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Abstract. Many special classes of simplicial sets, such as the nerves of categories
or groupoids, the 2-Segal sets of Dyckerhoff and Kapranov, and the (discrete)
decomposition spaces of Gálvez, Kock, and Tonks, are characterized by the property
of sending certain commuting squares in the simplex category ∆ to pullback squares
of sets. We introduce weaker analogues of these properties called completeness
conditions, which require squares in ∆ to be sent to weak pullbacks of sets, defined
similarly to pullback squares but without the uniqueness property of induced
maps. We show that some of these completeness conditions provide a simplicial
set with lifts against certain subsets of simplices first introduced in the theory of
database design, and provide simpler characterizations of these properties using
factorization results for pushouts squares in ∆, which we characterize completely,
along with several other classes of squares in ∆. Examples of simplicial sets with
certain completeness conditions include quasicategories, Kan complexes, and bar
constructions for algebras of certain classes of monads. The latter is our motivating
example which we discuss in a companion paper.
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1. Introduction

Compositional structures, such as categories, are most commonly defined in terms
of algebraic operations satisfying certain algebraic laws. But there is a powerful
alternative picture in which compositional structures are considered as certain combi-
natorial structures with merely extra properties (and no algebraic structure). For
example, taking the nerve of a category produces a combinatorial structure—in the
form of a simplicial set—from which the category can be recovered; and conversely,
every simplicial set which has a property known as the Segal condition encodes a
category under this correspondence.

Moreover, this combinatorial perspective suggests far-reaching generalizations
of the concept of category, obtained by suitable relaxations of the Segal condition.
The most prominent of these is the generalization to quasicategories [13], which
are defined as simplicial sets with the additional property that every configuration
consisting of n n-simplices with shared faces arranged in the shape of an inner horn,
can be obtained from the faces of an (n+ 1)-simplex, called a filler of the inner horn.
Since the filler is merely required to exist and is generally non-unique, quasicategories
are a compositional structure that is not algebraic.1 Another example that has gained
prominence recently is that of 2-Segal sets [3], also known as (the discrete case of)
decomposition spaces [9]. These again are compositional structures coming in the
form of simplicial sets satisfying certain (in this case unique) filler conditions [3].
They arise naturally in many different ways in combinatorics [3, 9].

In this paper, we introduce new compositional structures defined in such combina-
torial terms. These structures are motivated by partial evaluations [7], which is the
idea that an algebraic expression like 3+1+4 can not only be “totally” evaluated to 8,
but it can also be “partially” evaluated to 3 + 5. This is formalized in terms of the bar
construction of Eilenberg-Moore algebras of monads; on a concrete category, this bar
construction results in a simplicial set whose 1-skeleton describes partial evaluations.
As shown in [7], these partial evaluations can often be composed (non-uniquely).
This naturally raises the question whether the entire bar construction, considered
as a simplicial set, has properties which encode a compositional structure similar
to quasicategories or 2-Segal sets. As we show in our companion paper [2], the bar
construction of many monads, including many of those which describe commonly
occurring algebraic structures, display the compositional properties that we study in
this paper.

We start in Sections 2 and 3 with a thorough study of pushouts in the simplex
category ∆. This is based on the ∨-decomposition of objects, morphisms, and more
general diagrams in ∆ that we introduce in Section 2. The associated ∨-product on

1It is worth noting that the theory of (∞, 1)-categories, which is modeled by quasicategories,
also has closely related algebraic models [17].



WEAK CARTESIAN PROPERTIES OF SIMPLICIAL SETS 3

∆ amounts to a partially defined monoidal structure which glues two morphisms
f1 : [n1]→ [m1] and f2 : [n2]→ [m2] to

f1 ∨ f2 : [n1 + n2] −→ [m1 +m2]

whenever f1 preserves the final vertex, as in f1(n1) = m1, and f2 preserves the
initial vertex, as in f2(0) = 0. By making judicious use of the ∨-decomposition and
∨-product, we obtain several characterization results on pushouts in ∆. Theorem 3.2
characterizes pushout squares as ∨-products of four minimal types of pushout squares
with [0] or [1] in the upper left corner. Corollary 3.3 then characterizes when a span
in ∆ has a pushout at all, and Theorem 3.10 factors every pushout square in ∆
into certain basic pushouts and trivial pushouts. Corollary 3.13 lists 8 particular
pushout diagrams in ∆ such that all others arise from these by composition and
∨-products, with all but two of these squares having parallel identity morphisms in
at least one direction. Theorem 3.16 and Corollary 3.17 provide similar results for
balanced squares in ∆, which are those pushout squares of coface maps that are also
pushouts of finite sets.

In Section 4, we consider the classes of squares in ∆ that a given simplicial set
X : ∆op → Set sends to (weak) pullbacks. Our philosophy is that this encodes
compositional properties enjoyed by X: we consider a square in ∆ being sent to
a weak pullback a completeness property, amounting to the existence of certain
fillers, while being sent to a pullback is an exactness property where the fillers are in
addition unique. Based on the previous results on the characterization of pushouts in
∆, Theorems 4.4 and 4.11 then reduce completeness and exactness with respect to
entire classes of squares to simpler ones.

Thus for every class of squares in ∆, postulating completeness or exactness with
respect to these squares specifies a type of compositional structure defined in terms of
filler conditions. For example, 2-Segal sets can be defined in this way [3, Proposition
2.3.2]. Of particular interest to us in the context of the bar construction [2] are
simplicial sets that we call inner span complete. A span complete simplicial set is one
which sends all balanced squares of coface maps to weak pullbacks (Definition 5.1),
while an inner span complete simplicial set only needs to send pushout squares of
coface maps to weak pullbacks (Definition 5.2). These are characterized by the
possibility to fill any pair of (n− 1)-simplices that overlap on an (n− 2)-simplex face
to an n-simplex (for all n ≥ 2), with an “innerness” restriction of these pairs in the
inner span case analogous to the restriction of horns to inner horns when generalizing
from Kan complexes to quasicategories.

While these compositional properties may sound rather weak, we show in Theo-
rems 5.9 and 5.14 that they are sufficient to imply the existence of much more general
fillers, namely fillers for all (directed) acyclic configurations. Among the most basic
instances of this is the consequence that any string of 1-simplices of length n, as in
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the Segal condition, has an n-simplex filler. In general, these acyclic configurations
are (directed) simplicial complexes characterized in Theorems 5.5 and 5.11 in terms of
combinatorial acyclicity conditions that are not homotopy invariant, but are closely
related to notions of shellability and collapsibility in combinatorial topology. While
our definition of directed combinatorial acyclicity is new, the undirected version has
a long history in database theory [16].

Finally, Section 6 concludes the paper with a presentation of some first examples
of (inner) span complete simplicial sets unrelated to the bar construction examples
considered in [2]. We note in Propositions 6.2 and 6.3 that Kan complexes are span
complete and quasicategories are inner span complete, while neither converse is true.
We then relate (inner) span completeness to the compositories and gleaves from [5],
noting that some of the examples considered there are also span complete or inner
span complete simplicial sets. This includes an inner span complete simplicial set of
higher spans in any category, a span complete simplicial set where the n-simplices
are joint probability distributions of n + 1 random variables, and a closely related
one in which they are the tables with n+ 1 columns in a relational database.

Weakly cartesian squares. We now present some basic background in weak
pullbacks.

One of the main ideas we consider is replacing definitions involving pullback
squares with analogues using instead weak pullback squares, which have a weaker
universal property than pullbacks (which we sometimes call strong pullbacks for
emphasis) in that induced maps need not be unique.

Definition 1.1. ([12]) A diagram

A B

C D

f

g m

n

(1.1)

in a category C is called a weak pullback, or weakly cartesian square, if for every
object S and every commutative diagram

S

B

C D

p

q
m

n
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in C there exists an arrow S → A making the following diagram commute.

S

A B

C D

p

q f

g m

n

If we are in the category Set, the diagram (1.1) is a weak pullback if and only if
for every b ∈ B and c ∈ C with m(b) = n(c) there exists a ∈ A such that f(a) = b
and g(a) = c. Note that if we moreover require the map S → A to be unique, recover
the ordinary notion of pullback (or cartesian square).

Like strong pullbacks (and by the same argument), weak pullbacks are closed under
horizontal and vertical composition of squares. Strong pullbacks further satisfy the
following standard pullback lemma, also known as the prism lemma in the homotopical
setting (see for instance [9, Lemma 1.11]).

Lemma 1.2. In any diagram as below, if the right square and outer rectangle are
strong pullbacks, then so is the left square.

· · ·

· · ·
A fundamental difference between strong and weak pullbacks is that this does not

hold for weak pullbacks in general.

Example 1.3. Consider the diagram below in Set:

{∗}

{∗} {a, b} {∗}

{∗} {∗} {∗}

b

a

Both the right square and the outer rectangle are weak pullbacks, and the kite
shaped subdiagram commutes, but there is no map h : {∗} → {∗} with ah = b. The
left square is therefore not a weak pullback.

In categories with all pullbacks such as Set, the following is a useful characterization
of weak pullback squares, which follows immediately from considering the induced
maps in both directions between weak and strong pullbacks of the same cospan.
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Lemma 1.4. A commutative square in a category with all pullbacks is a weak pullback
if and only if the induced map into the pullback of its cospan is split epic.

The following lemma will be particularly useful when f or g is a degeneracy map
of a simplicial set, which is always (split) monic.

Lemma 1.5. If the square below is a weak pullback and f or g is monic, then the
square is a strong pullback.

A B

C D

f

g

Proof. Assume f is monic (the argument for g is analogous), and let p : S → B,
q : S → C be maps which commute over D. Any two induced maps h, h′ : S → A
with fh = fh′ = p are equal as f is monic. �

Simplicial terminology. Throughout the paper, ∆ denotes the simplex category,
i.e. the category of nonempty finite ordinals

[n] := {0, . . . , n}
for n ∈ N as objects and monotone maps as morphisms. Its generating coface maps
are the morphisms

dn,i : [n− 1] −→ [n]

for i = 0, . . . , n, given by the inclusion of [n− 1] into [n] omitting the element i. The
generating codegeneracy maps are likewise the morphisms

sn,i : [n+ 1] −→ [n]

for i = 0, . . . , n, given by the map which hits i twice but otherwise acts like the
identity. A coface map or codegeneracy map in general is a composite of generating
ones.

A simplicial set is then a functor ∆op → Set. As usual, when the simplicial set
under consideration is clear from the context, then we denote the face and degeneracy
maps (the functor’s action on cofaces and codegeneracies) using subscripts, dn,i and
sn,i, or merely di and si.

