[𝐼] as a 𝑝-direction at 𝐼. A map 𝜙 : 𝑝→ 𝑞

of polynomials is a natural transformation. Combinatorially, 𝜙 provides: for each 𝐼 ∈ 𝑝(1) a

choice of 𝜙(𝐼) ∈ 𝑞(1) and for each 𝑗 ∈ 𝑞[𝜙(𝐼)] a choice of 𝜙(𝐼 , 𝑗) ∈ 𝑝[𝐼].2
For polynomials 𝑝, 𝑞, their Dirichlet tensor product is the polynomial

𝑝 ⊗ 𝑞 =
∑

(𝐼 ,𝐽)∈𝑝(1)×𝑞(1)
y𝑝[𝐼]×𝑞[𝐽] (2)

2.1 [𝑝, 𝑞]-coalgebras

We first recall the definitions of the internal-hom polynomials [𝑝, 𝑞] and concretely describe

the category of [𝑝, 𝑞]-coalgebras, which will form the category of morphisms from 𝑝 to 𝑞 in the

underlying bicategory of Org.

Definition 2.1. For polynomials 𝑝, 𝑞 ∈ Poly as in (1), their internal hom with respect to the tensor

product ⊗ is the polynomial

[𝑝, 𝑞]B
∑

𝜙 : 𝑝→𝑞

y

∑
𝐼∈𝑝(1)

𝑞[𝜙(𝐼)]
(3)

It can also be written [𝑝, 𝑞] �∏
𝐼∈𝑝(1)

∑
𝐽∈𝑞(1)

∏
𝑗∈𝑞[𝐽]

∑
𝑖∈𝑝[𝐼]y. ♢

For intuition, a [𝑝, 𝑞]-coalgebra (denoted 𝑝 ≈ 𝑞) is a machine that outputs maps 𝜙 : 𝑝→ 𝑞

and that inputs what flows between them: pairs (𝐼 , 𝑗) where 𝐼 ∈ 𝑝(1) is a position of 𝑝, which

“flows” to 𝑞 as 𝐽 B 𝜙(𝐼) ∈ 𝑞(1), and 𝑗 ∈ 𝑞[𝐽] is a direction of 𝑞, which “flows” backward to 𝑝

as 𝜙(𝐼 , 𝑗) ∈ 𝑝[𝐼]. More precisely, using [Spi21, Definition 2.10], we define [𝑝, 𝑞]-coalgebras as

follows.

Definition 2.2. The category [𝑝, 𝑞]-Coalg has as objects pairs S = (𝑆,𝛽) where 𝑆 is a set and

𝛽 : 𝑆→ [𝑝, 𝑞](𝑆) is a function, and where a morphism from S to S′ is a function 𝑓 : 𝑆→ 𝑆′

making (4) commute.

𝑆 [𝑝, 𝑞](𝑆)

𝑆′ [𝑝, 𝑞](𝑆′)

𝛽

𝑓 [𝑝,𝑞](𝑓)

𝛽′

(4)

We refer to 𝑆 as the state set and to each element 𝑠 ∈ 𝑆 as a state. ♢

Unwinding this definition, it is useful to break 𝛽 into two functions 𝛽B (act
𝛽 ,upd

𝛽), an action
function

act
𝛽
: 𝑆→ Poly(𝑝, 𝑞) = [𝑝, 𝑞](1)

2In [Spi21], what we denote 𝜙(𝐼) is denoted 𝜙
1
(𝐼) and what we denote 𝜙(𝐼 , 𝑗) is denoted 𝜙♯

𝐼
(𝑗).

B.T. Shapiro and D.I. Spivak 5

and, for each state 𝑠 ∈ 𝑆, an update function

upd

𝛽
𝑠 :

∑
𝐼∈𝑝(1)

𝑞
[
act

𝛽
𝑠 (𝐼)

]
→ 𝑆.

For a state 𝑠 ∈ 𝑆 and position 𝐼 ∈ 𝑝(1) we often write act

𝛽
𝑠 : 𝑝→ 𝑞 and upd

𝛽
𝑠 (𝐼) : 𝑞[act

𝛽
𝑠 (𝐼)] → 𝑆.

We may suppress the 𝛽 when it is clear from context, writing act𝑠 and upd𝑠 . A coalgebra map

S→ S′ is a function 𝑆→ 𝑆′ between the state sets that preserves actions and updates.

When, for each 𝑠 ∈ 𝑆, the update upd𝑠 is the constant function sending everything to 𝑠, we

say the coalgebra S is static, as it remains constantly at 𝑠 regardless of the inputs 𝐼 ∈ 𝑝(1) and

𝑗 ∈ 𝑞[act𝑠(𝐼)] flowing between 𝑝 and 𝑞.

Example 2.3. A special case of a static [𝑝, 𝑞]-coalgebra is given by a map 𝜙 ∈ Poly(𝑝, 𝑞). For

each such 𝜙, there is a coalgebra {𝜙} with a singleton state set and with act
𝛽

sending the point

to 𝜙; we call it a singleton coalgebra.

A coalgebra is static iff it is the coproduct of singleton coalgebras. ♢

More examples and intuition for [𝑝, 𝑞]-coalgebras can be found in [Spi21].

2.2 Composition of hom-coalgebras

We now describe how [𝑝, 𝑞]-coalgebras behave like morphisms from 𝑝 to 𝑞.

Proposition 2.4. The categories [𝑝, 𝑞]-Coalg form the hom-categories in a bicategory Org, which has
polynomials as objects.

We useOrg to denote both the bicategory from Proposition 2.4 and the categorical operad in

[Spi21, Definition 2.19], as both are derived from the monoidal double category Org described

in the following sections. For now, we merely present the identities and composites in this

bicategory. Identities are easy: the identity object in Org(𝑝, 𝑝) = [𝑝, 𝑝]-Coalg is given by the

one-state coalgebra {id𝑝}.
The composition functor Org(𝑝, 𝑞)×Org(𝑞, 𝑟) −→Org(𝑝, 𝑟) is defined as the composite:

[𝑝, 𝑞]-Coalg×[𝑞, 𝑟]-Coalg→ ([𝑝, 𝑞] ⊗ [𝑞, 𝑟]) -Coalg −→ [𝑝, 𝑟]-Coalg,

where the first functor is the lax monoidality of (−)-Coalg : Poly→ Cat, as described in [Spi21,

Proposition 2.13], and the second is given by applying (−)-Coalg to the usual “composition”

map of internal-homs [𝑝, 𝑞]⊗ [𝑞, 𝑟]→ [𝑝, 𝑟] in Poly. Using (3) we see that on positions, this map

takes the form

([𝑝, 𝑞] ⊗ [𝑞, 𝑟]) (1) = Poly(𝑝, 𝑞)×Poly(𝑞, 𝑟) #−→ Poly(𝑝, 𝑟) = [𝑝, 𝑟](1)

and on directions it is given for 𝜙 : 𝑝→ 𝑞 and 𝜓 : 𝑞→ 𝑟 by the function(∑
𝐼∈𝑝(1)

𝑞[𝜙(𝐼)]
)
×

(∑
𝐽∈𝑞(1)

𝑟[𝜓(𝐽)]
)
←

∑
𝐼∈𝑝(1)

𝑟[𝜓(𝜙(𝐼))]

which sends (𝐼 , 𝑘) to
(
(𝐼 ,𝜓(𝜙(𝐼), 𝑘)), (𝜙(𝐼), 𝑗)

)
.