When discussing commuting squares in ∆, we implicitly identify a square as below
left with its mirror image as below right:

[m] [p]

[q] [n]

f

g h

k

[m] [q]

[p] [n]

g

f k

h
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We call a square trivial if either pair of parallel arrows are identities, and note
that trivial squares are automatically pushouts.
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2. ∨-Decompositions and ∨-products in the simplex category

With the goal of reducing the description of pushouts and other classes of squares
in ∆ to simpler cases in mind, we now introduce our main technical tool of de-
composing diagrams in ∆ into families of simpler diagrams of the same shape: the
∨-decomposition. The key observation is that a morphism f : [r] → [n] in ∆
decomposes [n] into r + 2 pieces, namely the subsimplices

[n0] := {0, . . . , f(0)},
[ni] := {f(i− 1), . . . , f(i)} for 1 ≤ i ≤ r,

[nr+1] := {f(r), . . . , n},

and conversely that these simplices assemble into [n] by an operation we call the
∨-product, which behaves like a partially defined monoidal structure. We will
subsequently exploit the fact that both the ∨-decomposition and the ∨-product can
be expressed as colimits in order to argue that they are well-behaved with respect to
pushouts.

Definition 2.1. Let [r]/∆ denote the undercategory of [r] in ∆, whose objects are
maps [r] → [n] in ∆ and whose morphisms ([r] → [n]) → ([r] → [m]) are maps
[n] → [m] commuting with the maps from [r]. We denote by ∨ : [r]/∆ → ∆ the
forgetful functor sending [r] → [n] to [n] and forgetting the commuting property of
the morphisms.
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As alluded to above, we will think of a map f : [r]→ [n] as a decomposition of
[n] into r+ 2 pieces, which we call ∨-components. We recall now a general categorical
property of undercategories, which we make extensive use of in this section.

Lemma 2.2. ∨ is a discrete opfibration. That is, for any map f : [n] → [m] in ∆
and a lift of [n] to g : [r]→ [n] in [r]/∆, there is a unique lift of [m] to h : [r]→ [m]
in [r]/∆ such that f lifts to a map from g to h in [r]/∆.

Proof. Define h to be the composite fg and this follows immediately. Concretely,
this decomposes [m] into the ∨-components

[m0] := {0, . . . , f(g(0))},
[mi] := {f(g(i− 1)), . . . , f(g(i))} for 1 ≤ i ≤ r,

[mr+1] := {f(g(r)), . . . ,m}. �

We will call a lift of [n] to [r]/∆ for some r a ∨-decomposition of [n]. The lemma
shows that ∨-decompositions push forward along maps in ∆. This lets us further
extend a ∨-decomposition on [n] to more general diagrams in ∆.

Corollary 2.3. Let J be a category with an initial object I, and D : J→ ∆ a diagram.
Then every ∨-decomposition of D(I) extends uniquely to a ∨-decomposition of the
whole diagram D; that is, D lifts along ∨ to a diagram D′ : J→ [r]/∆.

Proof. This is a standard property of discrete opfibrations. �

This allows us to ∨-decompose spans and squares in ∆ according to a ∨-decomposition
of their initial object. For our purposes, we will take the ∨-decomposition of D(I)
identifying separately its endpoints and each of its edges as follows.

Definition 2.4. The canonical ∨-decomposition of [n] is id : [n]→ [n] in [n]/∆, or
equivalently the expression of [n] as [0]∨ [1]∨ [1]∨ · · · ∨ [1]∨ [0] (with n copies of [1]).

For D a diagram as above, the canonical ∨-decomposition of D is the decomposition
induced by the canonical ∨-decomposition of D(I).
∨ can also be expressed as a colimit.

Lemma 2.5. Consider diagrams in ∆ as below, where we specify a morphism out of
the singleton set [0] = {0} by its image in the target:

[n0] · · · [nr+1]

[0] [0] · · · [0] [0]

0 n0 0 nr 0 nr+1

We denote the shape of these diagrams by ∧r+2. Then:
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(a) [r]/∆ is isomorphic to the category Fun∨(∧r+2,∆) of diagrams of this form
and natural transformations.

(b) The functor Fun∨(∧r+2,∆) ∼= [r]/∆
∨−→ ∆ is naturally isomorphic to the

colimit functor sending such a diagram to its colimit [n0 + · · ·+ nr+1].

Proof. (a) Given such a diagram, construct a map g : [r]→ [n0 + · · ·+ nr+1]
sending i to n0 + · · ·+ ni for 0 ≤ i ≤ r. Conversely given a map g : [r]→ [n],
construct such a diagram by setting

n0 := g(0)

ni := g(i)− g(i− 1) for 1 ≤ i ≤ r,

nr+1 := n− g(r).

These constructions are easily checked to be inverse to one another, defining
a bijection between objects in [r]/∆ and Fun∨(∧r+2,∆).

Natural transformations in Fun∨(∧r+2,∆) from the diagram given by
([n0], . . . , [nr+1]) to another one given by ([m0], . . . , [mr+1]) correspond to
tuples of maps fi : [ni] → [mi] such that f0, . . . , fr preserve the maximum
element and f1, . . . , fr+1 preserve the minimum element. Morphisms in [r]/∆
from g : [r]→ [n] to h : [r]→ [m] amount to a family of monotone maps like
this:

f0 : {0, . . . , g(0)} −→ {0, . . . , h(0)}
fi : {g(i− 1), . . . , g(i)} −→ {h(i− 1), . . . , h(i)} for 1 ≤ i ≤ r,

fr+1 : {g(r), . . . , n} −→ {h(r), . . . ,m},

such that f0, . . . , fr preserve the maximum element and f1, . . . , fr+1 preserve
the minimum element. These two types of morphisms are in an obvious
bijection, matching the bijection on objects defined above and preserving
composition.

(b) The composite functor Fun∨(∧r+2,∆) ∼= [r]/∆
∨−→ ∆ indeed sends the pictured

diagram to [n0 + · · ·+ nr+1], so it remains to show that this is a colimit.
A cocone from this diagram to some [m] consists of r + 1 elements

x0 ≤ . . . ≤ xr in [m] and monotone maps fi : [ni]→ [m] for i = 0, . . . , r + 1
satisfying

fi+1(0) = xi, fi(ni) = xi

whenever i = 0, . . . , r. This data uniquely determines a map f : [n0 + · · ·+ nr+1]→
[m] by defining, for any i = 0, . . . , r + 1 and 0 ≤ j ≤ ni,

f(n0 + · · ·+ ni−1 + j) := fi(j),
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where the above compatibility conditions between the fi guarantee that this is
well-defined. f is by definition monotone on every subset from n0 + · · ·+ni−1

to n0 + · · ·+ ni, which implies monotonicity overall. f restricts to fi along
the inclusions [ni] → [n0 + · · ·+ nr+1] sending 0 to n0 + · · · + ni−1 and ni
to n0 + · · ·+ ni. Since these inclusions are moreover jointly surjective, this
property uniquely determines f . �

This equivalent perspective motivates the following alternative notation for ∨.

Definition 2.6. For any finite sequence n0, . . . , nr+1 ∈ N, define the ∨-product
[n0] ∨ · · · ∨ [nr+1] as [n0 + · · ·+ nr+1]. Furthermore, for maps fi : [ni] → [mi] in ∆
with i = 0, . . . , r + 1, their ∨-product

f0 ∨ · · · ∨ fr+1 : [n0] ∨ · · · ∨ [nr+1] −→ [m0] ∨ · · · ∨ [mr+1] (2.1)

is defined (as above) precisely when the f0, . . . , fr preserve maximum elements and
the f1, . . . , fr+1 preserve minimum elements.

More generally, the ∨-product of a finite sequence of diagrams of the same
shape exists precisely when all morphisms in the diagrams satisfy these preservation
conditions. of diagrams of the same shape exists precisely when all morphisms in
the diagrams satisfy these preservation conditions. In the binary case, ∨ defines a
functor ∆max ×∆min → ∆, where ∆max,∆min are the subcategories of ∆ containing
all maps which preserve the maximal (resp. minimal) element. The intersection of
these subcategories, containing maps which preserve both endpoints, is the category
of active maps ∆act of [9, 2.4]. The restriction of our ∨ to ∆act×∆act is precisely the
amalgamated ordinal sum functor ∨ in that setting, which by [9, Lemma 6.2] agrees
with the ordinal sum on ∆op

+
∼= ∆act. In this sense, it is appropriate to view ∨ as an

ordered sum of the edges, not vertices, of the ordinals [n] in ∆. It is straightforward to
check that ∨ is unital (with respect to [0]) and associative in the appropriate senses.

We can also express the extraction of each ∨-component as a colimit. While
perhaps the more intuitive relationship between a ∨-product and its components
is the inclusion [ni]→ [n0] ∨ · · · ∨ [nr+1], more helpful for proving that ∨-products
reflect pushouts is the surjective map [n0] ∨ · · · ∨ [nr+1]→ [ni] acting as the identity
on the component [ni] and as the constant map to 0 or ni on the components [nj] for
j < i or i < j respectively.

Lemma 2.7. Given g : [r]→ [n] exhibiting [n] as [n0]∨· · ·∨ [nr+1] and 0 ≤ i ≤ r+ 1,
let

g−i , g
+
i : [1] −→ [n]

be the maps with

g−i (0) = 0, g+
i (0) = n0 + · · ·+ ni,
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g−i (1) = n0 + · · ·+ ni−1, g+
i (1) = n.

Then the ∨-component [ni] is the colimit of the following diagram.

[1] [1]

[0] [n0] ∨ · · · ∨ [nr+1] [0]

g−i g+i

Proof. A cocone out of this diagram is precisely a map [n0]∨ · · · ∨ [nr+1]→ [m]
constant on each of the subobjects [n0] ∨ · · · ∨ [ni−1] and [ni+1] ∨ · · · ∨ [nr+1]. These
maps are in obvious bijection with maps [ni] → [m], so [ni] is the colimit of the
diagram. �

3. Pushout squares in ∆

We provide three different characterizations of the pushout squares in ∆, first in
terms of ∨-products, then in terms of composition, and lastly a combination of the
two. We then use our techniques to additionally characterize those squares of coface
maps which are sent to pushouts by the forgetful functor ∆→ Set.

Pushouts via ∨-products. With the machinery of ∨-decompositions and ∨-
products in place, we can now apply it to pushouts.

Proposition 3.1. Let

[mi] [pi]

[qi]

fi

gi

for i = 0, . . . , r + 1 be a sequence of spans in ∆ whose ∨-product exists. Then:

(a) If the above spans all have pushouts, then the ∨-product of these pushout
squares exists and is a pushout square for the ∨-product span.

(b) Conversely, if the ∨-product span has a pushout, then so do the above spans,
and the ∨-product of their pushouts is again the pushout of the ∨-product
span.

Proof. We first show that a commuting square

[m] [p]

[q] [n]

f

g h

k
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with jointly surjective h and k is such that if f and g preserve the maximum element,
then so do h and k. Indeed since the square commutes, the assumption on f and
g implies that it is enough that one of h or k preserves the maximum element and
the other one follows. But clearly at least one does since h and k must be jointly
surjective. A similar argument shows that if f and g preserve the minimum element,
then so do h and k.

(a) The ∨-product of the pushout squares exists since the relevant preservation
conditions are implied by the statement from the previous paragraph. Using
the description of ∨-products as colimits then shows that the resulting ∨-
product square is a pushout as well since colimits commute with colimits.