Concretely, the composite of a [𝑝, 𝑞]-coalgebra S and a [𝑞, 𝑟]-coalgebra S′ is a [𝑝, 𝑟]-coalgebra

which we denote S #S′ and define as follows:

6 Dynamic categories, dynamic operads

• its state set is given by 𝑆×𝑆′
• the action of the pair (𝑠, 𝑠′) is given by the composite

act

𝛽#𝛽′

𝑠,𝑠′ B (act

𝛽
𝑠 #act

𝛽′

𝑠′) : 𝑝→ 𝑞→ 𝑟

• the update function of (𝑠, 𝑠′) is induced by the functions

∑
𝐼∈𝑝(1)

𝑟
[
act

𝛽#𝛽′

𝑠,𝑠′ (𝐼)
] (𝐼 ,𝑘)↦→(

𝐼 ,act

𝛽′
𝑠′

(
act

𝛽
𝑠 (𝐼),𝑘

))
−−−−−−−−−−−−−−−−−−→

∑
𝐼∈𝑝(1)

𝑞
[
act

𝛽
𝑠 (𝐼)

]
upd

𝛽
𝑠−−−→ 𝑆,

∑
𝐼∈𝑝(1)

𝑟
[
act

𝛽#𝛽′

𝑠,𝑠′ (𝐼)
] (𝐼 ,𝑘)↦→(

act

𝛽
𝑠 (𝐼),𝑘

)
−−−−−−−−−−−−→

∑
𝐽∈𝑞(1)

𝑟
[
act

𝛽′

𝑠′ (𝐽)
]

upd

𝛽′
𝑠′−−−−→ 𝑆′.

Horizontal composition of coalgebra-morphisms—i.e. of the 2-cells in the bicategory Org—

is given simply by the cartesian product. The coherence isomorphisms and axioms for a

bicategory then follow from the essential uniqueness of finite products of sets, and the unitality

and associativity of composition for polynomial maps.

2.3 Monoidal product of coalgebras

It is shown in [Spi21, Proposition 2.13] that the tensor product ⊗ of polynomials extends to

make Org a monoidal bicategory. That is, for polynomials 𝑝, 𝑞, 𝑝′, 𝑞′ there is a functor

[𝑝, 𝑞]-Coalg×[𝑝′, 𝑞′]-Coalg→ ([𝑝, 𝑞] ⊗ [𝑝′, 𝑞′]) -Coalg→ [𝑝 ⊗ 𝑝′, 𝑞 ⊗ 𝑞′]-Coalg

derived from the map of polynomials [𝑝, 𝑞] ⊗ [𝑝′, 𝑞′] → [𝑝⊗𝑝′, 𝑞⊗𝑞′] given on positions by

Poly(𝑝, 𝑞)×Poly(𝑝′, 𝑞′) ⊗−→ Poly(𝑝 ⊗ 𝑝′, 𝑞 ⊗ 𝑞′)

and on directions by, for 𝜙 : 𝑝→ 𝑞 and 𝜙′ : 𝑝′→ 𝑞′,(∑
𝐼∈𝑝(1)

𝑞[𝜙1(𝐼)]
)
×

(∑
𝐼′∈𝑝′(1)

𝑞′[𝜙′
1
(𝐼′)]

)
←−

∑
(𝐼 ,𝐼′)∈𝑝(1)×𝑝′(1)

𝑞[𝜙1(𝐼)]× 𝑞′[𝜙′
1
(𝐼′)]

sending (𝐼 , 𝐼′, 𝑗 , 𝑗′) to (𝐼 , 𝑗, 𝐼′, 𝑗′).
Concretely, this tensor product takes a [𝑝, 𝑞]-coalgebra S and a [𝑝′, 𝑞′]-coalgebra S′ to the

[𝑝 ⊗ 𝑝′, 𝑞 ⊗ 𝑞′]-coalgebra with states 𝑆×𝑆′, action

𝑆×𝑆′→ Poly(𝑝, 𝑞)×Poly(𝑝′, 𝑞′) → Poly(𝑝 ⊗ 𝑝′, 𝑞 ⊗ 𝑞′),

and update described similarly componentwise. The tensor product of coalgebra morphisms

is also given by the cartesian product of functions, and it is (very) tedious but ultimately

straightforward to check that the essential uniqueness of products guarantees that ⊗ gives a

monoidal structure on Org.

B.T. Shapiro and D.I. Spivak 7

2.4 Org as a double category

DefiningOrg as a monoidal bicategory is sufficient for most of the constructions ofOrg-enriched

structures in Section 3. However, using a double category structure casting singleton coalgebras

S𝜙 ∈ [𝑝, 𝑞]-Coalg (see Example 2.3) as morphisms 𝜙 : 𝑝 → 𝑞 in Poly facilitates our eventual

definition of maps between dynamic structures.

Specifically, the definition of Org as a monoidal bicategory extends to a monoidal pseudo-

double category with coalgebras as horizontal morphisms, maps in Poly as vertical morphisms,

and squares as in (5) given by maps of coalgebras from S # {𝜓} to {𝜙} #S′.

𝑝 𝑞

𝑝′ 𝑞′

≈S

𝜙 𝜓

≈

S′

(5)

The symbol ≈ is intended to indicate that the map is “dynamic”, changing in response to

what flows between 𝑝 and 𝑞.

As {𝜙} and {𝜓} have only one state, and composition of coalgebras acts as the cartesian

product on states, such a square amounts to a function 𝑆→ 𝑆′ making (6) commute:

𝑆 [𝑝, 𝑞](𝑆) [𝑝, 𝑞′](𝑆)

𝑆′ [𝑝′, 𝑞′](𝑆′) [𝑝, 𝑞′](𝑆′)

𝛽

𝑓

𝜓∗

[𝑝,𝑞′](𝑓)

𝛽′ 𝜙∗

(6)

Identities and composites for these squares are determined by the bicategory structure, as this

double category is a restriction in the vertical direction of the double category of lax-commuting

squares in a bicategory.3

We now proceed to discuss various categorical structures enriched in Org, which describe

dynamical systems equipped with algebraic structure that lets us remove abstraction barriers

when considering nested layers and complex arrangements of the components of the system.

3 Dynamic structures via Org-Enrichment

A monoidal double category is a viable setting for enriching various categorical structures.

Intuitively, enrichment in Org replaces the usual set of arrows between two objects in a cat-

egorical structure with a [𝑝, 𝑞]-coalgebra for some choice of polynomials 𝑝, 𝑞. Therefore not

only can each arrow be realized as a map of polynomials 𝑝→ 𝑞, but this map carries dynamics

that encode how a position in 𝑝 and a direction in 𝑞 determine a transition from one arrow to

another. The morphism “reacts” to what’s flowing between 𝑝 and 𝑞.

3It should be noted however that the vertical arrows in Org are regarded as polynomial maps rather than

coalgebras, so that they compose strictly unitally and associatively.

8 Dynamic categories, dynamic operads

Different situations call for different categorical structures to model their dynamics: some

systems primarily involve many-to-one arrangements such as the wiring diagrams in Fig. 1,

others such as gradient descent fit naturally into a many-to-many arrow framework, and we

expect in future work to consider evolving systems in which different components operate

at differing time scales. Rather than choose one such categorical form to favor, and then go

through the tedious exercise of forcing all of the others to conform to it, we describe how to add

dynamics to the definitions of many different structures.

A dynamic *thing* is a *thing* enriched in Org.

This slogan is intentionally imprecise, so as to be maximally inclusive of different notions of

categorical structures (*things*) and notions of enrichment, and also to allow the reader who has

an intuitive understanding and no need for precision to skip the remainder of this paragraph.

Our intuition and examples come from the theories of enrichment described in [Lei99] and

[Sha22]. In the former, a *thing* can be any suitable type of generalized multicategory, while

in the latter a *thing* can be any structure defined as an algebra for a familial monad on a

presheaf category equipped with a choice of “higher” and “lower” dimensional cell shapes. In

both cases, *things* are algebras for a particular cartesian monad 𝑇 and admit an “enriched”

analogue with respect to any 𝑇-multicategory. To define 𝑇-algebras enriched in Org is then

to identify Org with a 𝑇-multicategory, and in all of our examples this identification arises

naturally from the observation that monoidal double categories give rise to 𝑇-multicategories

in a natural way.

We now give specific instances of Org-enrichment: in Section 3.1 for dynamical categories,

in Section 3.2 for dynamical multicategories and operads, and in Section 3.3 for dynamical

monoidal categories and PRO(P)s. We are also interested in using dynamic duoidal categories

to describe dynamical systems in which different contributors to a system operate at different

rates, using the duoidal structure on Org based on ⊳, but that is beyond the scope of this paper.

3.1 Dynamic categories

Enrichment of categories only usesOrg’s double category structure—not its monoidal structure—

as any double category forms an 𝑓 𝑐-multicategory (also known as a virtual double category) in

the sense of [Lei99, Section 2.1]. The following definition of enrichment in Org is an unwound

version of the more general definition in [Lei99, Section 2.2].

Definition 3.1. An Org-enriched (henceforth dynamic) category 𝐴 consists of

• a set 𝐴0 of objects;

• for each 𝑎 ∈ 𝐴0, a polynomial 𝑝𝑎 ;

• for each 𝑎, 𝑏 ∈ 𝐴0, a [𝑝𝑎 , 𝑝𝑏]-coalgebra S𝑎,𝑏 ;

• for each 𝑎 ∈ 𝐴0, an “identitor” square in Org as in (7) left; and

B.T. Shapiro and D.I. Spivak 9

• for each 𝑎, 𝑏, 𝑐 ∈ 𝐴0, a “compositor” square in Org as in (7) right:

𝑝𝑎 𝑝𝑎

𝑝𝑎 𝑝𝑎

≈

{id𝑝𝑎 }

≈S𝑎,𝑎

𝑝𝑎 𝑝𝑏 𝑝𝑐

𝑝𝑎 𝑝𝑐

≈

S𝑎,𝑏

≈

S𝑏,𝑐

≈S𝑎,𝑐

(7)

such that these squares satisfy unit and associativity equations (Definition A.1). ♢

The sets 𝑆𝑎,𝑏 form an ordinary category which we say underlies 𝐴. In fact, a dynamic category

could be equivalently defined as an ordinary category such that each object 𝑎 is assigned a

polynomial 𝑝𝑎 and each set of arrows Hom(𝑎, 𝑏) is equipped with a [𝑝𝑎 , 𝑝𝑏]-coalgebra structure,

with composition and identities respecting the coalgebra structure. This means that the arrow

id𝑎 in Hom(𝑎, 𝑎) acts as the identity map on 𝑝𝑎 and is unchanged by updates, while for 𝑓 in

Hom(𝑎, 𝑏) and 𝑔 in Hom(𝑏, 𝑐) the composite 𝑓 # 𝑔 acts as the composite 𝑝𝑎 → 𝑝𝑏 → 𝑝𝑐 of the

actions of 𝑓 and 𝑔, and the update of their composite equals the composite of their updates.

3.2 Dynamic multicategories

A monoidal double category also gives rise to an 𝑓𝑚-multicategory in the sense of [Lei99,

Section 3.1], so we can talk about multicategories enriched in Org as in [Lei99, Section 3.2].

Definition 3.2. An Org-enriched (henceforth dynamic) multicategory 𝐴 consists of

• a set 𝐴0 of objects;

• for each 𝑎 ∈ 𝐴0, a polynomial 𝑝𝑎 ;

• for each 𝑎1 , ..., 𝑎𝑛 , 𝑏 ∈ 𝐴0, a [𝑝𝑎1
⊗ · · · ⊗ 𝑝𝑎𝑛 , 𝑝𝑏]-coalgebra S𝑎1 ,...,𝑎𝑛 ;𝑏 ;

• for each 𝑎 ∈ 𝐴0, an “identitor” square in Org as in (8) left; and

• for each 𝑎1,1 , . . . , 𝑎1,𝑚1
, . . . , 𝑎𝑛,1 , . . . , 𝑎𝑛,𝑚𝑛 , 𝑏1 , . . . , 𝑏𝑛 , and 𝑐 ∈ 𝐴0, a “compositor” square in

Org as in (8) right

𝑝𝑎 𝑝𝑎

𝑝𝑎 𝑝𝑎

≈

{id𝑝𝑎 }

≈S𝑎;𝑎

𝑝𝑎1,1 ⊗ · · · ⊗ 𝑝𝑎𝑛,𝑚𝑛
𝑝𝑏1
⊗ · · · ⊗ 𝑝𝑏𝑛 𝑝𝑐

𝑝𝑎1,1 ⊗ · · · ⊗ 𝑝𝑎𝑛,𝑚𝑛
𝑝𝑐

≈

⊗
𝑖 S𝑎𝑖,1 ,...,𝑎𝑖,𝑚𝑖

;𝑏𝑖

≈
S𝑏

1
,...,𝑏𝑛 ; 𝑐

≈S𝑎
1,1 ,...,𝑎𝑛,𝑚𝑛 ;𝑐

(8)

satisfying unit and associativity equations (see Definition A.2 for the one-object case). ♢

The sets 𝑆𝑎,𝑏 form an ordinary (set-enriched) multicategory, which underlies 𝐴 and has a

description similar to the underlying category we described below Definition 3.1.

We will mostly be interested in what we call a dynamic operad, the case when a dynamic

multicategory 𝐴 has only one object, assigned the polynomial “interface” 𝑝. It consists simply

of a [𝑝⊗𝑛 , 𝑝]-coalgebra S𝑛 for each 𝑛 ∈ N, equipped with coalgebra maps

{id𝑝} → S1 and

⊗
𝑖∈𝐼

S𝑛𝑖 → S𝑁 (9)

where 𝐼 is any finite set and 𝑁 B
∑

𝑖∈𝐼 𝑛𝑖 , which together satisfy the usual equations.

10 Dynamic categories, dynamic operads

Example 3.3. A collective (as defined in [NS21]) is a ⊗-monoid in Poly, meaning a polynomial 𝑝

equipped with a monoid structure on its positions 𝑝(1) and co-unital co-associative “distribu-

tion” functions 𝑝[𝐼 · 𝐽]→ 𝑝[𝐼]× 𝑝[𝐽] for each 𝐼 , 𝐽 ∈ 𝑝(1). This can be viewed as a dynamic operad

where S𝑛 is given by {·𝑛}, the singleton coalgebra on the 𝑛-ary monoidal product (·𝑛) : 𝑝⊗𝑛→ 𝑝,

and where the maps of coalgebras in (9) are isomorphisms deduced from the equations for a

monoid. ♢

Example 3.4. In Example 3.3, the coalgebras S𝑛 are determined by a single map of polynomials,

with trivial updates since the state sets are singletons. This can be generalized to an intermediate

notion between collectives and dynamic multicategories, where the coalgebras are still static

but may have multiple states.

Given any multicategory 𝑀 and multifunctor 𝐹 : 𝑀→ Poly, where Poly here denotes the

multicategory underlying (Poly,y,⊗), there is a dynamic multicategory 𝐴𝐹 with

• object set Ob(𝑀);
• for each 𝑎 ∈ Ob(𝑀), the polynomial interface 𝑝𝑎 B 𝐹(𝑎);
• for each tuple (𝑎1 , ..., 𝑎𝑛 ; 𝑏) in Ob(𝑀), state set 𝑆𝑎1 ,...,𝑎𝑛 ;𝑏 B 𝑀(𝑎1 , ..., 𝑎𝑛 ; 𝑏);
• the action act

𝛽
: 𝑀(𝑎1 , ..., 𝑎𝑛 ; 𝑏) → Poly(𝑝𝑎1

⊗ · · · ⊗ 𝑝𝑎𝑛 , 𝑝𝑏) is given by 𝐹; and

• for any state 𝑠 in 𝑀(𝑎1 , ..., 𝑎𝑛 ; 𝑏), the update function upd

𝛽
𝑠 is the constant function at 𝑠. ♢

Example 3.5. Let S be any 𝑝-coalgebra for a polynomial 𝑝. There is a dynamic operad on 𝑝 with

S0 B S, with S1 B {id𝑝}, and with all other S𝑛 B ∅ assigned the empty coalgebra. ♢

Example 3.6. Consider a dynamic operad with interface y ∈ Poly. The internal hom polynomial

[y⊗𝑛 ,y] is simply y, so this structure amounts to an operad 𝑆 with a function 𝑆𝑛→ 𝑆𝑛 for each

𝑛, commuting with the operad structure. A dynamic operad on y can thus be identified with

an operad S equipped with an operad map S→ S to itself. ♢

3.3 Dynamic monoidal categories

A monoidal double category is precisely a representable 𝑓𝑚𝑐-multicategory as in [Sha22, Section

2], so we can also enrich strict monoidal categories in Org.4 These are similar to Org-enriched

multicategories, but include many-to-many coalgebras rather than just many-to-one.