(b) For 0 ≤ i ≤ r + 1, consider the following diagram D : J→ Span(∆), where
Span denotes the category of spans and J is the shape of the diagram in
Lemma 2.7. The objects in J sent to [0] and [1] in Lemma 2.7 are sent by
D to the constant spans at [0] and [1] respectively, and the object sent to
[n0]∨· · ·∨ [nr+1] in Lemma 2.7 is sent to the ∨-product span of the postulated
sequence, with the analogous maps as in Lemma 2.7 for each of q,m, p.

Each of these spans has a pushout, with the constant spans pushing
out to [0] and [1] respectively and the ∨-product span having a pushout
by assumption. The functor J→ ∆ picking out the pushout objects has a
colimit since it is of the form in Lemma 2.7, selecting the ith component of
the pushout. The diagram D therefore has an overall colimit. As colimits
commute with colimits, this means that the ith component of the pushout of
the ∨-product span is the pushout of the ith span above. �

This lets us reduce the characterization of pushouts in ∆ to pushouts among the
minimal ∨-components, the squares in which m as in the square above is 0 or 1. This
is our first result on the decomposition of pushouts in ∆.

Theorem 3.2. A span in ∆ has a pushout if and only if its canonical ∨-decomposition
is made up of the spans in the following pushout squares (and their mirror images),
in which case its pushout is the corresponding ∨-product of the pushout squares below:

[0] [p]

[0] [p]

p

p

[1] [p]

[1] [p]

0p

0p

[1] [p]

[0] [0]

0p
[0] [p]

[0] [p]

0

0

Note that for p = 0 the first and fourth square coincide, and the second square
for p = 0 is the mirror image of the third for p = 1, but otherwise these squares are
all distinct.
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Proof. By Proposition 3.1, a span has a pushout if and only if the components
of its canonical ∨-decomposition have pushouts, which ∨ then preserves. It therefore
remains to show that the leftmost and rightmost ∨-components of a pushout square
are always of the forms above left and above right, respectively, and that the middle
components are always one of the two middle squares above.

In the rightmost component of a ∨-decomposition, all maps preserve minimal
elements, so as the right square in the theorem is a trivial pushout it suffices to show
that no square as below is a pushout for p, q > 0.

[0] [p]

[q] [n]

0

0 h

k

(3.1)

Without loss of generality we can assume h(1) ≤ k(1). Define φ : [p] → [1] and
ψ : [q]→ [1] by

φ(0) = 0 = ψ(0), φ(i) = 1, ψ(i) = 0, i > 0.

φ, ψ commute with the span from [0], but this square does not factor through
the putative pushout, as this would require φ(1) ≤ ψ(1) by h(1) ≤ k(1), using
monotonicity of the induced map. The argument for the leftmost component is
entirely analogous.

For the middle components, we first show that the center right square above is
a pushout. If φ : [p]→ [n] and ψ : [0]→ [n] as above commute with the span, then
φ(0) = φ(p) = ψ(0) ∈ [n]. But as φ is monotonic, it must then be constant. Therefore
φ, ψ both factor through ψ : [0]→ [n], which is unique with respect to this property,
hence the square is a pushout.

It remains then to show that the center left and center right squares above are
the only pushout squares with [1] as the source and all maps preserving minimal and
maximal elements, as any middle ∨-component must. We therefore show that the
following square is not a pushout for p, q > 1.

[1] [p]

[q] [n]

0p

0q h

k

(3.2)

Again assuming h(1) ≤ k(1), define φ : [p]→ [1] and ψ : [q]→ [1] by

φ(0) = 0 = ψ(0), φ(p) = 1 = ψ(q),

φ(i) = 1 (0 < i < p), ψ(j) = 0 (0 < j < q).



14 C. CONSTANTIN, T. FRITZ, P. PERRONE, AND B. SHAPIRO

φ, ψ commute with the span from [1], but again there can be no induced map from
[n] as by monotonicity this would require φ(1) ≤ ψ(1). �

In particular, this construction shows that pushouts of coface maps are again
coface maps. We also give an elementwise description of this characterization, which
follows immediately from the theorem.

Corollary 3.3. A span

[m] [p]

[q]

f

g

has a pushout in ∆ if and only if the following three conditions hold:

(a) for every i with 1 ≤ i ≤ m, we have f(i) ≤ f(i− 1) + 1 or g(i) ≤ g(i− 1) + 1;

(b) f(0) = 0 or g(0) = 0;

(c) f(m) = p or g(m) = q.

Property (a) fails if f(i+ 1) > f(i) + 1 and g(i+ 1) > g(i) + 1, as f and g should
not both “add an extra element” in between two consecutive elements of [r] as in
square (3.2); the pushout cannot exist as these two elements cannot be totally ordered
in a canonical way. The same issue arises when neither f nor g hit the maximum (or
minimum) element of their codomains as in square (3.1), in which case (c) (or (b))
fails. For coface maps, the necessity of having a unique total order on the union of
[p] and [q] can be expressed as follows:

Corollary 3.4. A commutative square of coface maps as below is a pushout if and
only if it is a pushout in Set, and for every i = 0, . . . , n− 1, the edge {i, i+ 1} ⊆ [n]
is in the image of h or k.

[m] [p]

[q] [n]

f

g h

k

We call the second property the spine condition. Considering [n] as the geometric
n-simplex, the extra condition states that h and k must jointly cover the spine of [n].

Proof. The square is a pushout of sets if and only if it induces a bijection

[n] ∼= ([p] t [q])/∼,
where ∼ is the equivalence relation generated by f(i) ∼ g(i) for all i ∈ [m]. This is
the case for each pushout square of coface maps in Theorem 3.2, and is preserved by
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∨-products as the colimits in Lemma 2.5 defining the ∨-product are preserved by the
forgetful functor ∆→ Set and colimits commute with pushouts. The same argument
applies to the spine condition, which holds in each pushout square of coface maps in
Theorem 3.2 and is preserved by ∨-products.

To see that these two conditions are sufficient for the square to be a pushout in
∆, we could show that upon taking the canonical ∨-decomposition of the square,
these conditions guarantee each component to be of one of the forms in Theorem 3.2.
However, we give a more direct proof demonstrating the uniqueness of the total order
on [n] when the square is a pushout of sets satisfying the spine condition.

Let φ : [p]→ [n′], ψ : [q]→ [n′] be maps in ∆ satisfying φf = ψg. As the square
above is a pushout of sets, there is a unique map of sets γ : [n]→ [n′] with φ = γh
and ψ = γk. It remains to show that γ is a morphism in ∆, which is to say, that γ is
monotone. By transitivity it suffices to show that γ(i) ≤ γ(i+1) for all {i, i+1} ⊆ [n].
By the spine condition, noting that h, k are monotone and monic, each such pair
{i, i+ 1} lifts along h or k to some {j, j+ 1} in [p] or [q], respectively. We can assume
without loss of generality that {j, j + 1} ⊆ [p], so that as φ is monotone we have

γ(i) = γ(h(j)) = φ(j) ≤ φ(j + 1) = γ(h(j + 1)) = γ(i+ 1).

Therefore, γ is monotone and so [n] is a pushout in ∆. �

Taking [n′] = [n] in this proof shows that any jointly surjective φ, ψ to [n] induces
the identity map [n]→ [n], so that φ = h and ψ = k. This is the uniqueness property
alluded to above for the order on the union of [p], [q].

Pushouts via composition. We now proceed to describe another characteriza-
tion of pushout squares in ∆ using factorization and composition of squares.

Definition 3.5. The defect δf of a map f : [n]→ [m] in ∆ is

δf := (|[n]| − | im(f)|) + (|[m]| − | im(f)|) = n+m+ 2− 2| im(f)|.

The defect counts the number of elements in the domain identified by f with
another element plus the number of elements in the codomain outside the image. The
idea is to measure how far a map in ∆ is from an identity, which has defect 0, in
a fairly symmetric way that behaves uniformly across different values of n and m.
Conveniently, the defect is additive with respect to ∨:

Lemma 3.6. For maps f : [n0] → [m0] with f(n0) = m0 and g : [n1] → [m1] with
g(0) = 0, we have δf∨g = δf + δg.

Note that the equations f(n0) = m0 and g(0) = 0 are relevant only for ensuring
that the ∨-product f ∨ g exists.
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Proof. First observe that f ∨ g : [n0 + n1]→ [m0 +m1]. Since both the left and
right parts of f ∨ g have m0 ∈ [m0 +m1] in their image, and the images are otherwise
disjoint, we have | im(f ∨ g)| = | im(f)|+ | im(g)| − 1. We then calculate

δf∨g = n0 + n1 +m0 +m1 + 2− 2| im(f)| − 2| im(g)|+ 2

= (n0 +m0 + 2− 2| im(f)|) + (n1 +m1 + 2− 2| im(g)|)
= δf + δg. �

The maps with defect 1 are exactly the generating coface and codegeneracy maps,
since they either identify one pair of elements in the domain or map injectively into a
codomain with one additional element. From this perspective, the defect of f can
be seen as counting the minimal number of generating maps in ∆ that f factors
into, since each identification in the domain requires a generating codegeneracy and
each element in the codomain outside the image requires a generating coface map. A
factorization of f into such a minimal number of generators is what we call efficient,
and in this case the defects of the factors (all 1) add up to the total defect of f . More
generally, we declare the following.

Definition 3.7. A factorization f = h ◦ g of a map in ∆ is efficient if δf = δh + δg.

All maps h and g satisfy δh◦g ≤ δh + δg as h ◦ g can, at worst, be factored into
the defect 1 maps which generate h and g. However, as an example of an inefficient

factorization, consider [0]
0−→ [2]

011−−→ [1], which compose to [0]
0−→ [1]. The composite

has defect 1, but the factors have respective defects 2 and 1 adding up to 3, hence
this factorization is not efficient.

Any map f has an efficient factorization into δf generating maps as described
above; this can be chosen such that the generating coface maps follow the degeneracies,
as the Reedy factorization2 of a map is efficient. In fact, let f = ds be the Reedy
factorization, so that s is a codegeneracy map and d a coface map. Then δf is the
sum of the degree changes of d and s, which determine the number of coface and
codegeneracy maps in such an efficient factorization of f into generators.

For our purposes, efficiency of a factorization guarantees that the factors of a
map do not take unnecessarily large steps that could prevent the factorization from
extending to pushout squares of the composite.

Proposition 3.8. For a pushout square as below left and an efficient factorization
f = f1 ◦ f0, the square factors into a horizontal composite of pushout squares as below
right.

2See for example [19, Section 14.2].
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[m] [p] [m] [`] [p]

[q] [n] [q] [`′] [n]

f

g h

f0

g

f1

g′ h

k k0 k1

Proof. If the square above left is trivial, as in g, h are identities and f = k, then
any factorization of f extends to a pair of trivial squares as above right with g′ also
an identity.

By Lemma 3.6 and Theorem 3.2, it suffices to check this for the four squares
from Theorem 3.2. Three of those squares are trivial, so we need only consider the
following square:

[1] [p]

[0] [0]

0p

An efficient factorization of [1]
0p−→ [p] consists of two endpoint preserving coface maps

[1]
f0−→ [p′]

f1−→ [p]. The vertical map g′ : [p′]→ [0] makes the left square a pushout by
Theorem 3.2, and the right square is then a pushout by the pushout lemma (dual to
Lemma 1.2). �

The defect also plays nicely with pushouts as follows.