Definition 3.7. An Org-enriched (henceforth dynamic) strict monoidal category 𝐴 consists of

• a monoid (𝐴0 , 𝑒 , ∗) of objects;

• for each 𝑎 ∈ 𝐴0, a polynomial 𝑝𝑎 ;

• an isomorphism of polynomials 𝑦 � 𝑝𝑒 ;

• for each 𝑎, 𝑎′ ∈ 𝐴0, an isomorphism of polynomials 𝑝𝑎 ⊗ 𝑝𝑎′ � 𝑝𝑎∗𝑎′;

• for each 𝑎, 𝑏 ∈ 𝐴0, a [𝑝𝑎 , 𝑝𝑏]-coalgebra S𝑎,𝑏 ;

• for each 𝑎 ∈ 𝐴0, an “identitor” square in Org as in Eq. (10) left;

• for each 𝑎, 𝑏, 𝑐 ∈ 𝐴0, a “compositor” square in Org as in Eq. (10) center; and

• for each 𝑎, 𝑎′, 𝑏, 𝑏′ ∈ 𝐴0, a “productor” square in Org as in Eq. (10) right:

4We use throughout the notion of strong enrichment in a monoidal double category from [Sha22, Section 3].

B.T. Shapiro and D.I. Spivak 11

𝑝𝑎 𝑝𝑎

𝑝𝑎 𝑝𝑎

≈

{id𝑝𝑎 }

≈S𝑎,𝑎

𝑝𝑎 𝑝𝑏 𝑝𝑐

𝑝𝑎 𝑝𝑐

≈

S𝑎,𝑏

≈

S𝑏,𝑐

≈S𝑎,𝑐

𝑝𝑎 ⊗ 𝑝𝑎′ 𝑝𝑏 ⊗ 𝑝𝑏′

𝑝𝑎𝑎′ 𝑝𝑏∗𝑏′

≀

≈

S𝑎,𝑏⊗S𝑎′ ,𝑏′

≀

≈S𝑎∗𝑎′ ,𝑏∗𝑏′

(10)

satisfying unit, associativity, and interchange equations (see Definition A.3 for the one-object

case). ♢

Similar to Sections 3.1 and 3.2, the sets 𝑆𝑎,𝑏 form the arrows in an ordinary strict monoidal

category underlying 𝐴.

For the rest of this paper, we will only be interested in the restricted case of a dynamic

monoidal category with object monoid (N,0,+), which we call a dynamic PRO.5 Concretely,

this consists of a polynomial interface 𝑝 (so that in the notation above 𝑝𝑛 B 𝑝⊗𝑛 for 𝑛 ∈N) along

with a [𝑝⊗𝑚 , 𝑝⊗𝑛]-coalgebra 𝑆𝑚,𝑛 for each 𝑚,𝑛 ∈ N, equipped with the maps of coalgebras as

in (10). The identitors, compositors, productors, and their equations amount to the ability to

compose any string diagram of the usual sort for monoidal categories, with each 𝑚-to-𝑛 box

given by a state in 𝑆𝑚,𝑛 , into a new box (i.e. state) with the appropriate sources and targets. We

denote a dynamic PRO as (𝑝,S), where S encodes all of the coalgebras S𝑚,𝑛 that constitute the

Org-enrichment and the structure maps are implicit.

We now turn to morphisms between dynamic PROs; the interested reader can hopefully find

analogous definitions for dynamic categories and operads.

Definition 3.8. A morphism of dynamic PROs from (𝑝,S) to (𝑝′,S′) is given by a map of polyno-

mials 𝜙 : 𝑝→ 𝑝′ and, for each 𝑚,𝑛 ∈ N, “commutor” squares as in (11) in Org which commute

with the identitor, compositor, and productor squares.

𝑝⊗𝑚 𝑝⊗𝑛

𝑝′⊗𝑚 𝑝′⊗𝑛

≈

S𝑚,𝑛

𝜙⊗𝑚 𝜙⊗𝑛

≈

S′𝑚,𝑛

(11)

♢

This definition of morphism (taken from [Sha22, Section 3]) is the direct theoretical benefit

of treating Org as a monoidal double category rather than as a monoidal bicategory (closer to

its description in [Spi21]). Otherwise morphisms could either only be easily defined between

dynamic PROs with the same interface polynomial, which is needlessly restrictive, or take the

form of a [𝑝, 𝑝′]-coalgebra, which seems to be too general to be of much use.

A morphism (𝑝,S)→ (𝑝′,S′) can be interpreted as a way of telling the codomain how to run

the domain. The map of polynomials 𝑝→ 𝑝′ specifies how the positions of 𝑝 can be modeled

by those of 𝑝′ and how the directions of 𝑝′ are returned as directions of 𝑝, while the commutor

squares describe how the states of S𝑚,𝑛 can be modeled by those of S′𝑚,𝑛 in a way that respects

this change of interface. A type of theorem that we hope to instantiate in future work is of the

5A PRO is the non-symmetric version of a PROP. While all of our examples are in fact symmetric, to keep the

paper short we do not describe their symmetry operations.

12 Dynamic categories, dynamic operads

form “this dynamic structure that we’re interested in can be run by (has a map to) this other

dynamic structure that we already understand well.”

Example 3.9. For a fixed polynomial 𝑝, there is a terminal dynamic PRO with interface 𝑝, which

we denote S𝑝!
; here S𝑝!

𝑚,𝑛 is the terminal [𝑝⊗𝑚 , 𝑝⊗𝑛]-coalgebra for each 𝑚,𝑛 ∈ N.

A state in S𝑝!
is a (not necessarily finite) [𝑝⊗𝑚 , 𝑝⊗𝑛]-tree. By this we mean a tree co-inductively

defined by a root node labeled with a polynomial map 𝜙 : 𝑝⊗𝑚→ 𝑝⊗𝑛 together with an arrow—

whose source is the root and whose target is another [𝑝⊗𝑚 , 𝑝⊗𝑛]-tree—assigned to each tuple(
(𝐼1 , . . . , 𝐼𝑚), 𝑖1 , . . . , 𝑖𝑛

)
∈ 𝑝⊗𝑚(1)× 𝑝⊗𝑛[𝜙(𝐼1 , ..., 𝐼𝑚)] (12)

The action of such a tree is simply the map 𝜙 labeling its root, and the update sends a tuple

as in (12) to the target of its assigned arrow.

The idea is that the state-set of the terminal dynamic PRO encodes all possible trajectories

along different actions, and this coalgebra is terminal because from any other coalgebra there

is a map to S𝑝!

𝑚,𝑛 sending each state to the tree whose root is labeled by the action of the state

and whose edges from the root go to the trees for each of the state’s possible updates.

To define a dynamic PRO structure on the terminal coalgebra S𝑝!
, it only remains to define

maps of coalgebras as in Eq. (10), and these are all taken to be the unique map to the terminal

[𝑝⊗𝑚 , 𝑝⊗𝑛]-coalgebra; the equations hold automatically. This is the terminal dynamic PRO with

interface 𝑝 because for any other such dynamic PRO there is a morphism given by the identity

map on 𝑝 and with commutor squares to S𝑝!

𝑚,𝑛 the unique map to the terminal [𝑝⊗𝑚 , 𝑝⊗𝑛]-
coalgebra. In other words, S𝑝! uniquely runs any other dynamic PRO with interface 𝑝. ♢

4 Dynamic Structures in Nature

Our main results are that dynamic structures describe phenomena we see instantiated around

us. In this paper, we focus on deep learning and a prediction market in which the reputations

of various guess-makers evolve based on how successful they are.

4.1 The prediction market dynamic operad

Fix a finite set 𝑋, elements of which we call outcomes and intuit to be “all equally likely”, define

the set Δ+
𝑋

of guesses on 𝑋 as6

Δ+𝑋 B

{
𝛾 : 𝑋→ (0,1]

����� 1 =
∑
𝑥

𝛾(𝑥)
}

The monoid ((0,1],1, ∗) of nonzero subunital reals acts on Δ+
𝑋

by scalar multiplication, i.e. for

any 0 < 𝑚 ≤ 1 and 𝛾 ∈ Δ+
𝑋

, we can define 𝑚 · 𝛾 ∈ Δ+
𝑋

as follows:

𝑚 · 𝛾 B
(
𝑥 ↦→ 𝑚𝛾(𝑥)

)
6We assume that each guess assigns a nonzero probability to each possible outcome, which avoids the issues of

dividing by zero when updating or permanent loss of a guess-maker’s reputation. This should be interpreted as

both humility and good strategy on the part of the guess-makers.