Lemma 3.9. For a pushout square in ∆ as below, assume that f is a coface map or
g is a codegeneracy map. Then δk ≤ δf .

[m] [p]

[q] [n]

f

g h

k

Proof. By Lemma 3.6 and Theorem 3.2, it again suffices to check this property
on the four squares from Theorem 3.2. For the three trivial squares parallel maps
have the same defect so δk = δf , so it suffices to check the two reflections of the
remaining square:

[1] [p]

[0] [0]

0p
[1] [0]

[p] [0]

0p

In the left square, whose left map g is a codegeneracy, the top map f has defect
|p− 1|, and the bottom map k has defect 0, so δk ≤ δf . In the right square, the top
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map f is not a coface map and the left map g is only a codegeneracy if p = 0, which
makes it also of the form of the left square, so we can ignore this case. �

These results can be combined to prove that any pushout in ∆ can be factored
into a grid of pushout squares with spans having both maps generating cofaces or
codegeneracies. We call these squares basic pushouts.

Theorem 3.10. A square in ∆ is a pushout if and only if it can be obtained from
horizontal and vertical composition of basic pushouts and trivial pushouts of generating
maps.

Proof. The “if” direction follows immediately from the fact that pushouts are
closed under composition. For the “only if” direction, consider a pushout square in ∆
as below

[m] [p]

[q] [n]

f

g h

k

First, assume that g is a generating coface map, and factor f efficiently into
generating coface and codegeneracy maps f1, ..., fδf . This factorization extends to
horizontally factor the pushout square by Proposition 3.8, as pictured below. By
repeated application of Lemma 3.9, since δg = 1 all of the vertical maps gi and h
have defect 1 or 0. Therefore, each of the factor squares is either a basic pushout or
a trivial pushout of fi.

[m] [m1] · · · [mδf−1] [p]

[q] [q1] · · · [qδf−1] [n]

f1

g

f2

g1

fδf−1 fδf

gδg−1 h

k1 k2
kδf−1 kδf

Next, assume that g is a generating codegeneracy map and factor f efficiently into
generating codegeneracies f1, ..., f` followed by generating cofaces f`+1, ..., fδf . By
Proposition 3.8, this factorization extends to horizontally factor the pushout square,
as pictured above. By the previous case, each square above with fi a generating
coface factors into basic pushouts as desired. By repeated application of Lemma 3.9,
as g has defect 1, for i ≤ ` each vertical map gi has defect either 1 or 0, so the leftmost
` squares are each either a basic or trivial pushout of fi.

Finally, for an arbitrary pushout square in ∆ as above, factoring f or g efficiently
into generators extends to a factorization of the entire square into pushout squares
with one map a generating coface or codegeneracy, again by Proposition 3.8. The
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previous two cases then show that each of these squares factors into basic pushouts
and trivial pushouts of generators, hence so does the entire square. �

We now list the basic pushout squares, namely the commuting squares in ∆ whose
span consists of generating maps and which satisfy the conditions of Corollary 3.3.

(i) Pushouts of two generating coface maps are of the form3

[n− 2] [n− 1]

[n− 1] [n]

di

dj−1 dj

di

(0 ≤ i < j − 1 ≤ n− 1)

(3.3)

(ii) Pushouts of one generating coface and one generating codegeneracy map are
of the form

[n] [n+ 1]

[n− 1] [n]

di

sj−1 sj

di

(0 ≤ i < j ≤ n)

[n+ 1] [n+ 2]

[n] [n]

di+1

si sisisisi+1

(0 ≤ i ≤ n)

[n] [n+ 1]

[n− 1] [n]

di+1

sj sj

di

(0 ≤ j < i ≤ n)

(3.4)

(iii) Pushouts of two generating codegeneracy mapsare of the form

[n+ 2] [n+ 1]

[n+ 1] [n]

si

sj+1 sj

si

(0 ≤ i ≤ j ≤ n)

[n+ 1] [n]

[n] [n]

si

si

(0 ≤ i ≤ n)

(3.5)

Immediately from the construction of the factorization in Theorem 3.10, we can
further characterize the following special types of pushouts:

3Although the diagram still commutes when i = j − 1, it is then no longer a pushout, as the
single nontrivial ∨-component of its span is one of the following:

[1] [0] [1] [2] [1] [2] [1] [0] [1].d0 d0 d1 d1 d1 d1
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Corollary 3.11. Consider a pushout square as below in ∆.

[m] [p]

[q] [n]

f

g h

k

(a) If f, g are both coface maps, then the square factors into basic squares of the
form in (3.3).

(b) If f, g consist of one coface and one codegeneracy, then the square factors
into basic squares of the form in (3.4).

(c) If f, g are both codegeneracy maps, then the square factors into basic squares
of the form in (3.5).

(d) If δf = δk or δg = δh, then the square factors into the squares above that share
this property, omitting the middle squares in (3.4) and the right squares in
(3.5). If f, g further consist of one coface and one codegeneracy, the square
factors into the left and right squares in (3.4).

A pushout square with the property in part (d) is in particular a concrete pushout,
meaning a pushout preserved by the forgetful functor ∆→ Set. The right pushout
squares in (3.5) are also concrete, but the middle squares in (3.4) are not.

Remark 3.12. Related classes of squares in ∆ have been considered in [3], [9], and
[10]. In particular, the squares of [9, Figure (8), Lemma 3.10] sent to pullbacks by
a decomposition space include all basic pushouts except for the pushout squares of
cofaces in [9, Lemma 2.10] between outer face maps and the middle squares in (3.4).
As decomposition spaces agree with the 2-Segal spaces of [3] by [4], the squares which
factor into these restricted basic pushout squares ought to be those pushouts which
are preserved by the standard functor from ∆ to Connes’ cycle category Λ, according
to [20, Theorem 2].

Pushouts via ∨-products and composition. Finally, we can further decom-
pose the basic pushout squares using both ∨ and composition.

Corollary 3.13. Pushout squares in ∆ are generated under ∨ and composition by
the following pushout squares and their mirror images:

[0] [0]

[0] [0]

[1] [1]

[1] [1]

[0] [1]

[0] [1]

d0

d0

[0] [1]

[0] [1]

d1

d1
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[1] [0]

[1] [0]

s0

s0

[1] [2]

[1] [2]

d1

d1

[1] [0]

[0] [0]

s0

s0

[1] [2]

[0] [0]

d1

s0

Proof. By Theorem 3.10, each pushout square factors into basic pushouts and
trivial pushouts of generators, or equivalently pushouts of spans whose maps have
defect 0 or 1. By Lemma 3.6, if a ∨-product of pushout squares has this property
then so do its ∨-components, which must then be among the squares of Theorem 3.2
with this property. These are precisely the squares above. �

It is straightforward to check that the analogous generators for concrete pushouts
include all but the bottom right square above.

Balanced coface squares. Recall that every coface map in ∆ is a composite
of generating coface maps di : [n− 1]→ [n] for 0 ≤ i ≤ n. The generating relations
between these generators are given by simplicial identities of the following form:

[n− 2] [n− 1]

[n− 1] [n]

di

dj−1 dj

di

(0 ≤ i < j ≤ n)

(3.6)

We call these squares (and their reflections) basic coface squares. These are slightly
more general than the squares in (3.3), as the case i = j − 1 is now included. While
that square is not a pushout in ∆, it becomes a pushout after applying the forgetful
functor ∆ → Set. We show below that any square with this property factors into
squares of the above form.

Definition 3.14. A commuting square of coface maps in ∆ is balanced if it is a
pushout of finite sets.

This terminology is motivated by the following characterization.

Lemma 3.15. A square of coface maps in ∆ as below is balanced if and only if it is
jointly surjective and p+ q = m+ n.

[m] [p]

[q] [n]

f

g h

k
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Proof. If the square is a pushout of finite sets with injections f and g, then
[n] ∼= [p] ∪[m] [q], so n = p+ q −m and the square is jointly surjective. If the square
is jointly surjective and p+ q = m+ n, then by joint surjectivity the induced map
[p] ∪[m] [q]→ [n] is a surjection, but as n = p + q −m, this is a surjection between
finite sets of the same cardinality, hence an isomorphism. �

Note that a pushout of monomorphisms of sets is also a pullback. In terms of
defects, the equation p+ q = m+ n is equivalent to δf = δk and also to δg = δh.

Theorem 3.16. A nontrivial commuting square of coface maps in ∆ is balanced if
and only if it can be factored into a grid of basic coface squares.

Proof. The “only if” direction is immediate as pushouts are closed under com-
position.

For the “if” direction, we consider a balanced square as below and prove the
existence of a factorization by induction on the total defect δf + δg = δh + δk.

[m] [p]

[q] [n]

f

g h

k

The basic coface squares are precisely the balanced squares between maps with defect
1. Therefore using induction and reflection symmetry, it suffices to show that if
δf = δk > 1, then the square can be factored horizontally into two nontrivial balanced
squares.

As f is a nontrivial coface, there exists a choice of i ∈ [p] \ im(f). For such an
element i, we can factor f uniquely as f ′ : [m]→ [p− 1] followed by di : [p− 1]→ [p],
as in the diagram below. The same is true for k with respect to h(i) ∈ [n], which
is not in im(k) as the original square is a pullback and h(i) is by assumption not in
im(hf). We then have the following factorization into squares, where h′ is defined as
the restriction of h along di, ensuring that both squares commute.

[m] [p− 1] [p]

[q] [n− 1] [n]

f ′

g h′

di

h

k′ dh(i)

The objects in both squares clearly satisfy the size equation of Theorem 3.16, so
to show they are balanced it remains only to show that they are jointly surjective.
In the right square, the only element of n not in the image of dh(i) is h(i), which is
definitionally in the image of h. In the left square, restricting h along di excludes
only h(i) from the joint image, but h(i) is also excluded from [n− 1] (with respect to
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the factorization through dh(i)), so joint surjectivity follows from that of the outer
rectangle. �

Corollary 3.17. Balanced squares in ∆ are generated under ∨ and composition by
the following squares and their mirror images:

[0] [0]

[0] [0]

[1] [1]

[1] [1]

[0] [1]

[0] [1]

d0

d0

[0] [1]

[0] [1]

d1

d1

[1] [2]

[1] [2]

d1

d1

[0] [1]

[1] [2]

d0

d0 d0

d1

[0] [1]

[1] [2]

d1

d1 d1

d2

[1] [2]

[2] [3]

d1

d1 d1

d2

For this to make sense, we note that it is straightforward to check that ∨ preserves
balanced squares using Lemma 3.15.

Proof. By Theorem 3.16 any balanced square factors into basic squares or trivial
squares on generating cofaces. This collection of squares is preserved by taking
∨-components, so it suffices to list the basic squares and trivial squares on generating
cofaces which arise as canonical ∨-components, and these are precisely the squares
above. �

4. Completeness and exactness properties

In this section, we consider properties of the set of squares in ∆ that a given
simplicial set X sends to pullbacks or weak pullbacks in Set.