B.T. Shapiro and D.I. Spivak 13

Let Δ+ denote the operad of finite nowhere-zero probability distributions, where Δ+
𝑁

is defined

as above with the natural number 𝑁 regarded as the 𝑁-element set. Then Δ+
𝑋

is an algebra for

it: for any � ∈ Δ𝑁 and 𝛾 ∈ (Δ+
𝑋
)𝑁 , we define

� · 𝛾 B
(
𝑥 ↦→

∑
𝑖∈𝑁
(�𝑖 · 𝛾𝑖)(𝑥)

)
and it is easy to check that (� · 𝛾) ∈ Δ+

𝑋
, i.e. its components are in bounds (� · 𝛾)(𝑥) ∈ (0,1] and it

is normalized

∑
𝑥(� · 𝛾)(𝑥) = 1.

We now construct a dynamic operad with interface 𝑝𝑋 ∈ Poly defined as:

𝑝𝑋 B Δ+𝑋 y𝑋

and use theΔ+
𝑁

as our state spaces. The idea is that a state� ∈Δ+
𝑁

says how much the organization

trusts each of its 𝑁 members (guess-makers) relative to each other. A member’s position at a

given moment is a report of how much confidence it has in each of the 𝑋-many possibilities,

represented by its probability distribution.

The action of a trust distribution � ∈ Δ+
𝑁

is the map of polynomials 𝑝⊗𝑁
𝑋
→ 𝑝𝑋 which on

positions sends 𝛾 ∈ (Δ+
𝑋
)𝑁 to� ·𝛾 and on directions sends 𝑥 ∈ 𝑋 to (𝑥, ..., 𝑥) ∈ 𝑋𝑁

. The idea is that

the organization aggregates its members’ predictions according to its current trust-distribution,

and the outcome is accurately communicated back to each member.

The most interesting part of the dynamic structure is how the trust distribution is updated

once predictions are made and a result 𝑥 ∈ 𝑋 is returned. When 𝑁 = 0, there’s nothing to do:

Δ+
0
= ∅. For membership 𝑁 ≥ 1, trust distribution � ∈ Δ+

𝑁
, guesses 𝛾 ∈ (Δ+

𝑋
)𝑁 , and outcome

𝑥 ∈ 𝑋, we define the updated trust distribution 𝛾(𝑥) ∗� ∈ Δ+
𝑁

as

𝛾(𝑥) ∗�B
(
𝑖 ↦→

𝛾𝑖(𝑥)�𝑖∑
𝑗 𝛾𝑗(𝑥)�𝑗

)
.

Finally, we describe the operadic structure maps. As Δ+
1

is a singleton set whose action is the

identity on 𝑝𝑋 , the identitor {id𝑝𝑋 } → Δ+
1

is an isomorphism. The operadic compositor is given

by the usual operad structure on (nowhere-zero) distributions:

Δ+𝑁 ×Δ
+
𝑀1

× · · · ×Δ+𝑀𝑁
→ Δ+∑

𝑖 𝑀𝑖
(�, �1 , . . . , �𝑁) ↦→ �◦ � B

(
(𝑖 , 𝑗) ↦→ �𝑖�𝑗

)
.

Theorem 4.1. The maps defined above are maps of coalgebras and satisfy the coherence equations of a
dynamic operad described in Definition A.2.

This is proven in Appendix B.

4.2 The gradient descent dynamic PRO

Deep learning uses the algorithm of gradient descent to optimize a choice of function, based

on external feedback on its output. This naturally fits into the paradigm of dynamic structures,

since functions R𝑚 → R𝑛 can form the states of a polynomial coalgebra, with the feedback

14 Dynamic categories, dynamic operads

providing the information needed to update the choice of function. These functions can be

composed and juxtaposed in a way that preserves the updates. That is, the composite of

gradient descenders is a gradient descender.

Definition 4.2. For the rest of this section, we will use the state sets

𝑆𝑚,𝑛 B
{
(𝑀 ∈ N, 𝑓 : R𝑀+𝑚 , 𝑝 ∈ R𝑀)

�� 𝑓 is differentiable

}
. ♢

The idea is that these states are the possible parameters among which a gradient descender

is meant to find the optimal choice, while 𝑓 dictates how the parameter affects the resulting

function 𝑓 (𝑝,−). In the dynamics of these states described below, only the value of the parameter

𝑝 will be updated; the parameter-space dimension 𝑀 and the parameterized function 𝑓 will

remain fixed, though network composition of gradient descenders will involve combining these

data in nontrivial ways. Fix 𝜖 > 0.

For every 𝑥 ∈ R, let 𝑇𝑥R denote the tangent space at 𝑥; for all practical purposes 𝑇𝑥R can be

regarded as simplyR, but in both the description of polynomials as bundles and the intuition for

this example it makes sense to use the tangent space. We proceed to define a dynamic PRO with

interface 𝑡 B
∑

𝑥∈Ry
𝑇𝑥R

and coalgebras S𝑚,𝑛 which update the state sets 𝑆𝑚,𝑛 from Definition 4.2

using gradient descent. The PRO structure maps encode how networks of gradient descenders

can be composed into a single gradient descender with a larger parameter space.

Definition 4.3. The [𝑡⊗𝑚 , 𝑡⊗𝑛]-coalgebra structure on 𝑆𝑚,𝑛 is given by

• On positions, the action act

𝛽
𝑀, 𝑓 ,𝑝

: R𝑚→ R𝑛 is given by 𝑓 (𝑝,−).
• For 𝑥 ∈ R𝑚 , the action act

𝛽
𝑀, 𝑓 ,𝑝
(𝑥,−) : 𝑇𝑓 (𝑝,𝑥)R

𝑛 → 𝑇𝑥R𝑚 on directions sends 𝑦 ∈ 𝑇𝑓 (𝑝,𝑥) to

𝜋𝑚(𝐷 𝑓)⊤ · 𝑦.

• The update function upd

𝛽
𝑀, 𝑓 ,𝑝

sends 𝑥 ∈ R𝑚 and 𝑦 ∈ 𝑇𝑓 (𝑝,𝑥) to (𝑀, 𝑓 , 𝑝+ 𝜖𝜋𝑀(𝐷 𝑓)⊤ · 𝑦) for

our fixed 𝜖. ♢

The action of a state as a map 𝑡⊗𝑚 → 𝑡⊗𝑛 is given by applying the parameterized function

𝑓 with the parameter 𝑝, resulting in a function R𝑚 → R𝑛 as desired. The transpose (𝐷 𝑓)⊤
of the derivative of 𝑓 sends a feedback vector 𝑦 ∈ 𝑇𝑓 (𝑝,𝑥)R

𝑛
, which can be interpreted as the

difference in R𝑛 between the “correct” result for 𝑥 and the current approximation 𝑓 (𝑝, 𝑥), to the

corresponding “correction” to (𝑝, 𝑥) inR𝑀+𝑚
. The projection of this correction to𝑇𝑥R𝑚 provides

the action of the state on directions, which in a network will then be further propagated back

to the gradient descender which had output 𝑥. The projection to 𝑇𝑝R𝑀
provides the direction

and magnitude in which to update the parameters (scaled by the “learning rate” 𝜖).

Thus far, we have provided the data of the polynomial 𝑡 and the [𝑡⊗𝑚 , 𝑡⊗𝑛]-coalgebras S𝑚,𝑛

needed to define a dynamic PRO. We now define the identitor, compositor, and productor

morphisms of coalgebras presented by the squares in Definition 3.7.

• The identitors {id𝑡⊗𝑛 } → S𝑛,𝑛 send the unique state in the domain to the state

(0, idR𝑛 ,0) ∈ 𝑆𝑛,𝑛 .

• The compositors Sℓ ,𝑚 #S𝑚,𝑛→ Sℓ ,𝑛 send the pair ((𝐿, 𝑓 , 𝑝), (𝑀,𝑔 , 𝑞)) to(
𝑀+𝐿, 𝑔(−, 𝑓 (−,−)) : R𝑀+𝐿+ℓ id× 𝑓

−−−→ R𝑀+𝑚 𝑔
−→ R𝑛 , (𝑞, 𝑝) ∈ R𝑀+𝐿

)
.

B.T. Shapiro and D.I. Spivak 15

• The productors S𝑚,𝑛 ⊗S𝑚′,𝑛′→ S𝑚+𝑚′,𝑛+𝑛′ send the pair ((𝑀, 𝑓 , 𝑝), (𝑀′, 𝑓 ′, 𝑝′)) to

(𝑀+𝑀′, (𝑓 , 𝑓 ′), (𝑝, 𝑝′)).

These structure maps ensure that whenever two gradient descenders are combined in series

or parallel, the resulting composite descender retains the parameter spaces of both. Likewise

when the input or output of a descender is wired past some other descender in a network, it

does not contribute any new parameters and merely preserves its input/output until plugged

into a descender. The following is proven in Appendix B.

Theorem 4.4. The maps defined above are maps of coalgebras and satisfy the coherence equations of a
dynamic PRO described in Definition A.3.

A Coherence Equations

We now present the equations that must be satisfied by the structure maps in dynamic categories,

operads and PROs. While we only provide the equations for the single-object variant of dynamic

multicategories and monoidal categories, respectively, the equations in the general case are

entirely analogous.

Definition A.1. The equations between the identitors and compositors in a dynamic category

are as follows:

• The left and right unit laws

𝑝𝑎 𝑝𝑎 𝑝𝑏

𝑝𝑎 𝑝𝑎 𝑝𝑏

𝑝𝑎 𝑝

≈

{id𝑝𝑎 }

≈

S𝑎,𝑏

≈S𝑎,𝑎

≈S𝑎,𝑏

≈S𝑎,𝑏

=

𝑝𝑎 𝑝𝑏

𝑝𝑎 𝑝𝑏

≈

S𝑎,𝑏

≈S𝑎,𝑏

=

𝑝𝑎 𝑝𝑏 𝑝𝑏

𝑝𝑎 𝑝𝑏 𝑝𝑏

𝑝𝑎 𝑝

≈
S𝑎,𝑏

≈

{id𝑝𝑏
}

≈S𝑎,𝑏

≈S𝑏,𝑏

≈S𝑎,𝑏

(13)

• The associativity law

𝑝𝑎 𝑝𝑏 𝑝𝑐 𝑝𝑑

𝑝𝑎 𝑝𝑐 𝑝𝑑

𝑝𝑎 𝑝𝑑

≈

S𝑎,𝑏

≈

S𝑏,𝑐

≈

S𝑐,𝑑

≈S𝑎,𝑐 ≈S𝑐,𝑑

≈S𝑎,𝑑

=

𝑝𝑎 𝑝𝑏 𝑝𝑐 𝑝𝑑

𝑝𝑎 𝑝𝑏 𝑝𝑑

𝑝𝑎 𝑝𝑑

≈

S𝑎,𝑏

≈

S𝑏,𝑐

≈

S𝑐,𝑑

≈S𝑎,𝑏 ≈S𝑏,𝑑

≈S𝑎,𝑑

(14)

♢

We now present the equations for dynamic operads. These equations derive directly from

the definition of operads, namely the associativity and unitality of operadic composition, but

unlike the equations above only involve a single polynomial 𝑝.

16 Dynamic categories, dynamic operads

Definition A.2. The equations between the identitors and compositors in a dynamic operad are

as follows:

• The left and right unit laws

𝑝⊗𝑛 𝑝⊗𝑛 𝑝

𝑝⊗𝑛 𝑝⊗𝑛 𝑝

𝑝⊗𝑛 𝑝

≈
{id𝑝}⊗𝑛

≈

S𝑛

≈

S⊗𝑛
1

≈S𝑛

≈S𝑛

=

𝑝⊗𝑛 𝑝

𝑝⊗𝑛 𝑝

≈

S𝑛

≈S𝑛

=

𝑝⊗𝑛 𝑝 𝑝

𝑝⊗𝑛 𝑝 𝑝

𝑝⊗𝑛 𝑝

≈

S𝑛 ≈

{id𝑝}

≈S𝑛

≈S1

≈S𝑛

(15)

• The associativity law

𝑝⊗ℓ1,1 ⊗ · · · ⊗ 𝑝⊗ℓ𝑛,𝑚𝑛 𝑝⊗𝑚1 ⊗ · · · ⊗ 𝑝⊗𝑚𝑛 𝑝⊗𝑛 𝑝

𝑝⊗(
∑

𝑗 ℓ1, 𝑗) ⊗ · · · ⊗ 𝑝⊗(
∑

𝑗 ℓ𝑛,𝑗) 𝑝⊗𝑛 𝑝

𝑝⊗(
∑

𝑖 , 𝑗 ℓ𝑖 , 𝑗) 𝑝

≀

≈

⊗
𝑖 , 𝑗 Sℓ𝑖, 𝑗

≈

⊗
𝑖 S𝑚𝑖 ≈

S𝑛

≀

≈

⊗
𝑖 S

∑
𝑗 ℓ1, 𝑗 ≈S𝑛

≈S∑
𝑖 , 𝑗 ℓ𝑖, 𝑗

= (16)

𝑝⊗ℓ1,1 ⊗ · · · ⊗ 𝑝⊗ℓ𝑛,𝑚𝑛 𝑝⊗𝑚1 ⊗ · · · ⊗ 𝑝⊗𝑚𝑛 𝑝⊗𝑛 𝑝

𝑝⊗ℓ1,1 ⊗ · · · ⊗ 𝑝⊗ℓ𝑛,𝑚𝑛 𝑝⊗(
∑

𝑖 𝑚𝑖) 𝑝

𝑝⊗(
∑

𝑖 , 𝑗 ℓ𝑖 , 𝑗) 𝑝

≈

⊗
𝑖 , 𝑗 Sℓ𝑖, 𝑗

≀

≈

⊗
𝑖 S𝑚𝑖 ≈

S𝑛

≀

≈

⊗
𝑖 , 𝑗 Sℓ𝑖, 𝑗 ≈S∑

𝑖 𝑚𝑖

≈S∑
𝑖 , 𝑗 ℓ𝑖, 𝑗

♢

The equations for dynamic PROs below are similarly derived from the definition of monoidal

categories, namely that composition and products of arrows are associative and unital (giving

the associativity and unitality equations for compositors and productors) and products are

functorial (giving the interchange equations).

Definition A.3. The equations between the identitors, compositors, and productors in a dy-

namic PRO are as follows:

B.T. Shapiro and D.I. Spivak 17

• The identitor interchange law

𝑝⊗𝑛 ⊗ 𝑝⊗𝑛′ 𝑝⊗𝑛 ⊗ 𝑝⊗𝑛′

𝑝⊗𝑛 ⊗ 𝑝⊗𝑛′ 𝑝⊗𝑛 ⊗ 𝑝⊗𝑛′

𝑝⊗(𝑛+𝑛
′) 𝑝⊗(𝑛+𝑛

′)

≈

{id𝑝⊗𝑛 }⊗{id𝑝⊗𝑛′ }

≀
≈S𝑛,𝑛⊗S𝑛′ ,𝑛′

≀
≈S𝑛+𝑛′ ,𝑛+𝑛′

=

𝑝⊗𝑛 ⊗ 𝑝⊗𝑛′ 𝑝⊗𝑛 ⊗ 𝑝⊗𝑛′

𝑝⊗(𝑛+𝑛
′) 𝑝⊗(𝑛+𝑛

′)

𝑝⊗(𝑛+𝑛
′) 𝑝⊗(𝑛+𝑛

′)

≀

≈

{id𝑝⊗𝑛 }⊗{id𝑝⊗𝑛′ }

≀

≈{id
𝑝⊗(𝑛+𝑛′) }

≈S𝑛+𝑛′ ,𝑛+𝑛′

≀

(17)

• The compositor interchange law

𝑝⊗ℓ ⊗ 𝑝⊗ℓ ′ 𝑝⊗𝑚 ⊗ 𝑝⊗𝑚′ 𝑝⊗𝑛 ⊗ 𝑝⊗𝑛′

𝑝⊗(ℓ+ℓ
′) 𝑝⊗(𝑚+𝑚

′) 𝑝⊗(𝑛+𝑛
′)