Completeness. We say a simplicial set X is complete with respect to a given
collection of squares in ∆ if it sends those squares to weak pullback squares. This
terminology is motivated by the following section on lifting properties, where com-
pleteness corresponds to the ability to “complete” a certain type of diagram in X to
a simplex according to the maps in the square. For fixed X we consider the largest
collection of squares with this property.

Definition 4.1. For a simplicial set X, let Comp(X) denote the set of all squares in
∆ sent to weak pullbacks by X.

Many squares in ∆ belong to Comp(X) for any X.
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Proposition 4.2. Comp(X) contains all trivial squares, pushouts of codegeneracy
maps, and squares of the form below with f a coface map.

[m] [m]

[m] [n]

f

f

Proof. Trivial squares are sent to trivial squares, which are always pullbacks.
Pushouts of codegeneracies are absolute pushouts by [14, Theorem 1.2.1], meaning
any contravariant functor sends them to pullbacks. X sends the square above to the
following.

Xn Xm

Xm Xm

Xf

Xf

The pullback of the cospan is the identity square on Xm, with induced map from Xn

necessarily given by the split epimorphism Xf , so the square is a weak pullback by
Lemma 1.4. �

From weak pullbacks being closed under composition, we immediately get analo-
gous properties of Comp(X).

Proposition 4.3. Comp(X) contains all trivial squares and is closed under horizontal
and vertical compositions of squares in ∆.

We can now use the factorization results of the previous sections to characterize
when X is complete with respect to various collections of squares.

Theorem 4.4. Let X be a simplicial set. Then:

Comp(X) contains all if and only if it contains the squares of

pushouts of coface maps (3.3)

pushouts of one coface and one degeneracy map (3.4)

all pushouts (3.3) and (3.4)

concrete pushouts (3.3) and the left and right squares in (3.4)

balanced squares basic coface squares

Proof. The first two claims follow from Corollary 3.11 and Proposition 4.3.
The next two claims additionally rely on Proposition 4.2 which removes the need to
check for pushouts of codegeneracies. The final claim follows from Theorem 3.16 and
Proposition 4.3. �
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Proposition 4.5. If Comp(X) contains the squares of the form below for 0 ≤ i ≤ n,
then X is discrete.

[n+ 1] [n+ 2]

[n] [n]

di+1

si sisi

[n− 2] [n− 1]

[n− 1] [n]

di

di di+1

di

Proof. Observe the squares below left compose to the square below right.

[n] [n+ 1] [n]

[n+ 1] [n+ 2] [n]

di

di

si

di+1

di sisi

[n] [n]

[n+ 1] [n]

di

si

As both of the squares above left are in Comp(X), so is the square above right by
Proposition 4.3. Furthermore, as si is a split epic si : Xn → Xn+1 is a split monic,
the right square is sent to a strong pullback by Lemma 1.5. si is then a pullback of
the identity, and hence an isomorphism. It follows that all face and degeneracy maps
of X are isomorphisms, so that X is discrete. �

In particular, this is the case if Comp(X) contains both pushouts and balanced
squares.

Exactness. Analogously to completeness, X is exact with respect to a collection
of squares in ∆ if it sends those squares to strong pullbacks.

Definition 4.6. For a simplicial set X, let Ex(X) denote the set of all squares in ∆
sent to pullbacks by X.

The following was shown in the proof of Proposition 4.2.

Proposition 4.7. Ex(X) contains all trivial squares and pushouts of degeneracies.

As any strong pullback is a weak pullback, Ex(X) ⊆ Comp(X). Some squares
have the property that if they belong to Comp(X) they must further belong to Ex(X).



26 C. CONSTANTIN, T. FRITZ, P. PERRONE, AND B. SHAPIRO

Proposition 4.8. Ex(X) contains all squares in Comp(X) of the form below with
either h or k a codegeneracy.

[m] [p]

[q] [n]

h

k

Proof. If h or k is split epic, X sends it to a split monic, so X sends the square
to one of the form in Lemma 1.5. �

Closure of pullbacks under composition, along with the pullback lemma, give us
the following.

Proposition 4.9. Ex(X) is closed under composition and left- or upper-cancellation
of squares.

Unlike Comp(X), we can give conditions for Ex(X) to be closed under ∨-products.

Proposition 4.10. If Ex(X) contains all squares of the following form, then it is
closed under ∨-products.

[0] [a]

[b] [a+ b]

a

0

Proof. As ∨ is associative, by induction it suffices to show this for binary ∨-
products. Assume the squares above belong to Ex(X), as well as two generic squares
which admit a ∨-product:

[m0] [p0]

[q0] [n0]

[m1] [p1]

[q1] [n1]

By assumption, the squares below left (i = 0, 1) and center are pullbacks, along with
those like below center with n replaced with r, p, q. Since limits commute with limits,
the square below right is also a pullback.

Xni Xpi

Xqi Xri

Xn0+n1 Xn0

Xn1 X0

Xn0+n1 Xp0+p1

Xq0+q1 Xr0+r1

�
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This lets us use the results on generators under ∨ and composition to give much
simpler conditions for a simplicial set X to be exact with respect to various classes of
squares.

Theorem 4.11. Let X be a simplicial set.

(a) Ex(X) contains all concrete pushouts if and only if it contains the squares
below left.

(b) Ex(X) contains all pushouts if and only if it contains the squares below left
and center left.

(c) Ex(X) contains all balanced squares if and only if it contains the squares
below left, center right, and right.

[0] [a]

[b] [a+ b]

a

0

[1] [2]

[0] [0]

d1

s0

[0] [1]

[1] [2]

d0

d0 d0

d1

[0] [1]

[1] [2]

d1

d1 d1

d2

Proof. For the “only if” directions, note that the squares above left are both
concrete pushouts and balanced, the center left square is a pushout, and the remaining
three squares are balanced. We now consider the “if” direction.

Ex(X) is closed under composition, so if it is also closed under ∨ by containing
the squares above left, it contains all (concrete) pushouts if and only if it contains the
generators of (concrete) pushouts under ∨ and composition. By Corollary 3.13, for
concrete pushouts these generators are all trivial squares or pushouts of codegeneracies
which are automatically in Ex(X), and for general pushouts they additionally contain
the square above center left, proving the first two claims.

For the third claim, it follows from Corollary 3.17 that Ex(X) contains all balanced
squares if and only if it contain their generators under ∨ and composition, assuming
it includes the squares above left. The only nontrivial generators are the center right
and right squares above along with the following square, so further containing these
suffices to show that Ex(X) includes all balanced squares.

[1] [2]

[2] [3]

d1

d1 d1

d2
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We show that if Ex(X) contains the center right and right squares, it contains this one
as well. Observe that the following two diagrams have the same composite square.

[0] [1] [2]

[1] [2] [3]

d0

d0

d1

d1 d2

d0 d1

[0] [1] [2]

[1] [2] [3]

d0

d0

d0

d1 d2

d0 d0

The right square in the right composite is the ∨-product of the following trivial
squares and therefore in Ex(X).

[1] [1]

[2] [2]

d1 d1

[0] [1]

[0] [1]

d0

d0

Therefore using Proposition 4.9, the left composite above is in Ex(X) and by cancel-
lation so is its right square, completing the proof. �

Remark 4.12. This shows that Ex(X) contains all concrete pushouts if and only
if X is the nerve of a category. Indeed, we have shown that Ex(X) contains all
concrete pushouts precisely when Xa+b

∼= Xa ×X0 Xb for all a, b, equivalent to having

Xn = X1 ×X0

n· · · ×X0 X1 for all n, the Segal condition for X to be a nerve.
Now let us consider the more specific situation where Ex(X) contains all pushouts,

and ask what this means for the category of which X is the nerve. X sending the
square above center left to a pullback is then equivalent to whenever a composable
pair of morphisms (an element of X2) has as composite arrow (in X1) an identity
(in the image of s0 : X0 → X1), both morphisms must be identities (in the image
of X2 → X0). In other words, X is the nerve of a category in which no nontrivial
morphisms compose to the identity.

In the third case, when Ex(X) contains all balanced squares, the center right
square above being sent to pullbacks ensures that every pair of morphisms f : y → z,
g : x→ z in X complete to a triangle with h : x→ y and fh = g, so setting g = idz
provides any morphism f with a right inverse h. Likewise the right square sent to
a pullback provides each morphism with a left inverse, so that X is the nerve of a
groupoid.

Example 4.13. Another class of simplicial sets defined by an exactness property
is the (discrete special case of) decomposition spaces of [9] (or equivalently 2-Segal
simplicial sets) which send the squares of Remark 3.12 to pullbacks. [9, Proposition
3.5] shows that it suffices to check this for a smaller collection of squares, a result
much like the cases considered in Theorem 4.11.
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Example 4.14. A simplicial set X for which Ex(X) contains the left and right
squares of (3.4) is a stiff simplicial set in the sense of [10, 4.1]. That X being
stiff implies that all of the left and right squares of (3.4) are contained in Ex(X) is
given by [10, Lemma 4.3], and that this condition implies all codegeneracy/inert
pushouts are in Ex(X) follows from Corollary 3.11, as these are among the concrete
codegeneracy/coface pushouts which factor into these basic squares.

Example 4.15. If Ex(X) contains all of the squares of (3.4), it is split in the sense of
[10, 5.1]. Ex(X) containing the middle squares of (3.4) means X has indecomposable
units in the sense of [10, 5.5], containing the left and right squares of (3.4) makes X
stiff as described above, and any simplicial set X is complete in the sense of [10, 2.1]
as degeneracy maps are always monomorphisms (unlike in the setting of simplicial
spaces). Completeness in this sense also follows from Proposition 4.7 following [10,
2.7] relating the condition to sending certain pushouts of degeneracies to pullbacks,
which is always true in the discrete setting. By [10, Proposition 5.9], X is split
precisely when it is stiff, complete, and has indecomposable units, hence exactly
when Ex(X) contains the squares of (3.4). By Corollary 3.11, split simplicial sets can
equivalently be defined as those which send to pullbacks all pushouts in ∆ of one
coface and one codegeneracy map.

5. Lifting conditions and acyclic configurations

We now give an equivalent description of completeness properties via lifting
conditions, and explore additional lifting properties of simplicial sets complete with
respect to either pushouts or balanced squares of face maps.

Like many conditions considered for simplicial sets, such as the (inner) horn
filling conditions defining Kan complexes (resp. quasicategories), completeness with
respect to a class of squares can be expressed in terms of lifting properties. For a
square in ∆ as below left and X a simplicial set, the square below center is a weak
(resp. strong) pullback if and only if X has (unique) lifts against the map from the
pushout ∆p

ftg ∆q of simplicial sets to ∆n induced by h, k. That is, any map from
this pushout into X extends (uniquely) to an n-simplex as in the lifting diagram
below right.

[m] [p]

[q] [n]

f

g h

k

Xn Xp

Xq Xm

Xh

Xk Xf

Xg

∆p
ftg ∆q X

∆n

kh



30 C. CONSTANTIN, T. FRITZ, P. PERRONE, AND B. SHAPIRO

This lets us interpret completeness properties geometrically, and we now describe
several different completeness properties which admit simple geometric descriptions
in terms of these filler conditions.

Definition 5.1. A simplicial set X is span complete if Comp(X) includes all balanced
squares of coface maps.

We say a span (of cofaces) in X is a pair of simplices which share a face, which
is equivalent to a span of coface maps in the category of elements for X. In a span
complete simplicial set, any span in X extends as above to a “filler” simplex between
all of the vertices of the span.

By Theorem 4.4, X is span complete if and only if Comp(X) contains the basic
coface squares, or equivalently any basic span consisting of a pair of (n− 1)-simplices
in X which share an (n− 2)-simplex face can be filled to an n-simplex in X (for all
n ≥ 2). That is, any (n− 1)-simplices x, y in X with dix = dj−1y, for i < j, extends
to an n-simplex z with djz = x and diz = y. The following figures illustrate this for
n = 3, with i = 2, j = 3 and i = 0, j = 2, respectively.

1 3

0 2

1 3

0 2

However, asking for all basic span fillers rules out all nerves of categories but
groupoids, as fillers against the basic span inclusions ∆1

d0td0 ∆1 ↪→ ∆2 and ∆1
d1td1

∆1 ↪→ ∆2 require that for any morphism a, the diagrams below complete to commuting
triangles, hence a must have both left and right inverses.

·

· ·
a

·

· ·
a

A generalization of span complete simplicial sets which allows for any nerve of a
category (as well as quasicategories, see Proposition 6.3) restricts the desired fillers
to inner spans analogous to the restriction of horns to inner horns when generalizing
Kan complexes to quasicategories. Where the general spans above contain all vertices
of the desired n-simplex, an inner span further contains all of the spinal edges, such
as in the right span within the 3-simplex pictured above. In the nerve of a category
then, this means that all of the morphisms in an n-simplex are provided by the span,
and filling it to an n-simplex amounts to simply adding in the missing composites.
By Corollary 3.4, these spans are precisely those arising from a pushout square of
coface maps in ∆, which motivates the following definition.
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Definition 5.2. A simplicial set X is inner span complete if Comp(X) includes all
pushout squares of coface maps.

By Theorem 4.4, X is inner span complete if and only if Comp(X) contains the
basic pushout squares of face maps in (3.3). Equivalently, X is inner span complete
precisely when any basic inner span consisting of a pair of (n − 1)-simplices in X
which share an (n − 2)-simplex face and together include a string of n successive
edges can be filled to an n-simplex in X (for all n ≥ 2). Such a span contains all but
one edge of the desired n-simplex, and the innerness condition requires that this edge
is not in the spine.

Inner span complete simplicial sets describe settings in which edges can be
composed in a manner respected by higher simplices but without requiring the
uniqueness or coherence properties of categories and quasicategories, respectively. In
[2] we show that this precisely describes the compositional structure possessed by
the bar construction of algebras of a broad class of monads. This generalizes the
composition of partial evaluations [7] to higher simplices. By definition, a partial
evaluation is an edge in the bar construction of an algebra of a monad. We have found
that the compositional structure of partial evaluations established in [7] for a large
class of monads extends to the higher-dimensional simplices: the bar construction is
an inner span complete simplicial set. Potential applications to algebraic rewriting
theory remain to be explored.

Combinatorial acyclicity. In this subsection, we prove the existence of certain
additional fillers in a span complete simplicial set X, obtained by iterating the filling
condition for basic spans.

For the moment we will work in the undirected context, considering (abstract)
simplicial complexes, in the standard sense of collection of subsets of a finite ground
set which are downward closed, and such that the union of all these subsets is the
ground set. We will treat nonempty simplicial complexes as subsimplicial sets of the
representable simplex on the ground set, where for now the order of the vertices will
not matter (although it is specified). In the directed context that follows afterwards,
we discuss how to modify these definitions to account for directed edges.

A vertex in a simplicial complex is extremal if it is contained in only one maximal
simplex. A combinatorial sphere is a simplicial complex with at least 3 vertices,
containing precisely the proper subsets of the ground set. One can visualise it
geometrically as a hollow triangle, or a hollow tetrahedron, or in general the boundary
of a simplex.

The following definitions and the characterization of Theorem 5.5 are well-known,
but they do not seem to be easy to find in the literature in this exact form. Much of
the related literature is in the area of relational database theory, where often more
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general hypergraphs rather than simplicial complexes are considered4, resulting in
greater generality and complexity than what we need here.

Definition 5.3 ([11]). A simplicial complex S is Graham acyclic if it satisfies the
following recursive definition: S is empty, or S contains an extremal vertex v and
S \ {v} is Graham acyclic.

Here, S \{v} := {A\{v} | A ∈ S} denotes the new simplicial complex obtained by
removing v from all simplices as well as from the ground set. Applying this recursive
elimination of vertices to a simplicial complex is called Graham reduction. For a
Graham acyclic simplicial complex, the reduction results in the empty complex5,
while otherwise the process terminates at a non-empty complex.

Note that there are similarities with the notions of collapsibility and shellability
in combinatorial topology. In particular, Graham acyclicity is by definition equivalent
to Wegner’s 1-collapsibility [21]. Also the following notion is standard, see e.g. [22,
Definition 5.3.15].

Definition 5.4. A chordal graph is an undirected graph in which all cycles with at
least 4 edges have a chord, i.e. an edge which connects two vertices non-adjacent in
the cycle.

Applying this definition repeatedly shows that in a chordal graph, a cycle of any
length can be triangulated, which is why chordal graphs are also sometimes called
triangulated graphs.

The following characterization theorem is well-known in its hypergraph version in
the literature on acyclic database schemes, see e.g. [1] or [16, Theorem 13.2], while the
proof is somewhat simpler in our setting of simplicial complexes. The condition (a) is
easy to check algorithmically, while condition (b) is useful for mathematical proofs.
Condition (c) is the one which will facilitate our reduction to inner span fillers in
the directed case below, and is generally useful when working with algebraic or
combinatorial structures on simplicial complexes, such as the tables in a relational
database.

Theorem 5.5. The following are equivalent for a simplicial complex S:

(a) S is Graham acyclic.

(b) Every combinatorial sphere in S has a filler, and the 1-skeleton of S is a
chordal graph.

4See e.g. [1], or [16, Chapter 13] for a textbook account.
5It is known that Graham reduction can be performed in any order, i.e. it is impossible to get

stuck.
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(c) S has the running intersection property: the maximal simplices of S can be
ordered as T1, . . . , Tm such that for every k = 1, . . . ,m there is j < k with

Tk ∩

(
k−1⋃
i=1

Ti

)
⊆ Tj.

Moreover if S is connected, then the T1, . . . , Tm in (c) can be chosen such that

Tk ∩
⋃k−1
i=1 Ti is nonempty for all k = 2, . . . ,m.

We include a proof for convenience.

Proof. (a) ⇒ (b): We use induction on the number of vertices of S, with the
statement being trivial if S is empty. For the induction step, suppose that S is
Graham acyclic with extremal vertex v.

Now consider a combinatorial sphere in S. If this sphere does not contain v, then
it has a filler by the induction assumption applied to S \ {v}. If this sphere contains
v, then it must also have a filler, since otherwise v would be contained in more than
one maximal simplex.

Similarly, consider a cycle of length ≥ 4 in the 1-skeleton of S. If v is not part of
this cycle, then it again has a chord by the induction assumption, so suppose that
v is a vertex in the cycle. Then both neighboring vertices of v in the cycle are also
members of the unique maximal simplex containing v, and therefore so is the edge
between these vertices, resulting in a chord.

(b)⇒ (a): A vertex v in a graph G is called simplicial if every two neighboring
vertices of v are themselves adjacent. A standard graph-theoretic result is that a
graph is chordal if and only if there is an ordering {v1, . . . , vn} of its vertices such
that each vi is simplicial in the subgraph induced by the vertices {v1, . . . , vi} [22,
Theorem 5.3.17]. In the case of a simplicial complex whose 1-skeleton is a chordal
graph, as long as there are no unfilled combinatorial spheres, such an ordering can be
reversed to provide an ordering for the Graham reduction process. This is because
every complete subgraph of the 1-skeleton has to be a simplex in S by assumption,
in particular making vn extremal in S.

(c)⇒ (a): If the running intersection property holds, then putting k = m shows
that there is a j < m such that Tm ∩

(⋃m−1
i=1 Ti

)
⊆ Tj. This implies that there is

some vertex v ∈ Tm which does not belong to any of the other maximal simplices
from 1 to m− 1, making v extremal. Considering the reduced complex S \ {v}, there
are now two possibilities: it may be that S \ {v} has maximal simplices T1, . . . Tm−1

as maximal simplices, in which case the running intersection property still holds
trivially; or S \ {v} may in addition have the maximal simplex Tm \ {v}, in which
case the running intersection property still holds with Tm replaced by Tm \ {v} in the
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new ordering. In either case, the induction assumption finishes the argument, again
with the empty simplicial complex as the base case.

(a) ⇒ (c): We once more use induction on the number of vertices, where the
empty base case is obvious. For the induction step, suppose that v is an extremal
vertex in S, belonging to a unique maximal simplex T . Since S \ {v} is still Graham
acyclic, the induction hypothesis shows that there exists an ordering T1, . . . Tm−1 of
the maximal simplices of S \ {v} which satisfies the running intersection property.

Then we again have two cases. First, if T \ {v} is still maximal in S \ {v}, then
it must coincide with some Tk. Then T1, . . . , Tk ∪ {v}, . . . , Tm is an ordering of the
maximal simplices of S which witnesses the running intersection property. Second, if
T \ {v} is no longer maximal in S \ {v}, then it must be properly contained in some
Tj. Then the sequence of maximal simplices

T1, . . . , Tm, T

witnesses the running intersection property for S, because of T ∩
⋃m
i=1 Ti = T \ {v} ⊆

Tj.
Moreover, the final claim on connectedness follows by an inspection of the previous

argument: if S is connected, then so is S \ {v}, and it is straightforward to check that

every Tk ∩
⋃k−1
i=1 Ti is nonempty provided that this holds likewise on S \ {v}, which it

does by the induction assumption. �

Remark 5.6. It should be noted that the acyclicity property characterized by
Theorem 5.5 is not homotopy invariant, and in particular distinct from notions of
acyclicity familiar from algebraic topology. This applies similarly to our directed
analogue below.

Definition 5.7. An acyclic configuration inside the n-simplex is a connected simpli-
cial complex S with ground set [n] which satisfies the conditions of Theorem 5.5.

Example 5.8. A span of simplices is an acyclic configuration inside their union.
Indeed, any combinatorial sphere is the boundary of a face of one of the two simplices
and hence has a filler. The 1-skeleton is the union of two complete graphs along
another complete graph. In particular, every cycle has a chord: while this is obvious
for a cycle contained in one of the complete subgraphs, a cycle not contained in either
needs to have at least two vertices in the intersection, where again a chord exists.

Acyclic configurations have the following relevance in our context.

Theorem 5.9. A simplicial set is span complete if and only if it has fillers for all
acyclic configurations in the n-simplex (for every n).