𝑝⊗(ℓ+ℓ
′) 𝑝⊗(𝑛+𝑛

′)

≀

≈

Sℓ ,𝑚⊗Sℓ′ ,𝑚′

≀

≈

S𝑚,𝑛⊗S𝑚′ ,𝑛′

≀

≈Sℓ+ℓ′ ,𝑚+𝑚′

≈S𝑚+𝑚′ ,𝑛+𝑛′

≈Sℓ+ℓ′ ,𝑛+𝑛′

=

𝑝⊗ℓ ⊗ 𝑝⊗ℓ ′ 𝑝⊗𝑚 ⊗ 𝑝⊗𝑚′ 𝑝⊗𝑛 ⊗ 𝑝⊗𝑛′

𝑝⊗ℓ ⊗ 𝑝⊗ℓ ′ 𝑝⊗𝑛 ⊗ 𝑝⊗𝑛′

𝑝⊗(ℓ+ℓ
′) 𝑝⊗(𝑛+𝑛

′)

≈

Sℓ ,𝑚⊗Sℓ′ ,𝑚′

≈

S𝑚,𝑛⊗S𝑚′ ,𝑛′

≀

≈Sℓ ,𝑛⊗Sℓ′ ,𝑛′

≀

≈Sℓ+ℓ′ ,𝑛+𝑛′

(18)

• The compositor associativity law

𝑝⊗𝑘 𝑝⊗ℓ 𝑝⊗𝑚 𝑝⊗𝑛

𝑝⊗𝑘 𝑝⊗𝑚 𝑝⊗𝑛

𝑝⊗𝑘 𝑝⊗𝑛

≈

S𝑘,ℓ

≈

Sℓ ,𝑚

≈

S𝑚,𝑛

≈S𝑘,𝑚

≈S𝑚,𝑛

≈S𝑘,𝑛

=

𝑝⊗𝑘 𝑝⊗ℓ 𝑝⊗𝑚 𝑝⊗𝑛

𝑝⊗𝑘 𝑝⊗ℓ 𝑝⊗𝑛

𝑝⊗𝑘 𝑝⊗𝑛

≈

S𝑘,ℓ

≈

Sℓ ,𝑚

≈

S𝑚,𝑛

≈S𝑘,ℓ

≈Sℓ ,𝑛

≈S𝑘,𝑛

(19)

• The compositor unit laws

𝑝⊗𝑚 𝑝⊗𝑚 𝑝⊗𝑛

𝑝⊗𝑚 𝑝⊗𝑚 𝑝⊗𝑛

𝑝⊗𝑚 𝑝⊗𝑛

≈

{id𝑝⊗𝑚 }

≈

S𝑚,𝑛

≈S𝑚,𝑚

≈S𝑚,𝑛

≈S𝑚,𝑛

=

𝑝⊗𝑚 𝑝⊗𝑛

𝑝⊗𝑚 𝑝⊗𝑛

≈

S𝑚,𝑛

≈S𝑚,𝑛

=

𝑝⊗𝑚 𝑝⊗𝑛 𝑝⊗𝑛

𝑝⊗𝑚 𝑝⊗𝑛 𝑝⊗𝑛

𝑝⊗𝑚 𝑝⊗𝑛

≈

S𝑚,𝑛

≈

{id𝑝⊗𝑚 }

≈S𝑚,𝑛

≈S𝑛,𝑛

≈S𝑚,𝑛

(20)

18 Dynamic categories, dynamic operads

• The productor associativity law

𝑝⊗𝑚 ⊗ 𝑝⊗𝑚′ ⊗ 𝑝⊗𝑚′′ 𝑝⊗𝑛 ⊗ 𝑝⊗𝑛′ ⊗ 𝑝⊗𝑛′′

𝑝⊗(𝑚+𝑚
′) ⊗ 𝑝⊗𝑚′′ 𝑝⊗(𝑛+𝑛

′) ⊗ 𝑝⊗𝑛′′

𝑝⊗(𝑚+𝑚
′+𝑚′′) 𝑝⊗(𝑛+𝑛

′+𝑛′′)

≀
≈

S𝑚,𝑛⊗S𝑚′ ,𝑛′⊗S𝑚′′ ,𝑛′′

≀

≀

≈S𝑚+𝑚′ ,𝑛+𝑛′⊗S𝑚′′ ,𝑛′′

≀

≈S𝑚+𝑚′+𝑚′′ ,𝑛+𝑛′+𝑛′′

=

𝑝⊗𝑚 ⊗ 𝑝⊗𝑚′ ⊗ 𝑝⊗𝑚′′ 𝑝⊗𝑛 ⊗ 𝑝⊗𝑛′ ⊗ 𝑝⊗𝑛′′

𝑝⊗𝑚 ⊗ 𝑝⊗(𝑚+𝑚′′) 𝑝⊗𝑛 ⊗ 𝑝⊗(𝑛′+𝑛′′)

𝑝⊗(𝑚+𝑚
′+𝑚′′) 𝑝⊗(𝑛+𝑛

′+𝑛′′)

≀

≈

S𝑚,𝑛⊗S𝑚′ ,𝑛′⊗S𝑚′′ ,𝑛′′

≀

≀

≈S𝑚,𝑛⊗S𝑚′+𝑚′′ ,𝑛′+𝑛′′

≀

≈S𝑚+𝑚′+𝑚′′ ,𝑛+𝑛′+𝑛′′

(21)

• The productor unit laws

𝑝⊗𝑚 𝑝⊗𝑛

𝑝⊗0 ⊗ 𝑝⊗𝑚 𝑝⊗0 ⊗ 𝑝⊗𝑛

𝑝⊗0 ⊗ 𝑝⊗𝑚 𝑝⊗0 ⊗ 𝑝⊗𝑛

𝑝⊗𝑚 𝑝⊗𝑛

≀

≈

S𝑚,𝑛

≀

≈{id
𝑝⊗0 }⊗S𝑚,𝑛

≀

≈S0,0⊗S𝑚,𝑛

≀

≈S𝑚,𝑛

≀

=

𝑝⊗𝑚 𝑝⊗𝑛

𝑝⊗𝑚 𝑝⊗𝑛

≈
S𝑚,𝑛

≈S𝑚,𝑛

=

𝑝⊗𝑚 𝑝⊗𝑛

𝑝⊗𝑚 ⊗ 𝑝⊗0 𝑝⊗𝑛 ⊗ 𝑝⊗0

𝑝⊗𝑚 ⊗ 𝑝⊗0 𝑝⊗𝑛 ⊗ 𝑝⊗0

𝑝⊗𝑚 𝑝⊗𝑛

≀

≈

S𝑚,𝑛

≀

≈S𝑚,𝑛⊗{id𝑝⊗0 }

≀

≈S𝑚,𝑛⊗S0,0

≀

≈S𝑚,𝑛

≀

(22)

♢

B Proofs of Dynamic Structure

We now proceed to prove that the coalgebras and structure maps defined above for orga-

nized predictions and gradient descent form dynamic structures. In each case, it suffices to

show that the structure maps on states preserve coalgebra structure, and that the equations in

Definition A.2 or Definition A.3, respectively, are satisfied.

Proof of Theorem 4.1. The operad equations are all satisfied as Δ+ is known to be an operad, and

morphisms of coalgebras are entirely determined by a function between the state sets. It then

remains only to show that the identitor and compositor as defined in Section 4.1 commute with

actions and updates. This is clearly true for the identitor as it is an isomorphism, so we focus

on the compositor.

For the compositor to commute with actions on positions is the claim that Δ+
𝑋

is an algebra

for the operad Δ+; it means that for � ∈ Δ+
𝑁

, �1 ∈ Δ+𝑀1

, ..., �𝑁 ∈ Δ+𝑀𝑁
, and 𝛾𝑖 , 𝑗 ∈ Δ+𝑋 for 𝑖 = 1, ..., 𝑁

and 𝑗 = 1, ...,𝑀𝑖 , we have ∑
𝑖

�𝑖
©«
∑
𝑗

�𝑗𝛾𝑖 , 𝑗
ª®¬ =

∑
𝑖 , 𝑗

(�𝑖�𝑖 , 𝑗)𝛾𝑖 , 𝑗 ,

B.T. Shapiro and D.I. Spivak 19

which is clearly the case.