Proof. The “if” direction follows from the acyclicity of spans in the example
above. For the “only if” direction, we use condition (c) of Theorem 5.5 characterizing
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acyclic configurations. Let X be span complete and consider a map to X from acyclic
S ⊆ ∆n with maximal simplices {T1, T2, ...}. We show by induction on k that every

induced subcomplex on vertices
⋃k
i=1 Ti has a filler. There is nothing to prove in the

base case k = 1, so assume k > 1. Then the induced subcomplex on vertices
⋃k−1
i=1 Ti

has a simplex filler by the induction assumption. But now with the inclusion maps
as morphisms, the diagram6

Tk ∩
⋃k−1
i=1 Ti Tk

⋃k−1
i=1 Ti

⋃k
i=1 Ti

is a square of coface maps in ∆ and evidently a pushout of finite sets. Since
Tk ∩

⋃k−1
i=1 Ti ⊆ Tj for some j, we know that the filler of

⋃k−1
i=1 Ti agrees with Tk on the

face with vertices those of Tk ∩
⋃k−1
i=1 Ti, as both must agree with the corresponding

face of Tj . These simplices therefore form a span and have a filler in X which extends

the restriction of the original map to
⋃k
i=1 Ti, completing the induction step. �

Directed acyclicity. We now describe corresponding collections of fillers for
inner span complete simplicial sets, obtained by iterating the filler condition for inner
spans. To this end, we propose a version of the above acyclicity notion in a directed
setting which accounts for the orientations of edges and triangles, respectively. A
directed simplicial complex S is a downward closed collection of subsets of a finite
nonempty totally ordered set, which without loss of generality we take to be given by

[n] = {0, . . . , n} =
⋃

S,

thereby identifying a directed simplicial complex on n vertices with a simplicial
subcomplex of the n-simplex. As before we write S \ {v} = {A \ {v} | A ∈ S}, where
now this reduced directed simplicial set lives on [n− 1], so that the indices of all
vertices beyond v must be reduced by 1.

All notions for which we do not introduced directed or 2-directed versions, such
as extremality of a vertex, are used as in the undirected setting above.

Definition 5.10. A directed simplicial complex S ⊆ 2[n] is directed Graham acyclic
if n = 0, or if S has an extremal vertex v ∈ [n] such that:

(a) If v > 0, then {v − 1, v} ∈ S.

(b) If v < n, then {v, v + 1} ∈ S.

6Note that the assumption of connectedness guarantees that the set-theoretic intersection

Tk ∩
⋃k−1

i=1 is nonempty.
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(c) S \ {v} is again directed Graham acyclic.

We then have a characterization analogous to that of Theorem 5.5.

Theorem 5.11. The following are equivalent for a directed simplicial complex S ⊆
2{0,...,n} with

⋃
S = {0, . . . , n}:

(a) S is directed Graham acyclic.

(b) Every combinatorial sphere in S has a filler, and the 1-skeleton of S is a
chordal graph which contains the entire spine.

(c) S has the directed running intersection property: the maximal simplices of S
can be ordered as T1, . . . , Tm such that for every k = 1, . . . ,m there is j < k
with (

k−1⋃
i=1

Ti

)
∩ Tk ⊆ Tj,

and for every two vertices v < w which are consecutive in
⋃k
i=1 Ti, we have

{v, w} ⊆ Tk or {v, w} ⊆
⋃k−1
i=1 Ti.

Note that each one of these conditions implies its undirected counterpart given in
Theorem 5.5.

Proof. It is enough to show that the additional conditions relative to Theorem 5.5
imply each other, assuming that the underlying undirected simplicial complex of S is
acyclic.

Assuming (a), a simple induction argument indeed shows that S contains the
whole spine. For if v ∈ [n] is as in Definition 5.10, then S \ {v} can be assumed to
contains its entire spine by the induction assumption, and the extra condition on v
then implies that S also contains the additional spinal edges not implied by those of
S \ {v}. Conversely if (b) holds, then the conditions {v − 1, v} ∈ S for v > 0 and
{v, v + 1} ∈ S for v < n are part of the assumption that S contains the entire spine.

For the equivalence between (b) and (c), it is now enough to prove that the
extra condition in (c) is equivalent to S containing the entire spine, provided that
the undirected acyclicity of Theorem 5.5 holds. Thus if (c) holds, we now argue
that {v, v + 1} ∈ S for every v < n. To this end, consider the smallest k with

{v, v + 1} ⊆
⋃k
i=1 Ti. Then the assumption implies the desired {v, v + 1} ⊆ Tk, since

{v, v + 1} ⊆
⋃k−1
i=1 Ti would contradict the minimality of k.

In the other direction, suppose that S satisfies the undirected running intersection
property and contains the entire spine. Let v < w be two vertices consecutive
in
⋃k
i=1 Ti. We will use backwards induction on k to prove the desired property

{v, w} ⊆ Tk or {v, w} ⊆
⋃k−1
i=1 Ti, or equivalently that the induced subcomplex on
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i=1 Ti contains its entire spine. This is clear in the base case k = m: for then we

must have w = v + 1, so that the containing the entire spine assumption applies.
For k < m, suppose first that v and w are still consecutive in

⋃k+1
i=1 Ti. Since the

induced subcomplex on
⋃k+1
i=1 Ti contains the entire spine by the induction assumption,

we must have {v, w} ⊆ Th for some h ≤ k + 1. For h ≤ k we are done, so assume
h = k + 1. Then the running intersection property implies that there is j ≤ k with
Tk+1 ∩

⋃k
i=1 Ti ⊆ Tj. We therefore also conclude that {v, w} ⊆ Tj, which is enough.

Finally if v and w are no longer consecutive in
⋃k+1
i=1 Ti, then there are nonzero

many elements u1, . . . , u` ∈ Tk+1 \
⋃k
i=1 Ti such that the sequence

v, u1, . . . , u`, w

consists of consecutive vertices in
⋃k+1
i=1 Ti. The induction assumption together with

u∨ 6∈
⋃k
i=1 Ti then gives us that the edge formed by any two consecutive vertices

in this list is in Tk+1. But then also {v, u1, . . . , u`, w} ⊆ Tk+1, and in particular

{v, w} ⊆ Tk+1 ∩
⋃k
i=1 Ti. But then again the running intersection property implies

{v, w} ⊆ Tj for some j ≤ k, as was to be shown. �

Definition 5.12. A directed acyclic configuration inside the n-simplex is a directed
simplicial complex S on [n] satisfying the conditions of Theorem 5.11.

Note that the connectivity requirement which we had made in the undirected case
(Definition 5.7) is now automatic by inclusion of the spinal edges.

Example 5.13. All inner spans define directed acyclic configurations, as follows.
Suppose that the diagram below is a pushout of coface maps in ∆.

[m] [p]

[q] [n]

f

g h

k

Then consider the directed simplicial complex on [n] given by

S := {A ⊆ [n] | A ⊆ im(h) ∨ A ⊆ im(k)}.

This S is a directed acyclic configuration: the underlying undirected complex of S is
a union of two simplices glued along a common face, and is therefore (undirected)
acyclic by Example 5.8. Since it moreover contains the entire spine by Corollary 3.4,
directed acyclicity follows.

In particular, all basic inner span inclusions define directed acyclic configurations:
for 0 ≤ i < j − 1 ≤ n− 1, the directed simplicial complex

S := {A ⊆ [n] | i 6∈ A ∨ j 6∈ A}.
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is directed acyclic. Using the same S with i = j − 1 would not work, since then
the spine condition would be violated due to the spinal edge {j − 1, j} not being a
member of S.

The relevance of directed acyclicity in our context is the following general result.

Theorem 5.14. A simplicial set is inner span complete if and only if it has fillers
for all directed acyclic configurations in the n-simplex (for every n).

Proof. The proof is a straightforward modification of the proof of Theorem 5.9,
as inner spans are directed acyclic as shown above, and in the induction argument, if
S is assumed directed acyclic then the condition on consecutive vertices in (c) ensures
that the square

Tk ∩
⋃k−1
i=1 Ti Tk

⋃k−1
i=1 Ti

⋃k
i=1 Ti

is a pushout in ∆ by Corollary 3.4. �

Example 5.15. Consider the spine inclusions of the edges 0 → 1 → · · · → n into
∆n for n ≥ 1. These define a directed simplicial complex with the maximal simplices
given by

T1 = {0, 1}, . . . , Tn = {n− 1, n}.
Since this directed simplicial complex has no cycles or combinatorial spheres, and
trivially contains the entire spine, it defines a directed acyclic configuration. Theo-
rem 5.14 thus implies that in an inner span complete simplicial set, every string of n
edges is the spine of an n-simplex. This is a weak version of the 1-Segal condition.
Unlike in the strong case, it does not itself yield fillers of inner spans.

Example 5.16. Consider any triangulation of the (n+1)-gon for n ≥ 2, with vertices
labeled in order from 0 to n as in the two examples below for n = 3.

1 2

0 3

1 2

0 3

Then the edges and triangles of the triangulation define a directed acyclic configuration
in the n-simplex. Indeed the configuration contains the spine of the n-simplex, as
the spinal edges are among the outer edges of the n-gon. As a triangulation, the
1-skeleton of this configuration is a chordal graph, and the only combinatorial spheres
are the filled triangles. By Theorem 5.11(b), this is a directed acyclic configuration.
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Theorem 5.14 thus shows that inner span complete simplicial sets also satisfy
a weak version of the Dyckerhoff-Kapranov formulation of the 2-Segal property in
terms of polygon triangulations ([3, Definition 2.3.1]), and that this is implied by
the weak analogue of the corresponding exactness conditions in [9] and [20]. In
contrast to the strong case, the converse does not since non-unique fillers against
2-dimensional triangulations do not provide a way to fill inner spans of simplices of
dimension greater than 2.

Example 5.17. Any triangulation of a polytope on vertices 0, . . . , n has fillers of
combinatorial spheres, and forms a directed acyclic configuration of the n-simplex if
its 1-skeleton is a chordal graph containing the spinal edges. For example, the cyclic
polytope on vertices 0, 1, . . . , n in d-dimensional space (with n ≥ d) is the convex
hull of any n + 1 points on the moment curve t 7→ (t, t2, . . . , td) for t ∈ R [8]. Any
triangulation of such a polytope automatically contains the spinal edges, so to show
these triangulations are directed acyclic it remains only to show that their 1-skeletons
are chordal.

When d > 3, by [8, Theorem 1] the 1-skeleton of each cyclic polytope is a complete
graph, hence chordal, so these triangulations form directed acyclic configurations.
When d = 3, for example by Gale’s evenness criterion [8, Theorem 3], the 1-skeleton
of the cyclic polytope on 0, . . . , n consists precisely of the spinal edges along with
edges from 0 to any vertex and from any vertex to n. As the only edges between
vertices other than 0 and n are the spinal edges from i to i+ 1, any cycle must then
contain 0 or n, which has an edge to every vertex in the cycle, so the 1-skeleton
is chordal, and therefore any triangulation of the polytope by 3-simplices forms a
directed acyclic configuration.