The compositor commutes with actions on directions because in (S𝑀1
⊗ · · · ⊗ S𝑀𝑁

) # S𝑁 the

action of (�1 , ..., �𝑁 ,�) sends an outcome

𝑥 ∈ 𝑋 = 𝑝𝑋[� · (� · 𝛾)]

to

(𝑥, ..., 𝑥) ∈ 𝑋𝑁 = 𝑝⊗𝑁
𝑋
[�1 · 𝛾1 , ..., �𝑁 · 𝛾𝑁]

and then to

(𝑥, ..., 𝑥) ∈ 𝑋
∑

𝑖 𝑀𝑖 = 𝑝
⊗∑

𝑖 𝑀𝑖

𝑋
[𝛾1,1 , ...,𝛾𝑁,𝑀𝑁

],

while in S∑
𝑖 𝑀𝑖

the action of �◦ � sends 𝑥 ∈ 𝑋 to (𝑥, ..., 𝑥) ∈ 𝑋
∑

𝑖 𝑀𝑖
directly.

It then only remains to show that the compositor commutes with updates. Using the short-

hand notation � = (�1 , ..., �𝑁) and 𝛾 = (𝛾1 , ...,𝛾𝑁) = (𝛾1,1 , ...,𝛾𝑁,𝑀𝑁
) already employed above, to

show that the composite of the updates of �, � agrees with the update of the composite � ◦ �
amounts to the equation

𝛾(𝑥) ∗ (�◦ �) =
(
(� · 𝛾)(𝑥) ∗�

)
◦
(
𝛾(𝑥) ∗ �

)
(23)

for any 𝑥 ∈ 𝑋. Here � ·𝛾 denotes (�1 ·𝛾1 , ..., �𝑁 ·𝛾𝑁) and 𝛾(𝑥)∗� denotes (𝛾1(𝑥)∗�1 , ...,𝛾𝑁 (𝑥)∗�𝑁).
On the (𝑖 , 𝑗)-component of these distributions, (23) unwinds to

𝛾𝑖 , 𝑗(𝑥)(�𝑖�𝑖 , 𝑗)∑
𝑖′, 𝑗′ 𝛾𝑖′, 𝑗′(𝑥)(�𝑖′�𝑖′, 𝑗′)

=

(∑
𝑗′(�𝑖 , 𝑗′𝛾𝑖 , 𝑗′(𝑥))�𝑖∑

𝑖′
∑

𝑗′(�𝑖′, 𝑗′𝛾𝑖′, 𝑗′(𝑥))�𝑖′

) (
𝛾𝑖 , 𝑗(𝑥)�𝑖 , 𝑗∑
𝑗′ �𝑖 , 𝑗′𝛾𝑖 , 𝑗′(𝑥)

)
,

which is easily seen to hold by extracting �𝑖 from the first fraction on the right hand side and

cancelling the sums over 𝑗′. □

Proof of Theorem 4.4. The unit and associativity equations follow immediately from associativity

and unitality of addition, cartesian products, and function composition. The interchange equa-

tions follow from the preservation of 0 under addition and identity functions under cartesian

products, the analogous interchange property of function composition and cartesian products of

functions, and the fact that the compositors and productors act the same way on the parameters

and their dimension.

It then remains only to show that the identitors, compositors, and productors are morphisms

of coalgebras. This is immediate for the productors, as each component of the action and update

functions respects the cartesian products of functions and parameters that define them, so we

proceed only for the identitors and compositors.

For the identitors, the state (0, idR𝑛 ,0) acts as the identity function on R𝑛 and on directions

by the transpose of its derivative, which is also the identity. The updates in the coalgebras

S𝑛,𝑛 only modify the parameter 𝑝, so as the parameter here is 0-dimensional this state is never

changed by the update function, as is the case in the coalgebra {id𝑡⊗𝑛 }. Therefore this function

is a map of coalgebras.

20 Dynamic categories, dynamic operads

The compositors preserve the component of the action on positions as, for states

(𝐿 ∈ N, 𝑓 : R𝐿+ℓ , 𝑝 ∈ R𝐿) and (𝑀 ∈ N,𝑔 : R𝑀+𝑚 , 𝑞 ∈ R𝑀),

we have

𝑔(𝑞,−)◦ 𝑓 (𝑝,−) = 𝑔(−, 𝑓 (−,−))(𝑞, 𝑝,−).

This may seem like a trivial rewriting, but it illustrates how the compositor was defined in order

for the action to be preserved, as on the left we have the composite of the actions on positions

as in Sℓ ,𝑚 #S𝑚,𝑛 , and on the right we apply the compositor and take the action of the resulting

state in Sℓ ,𝑛 .

To show that the compositor preserves both the action on directions and the update we note

that by the chain rule, for 𝑥 ∈ Rℓ and 𝑧 ∈ 𝑇𝑔(𝑞, 𝑓 (𝑝,𝑥)),

𝐷 (𝑔(−, 𝑓 (−,−)))⊤ 𝑧 = 𝐷 𝑓 ⊤ ·𝜋𝑚(𝐷𝑔⊤ · 𝑧) ∈ 𝑇(𝑝,𝑥)R𝐿+ℓ .

Applying 𝜋ℓ to both sides above shows that the compositor preserves the action on directions,

as on the left we have the action on directions after applying the compositor and on the right

we have the composition of the actions of (𝐿, 𝑓 , 𝑝) and (𝑀,𝑔 , 𝑞) on directions as in Sℓ ,𝑚 #S𝑚,𝑛 .

Finally for updates, we observe by the chain rule that the update rule in Sℓ ,𝑛 agrees with

that in Sℓ ,𝑚 # S𝑚,𝑛 under the compositor, as either way for 𝑥, 𝑧 as above the composite state of

(𝐿, 𝑓 , 𝑝) and (𝑀,𝑔 , 𝑞) updates to(
𝑀+𝐿,𝑔(−, 𝑓 (−,−)),

(
𝑝+ 𝜖𝜋𝐿(𝐷 𝑓 ⊤ ·𝜋𝑚(𝐷𝑔⊤ · 𝑧)), 𝑞+ 𝜖𝜋𝑀(𝐷𝑔⊤ · 𝑧)

))
.

□

References

[Lei99] Tom Leinster. “Generalized enrichment for categories and multicategories”. In: (1999).

doi: https://doi.org/10.48550/arXiv.math/9901139. arXiv: 9901139 [math.CT]

(cit. on pp. 8, 9).

[NS21] Nelson Niu and David I. Spivak. “Collectives: Compositional protocols for contribu-

tions and returns”. In: (2021). doi: https://doi.org/10.48550/arXiv.2112.11518.

url: https://arxiv.org/abs/2112.11518 (cit. on p. 10).

[Sha22] Brandon Shapiro. “Enrichment of Algebraic Higher Categories”. In: (2022). doi:https:

//doi.org/10.48550/arXiv.2205.12235. arXiv:2205.12235[math.CT] (cit. on pp. 8,

10, 11).

[Spi21] David I. Spivak. “Learners’ languages”. In: Proceedings of the 4th Annual Conference on
Applied Category Theory. ACT. Cambridge, UK: EPTCS, 2021. doi: 10.1145/2815072.

2815075 (cit. on pp. 2–6, 11).

https://doi.org/https://doi.org/10.48550/arXiv.math/9901139
https://arxiv.org/abs/9901139
https://doi.org/https://doi.org/10.48550/arXiv.2112.11518
https://arxiv.org/abs/2112.11518
https://doi.org/https://doi.org/10.48550/arXiv.2205.12235
https://doi.org/https://doi.org/10.48550/arXiv.2205.12235
https://arxiv.org/abs/2205.12235
https://doi.org/10.1145/2815072.2815075
https://doi.org/10.1145/2815072.2815075

	Introduction
	The Monoidal Double Category Org
	Dynamic structures via Org-Enrichment
	Dynamic Structures in Nature
	Coherence Equations
	Proofs of Dynamic Structure