Dyckerhoff and Kapranov suggest in [3] that a “d-Segal condition” could be
defined for any d ≥ 1 as a simplicial set having unique fillers against the inclusion into
∆n of any d-simplex triangulation of the d-dimensional cyclic polytope on 0, . . . , n.
This definition is made precise by Poguntke ([18, Definition 2.2]), who restricts to
just the “upper” and “lower” triangulations of the cyclic polytopes (fillers against
just those two triangulations for each cyclic polytope suffice to provide fillers for all
triangulations, but only if the fillers are unique, which is easy to see when d = 2).

The fact that cyclic polytope triangulations form directed acyclic configurations
shows, thanks to Theorem 5.14, that inner span completeness subsumes a weak
version of the triangulation-style d-Segal condition for all d. In fact, this requires only
that a simplicial set X is complete with respect to the pushouts of coface squares
in Remark 3.12 excluding basic pushouts of the first and last coface maps. It is
possible to formulate another even stronger notion of acyclicity corresponding to
lifting properties which follow from this weak analogue of the 2-Segal condition, but
that is beyond the scope of this paper.
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In [20], Walde formulates equivalent characterizations of the d-Segal conditions in
terms of exactness with respect to higher dimensional cube diagrams in ∆, recovering
the appropriate squares of [9] for d = 1, 2. It is possible that weak versions of these
conditions are also implied by inner span completeness, but this too is beyond our
current scope.

6. Examples of (inner) span completeness

We now discuss several examples of span complete and inner span complete
simplicial sets. We quickly show that any Kan complex (resp. quasicategory) is span
complete (resp. inner span complete), and give several examples of span complete
simplicial sets which are not Kan complexes (or even quasicategories). The motivat-
ing example for the development of inner span complete simplicial sets is the bar
construction of algebras for certain types of monads, which we discuss in a follow-up
paper [2]. Each of these examples can now benefit from Theorem 5.9 or Theorem 5.14,
with simple (directed) acyclicity conditions describing a broad class of configurations
which have n-simplex fillers.

The examples we discuss can also be found in [5] as examples of compositories :

Definition 6.1 ([5, Definition 2.2.2]). A compository is a simplicial set X for which
inner spans of the type

∆p
r′t`′ ∆q X

∆n

r`, (6.1)

have specified fillers, and these fillers satisfy certain coherences in the form of as-
sociativity and partial naturality properties. Here, ` : ∆p → ∆n is the left inclusion
dn · · · dp+1 and r : ∆q → ∆n is the right inclusion d0 · · · d0, and similarly `′ and r′

are the left and right inclusions of the intersection simplex ∆p+q−n.

Compositories describe simplicial sets in which some of the inner span inclusions
we consider, namely the spans containing the first and last (n − 1)-faces of the
n-simplex, are assigned coherent choices of fillers. In many of the examples of com-
positories, however, these fillers are not unique and additional weak filler conditions
are satisfied making them (inner) span complete simplicial sets. The structure of
(inner) span completeness does not subsume that of compositories, but rather offers a
complementary perspective on simplicial sets whose simplices can be combined to
form higher dimensional simplices with varying degrees of uniqueness.

Kan complexes and quasicategories. The most classical example of a class
of simplicial sets defined by filler conditions is that of Kan complexes, which have
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n-simplex fillers for all n-dimensional horns. The horn filling condition is stronger
than the span filling property of span complete simplicial sets in the following sense.

Proposition 6.2. Kan complexes are span complete.

Intuitively, given a span in a Kan complex with n+ 1 vertices, we can successively
use the filler properties for lower dimensional horns to complete the span to an
n-dimensional horn, which then has an n-simplex filler. A precise and concise proof
can be given based on a homotopical argument as follows.

Proof. It suffices to show that the basic span inclusions ∆n−1t∆n−2 ∆n−1 ↪→ ∆n

are trivial cofibrations in the Quillen model structure on simplicial sets. This follows
immediately as both the domain and codomain geometrically realize to contractible
spaces, so the realization of the inclusion map is a weak equivalence. �

Among spans, it is precisely the inner ones which can always be filled against in a
quasicategory, so we also have the following.

Proposition 6.3. Quasicategories are inner span complete.

Proof. Consider a basic inner span omitting respectively the ith and jth vertices
of the n-simplex where j − i > 1. Choose k to lie between i and j. Observe that this
span contains precisely the faces of ∆n not containing the edge from i to j. By [15,
Lemma 4.4.5.5] applied with J = {i, j}, the inclusion of the basic inner span into the
n-simplex is inner anodyne, and therefore has fillers in any quasicategory. �

Finite metrics. [5, Section 3.3] describes the simplicial set of finite metric spaces,
which we now show to be span complete. Recall that a pseudometric on a set S is a
function d : S × S → R≥0 such that

. (Reflexivity) d(x, x) = 0 for all in x ∈ S,

. (Symmetry) d(x, y) = d(y, x) for all x, y ∈ S,

. (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S.

Pseudometrics differ from metrics in that they do not require the non-degeneracy
condition that d(x, y) = 0 only when x = y in S. This weakening of the definition is
necessary in order to define the degeneracy maps in the simplicial set constructed below.
This construction would work just as well without imposing the symmetry condition
on pseudometrics, so the thus inclined reader may as well drop the symmetry property.
In the following, we will simply say metric to refer to either type of pseudometric.

Example 6.4. Let M1(n) be the set of metrics on the set [n] of n + 1 points.
For each map f : [m] → [n] in ∆ and metric d on [n], define the metric f ∗d by
(f ∗d)(x, y) = d(f(x), f(y)) for x, y ∈ [m]. When f is a coface map, then f ∗ takes a
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metric on [n] and restricts it to the image of [m] under f , and when f is a codegeneracy
map, it replaces each point i in [n] with the set f−1(i), all of which have zero distance
from each other and such that they have the same distances to any other point in
[m].

A span in M1 amounts to a choice of metrics dp, dq on [p], [q] which agree upon
restriction along the span’s coface maps [m]→ [p] and [m]→ [q]. A filler of this span
is a metric dn on [n] = [p + q −m] ∼= [p] ∪[m] [q] which restricts to dp, dq on [p], [q],
respectively. A canonical (but not generally unique) choice of dn is given by

dn(i, j) =


dp(i, j) if i, j ∈ [p],

dq(i, j) if i, j ∈ [q],

min
k∈[m]

(
dp(i, k) + dq(k, j)

)
if i ∈ [p]\[m], j ∈ [q]\[m],

generalizing [5, Definition 3.3.2] to any inclusions of [m] into [p] and [q]. Note that
the first two cases are not disjoint, but result in the same value for i, j ∈ [m] due to
the assumption of equal restriction.

Unlike the compository structure on M1, the property of span completeness does
not single out this particular filler over other possible ones, but it does see more fillers
(namely for any span of cofaces [p]← [m]→ [q] rather than just the one where [m] is
embedded as the initial or final face, respectively).

By [5, Figure 5], M1 is not a Kan complex. It follows that Kan complexes are a
strict subclass of span complete simplicial sets.

Higher spans. Following [5, Section 3.2], higher spans describe sequences of
adjacent spans in a category equipped with choices of the data necessary to “compose”
them, in the following sense.
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Definition 6.5. For n ∈ N, we let Spn be the poset category pictured below.

(0, n)

(0, n− 1) (1, n)

. .
.

(1, n− 1)
. . .

(0, 1) . .
. . . . (n− 1, n)

(0, 0) (1, 1) · · · (n− 1, n− 1) (n, n)

Sp forms a cosimplicial object in Cat where the coface map di : Spn−1 → Spn acts
componentwise via the usual

j 7−→

{
j + 1 if j ≥ i,

j if j < i,

and similarly the codegeneracy si : Spn+1 → Spn acts componentwise via the usual

j 7−→

{
j − 1 if j > i,

j if j ≤ i.

Equivalently, Sp : ∆→ Cat is the composite of the inclusion functor ∆→ Cat with
the twisted arrow category functor Cat→ Cat.

Definition 6.6. An n-span in a category C is a functor Spn → C.

Conceptually, an n-span describes a sequence of n adjacent spans and coherent
choices of “composite” spans for each connected subsequence of spans.

Example 6.7. For a category C, let SC be the simplicial set with n-simplices the
set of n-spans Sp → C, with simplicial structure maps induced by the cosimplicial
structure of Sp.

This means that the ith face map di forgets all objects of the span with an i in
either component, and then composes the remaining maps as needed, while the ith
degeneracy map si repeats the ith row and column with identities between them.

An inner span (in our usual sense) in the simplicial set SC consists of a p-span
and a q-span sharing an m-span as a face, and together containing a sequence of n
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adjacent 1-spans between their bottom objects. Below are two schematic examples of
basic inner spans in SC.

x0,3

x0,2 x1,3

x0,1 x1,2 x2,3

x0,0 x1,1 x2,2 x3,3

x0,3

x1,3

x0,1 x1,2 x2,3

x0,0 x1,1 x2,2 x3,3

In the basic inner span above left, consisting of the first and last faces of a 3-span, a
3-span filler requires the additional data of the top span making the resulting square
commute. This will always exist (albeit non-uniquely) if C has pullbacks (or more
generally if C is cofiltered, but this will not be enough to fill the other inner spans).

The example above right shows an inner span consisting of the faces {0, 1, 3} and
{1, 2, 3} in the 3-simplex. These two together contain all of the data of a 3-span
except for the object x0,2 and its maps

x0,3 → x0,2, x0,2 → x0,1, x0,2 → x1,2.

These can be filled by taking x0,2 to be the pullback of x0,1 and x1,2, with the map
x0,3 → x0,2 induced by the universal property of the pullback, which also shows
that the resulting upper square commutes. These fillers cannot be expected to be
unique, however, as for instance this inner span has a different filler given by setting
x0,2 := x0,3.

More generally, a basic inner span consisting of the ith and jth faces of a potential
n-span, with j − i > 1, contains all the data of an n-span except for the object xi,j
and the four maps into and out of it, as below.

xi−1,j+1

xi−1,j xi,j+1

xi−1,j−1 xi+1,j+1

xi,j−1 xi+1,j

xi+1,j−1

To fill this data to an entire n-span, we must specify an object xi,j and four maps
filling the diagram above into a 2 by 2 commuting grid. Generalizing both of the
previous examples, we can take xi,j to be a pullback xi,j−1 ×xi+1,j−1

xi+1,j, the two
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maps out of xi,j the canonical projections to xi,j−1 and xi+1,j , and the two maps into
xi,j those induced by

xi,j−1 ← xi−1,j−1 ← xi−1,j → xi+1,j and xi,j−1 ← xi,j−1 → xi+1,j+1 → xi+1,j

respectively using the universal property of the pullback, which also ensures that the
left and right squares of the grid commute. The universal property also guarantees
that the top square commutes, as either side satisfies the defining property of the
unique map xi−1,j+1 → xi,j induced by xi,j−1 ← xi−1,j+1 → xi+1,j.

This shows every basic inner span has a filler to an n-simplex, so if C has pullbacks
SC is inner span complete by Theorem 4.4. Note that SC is not generally span
complete even when C has pullbacks, as in the above if j = i + 1 the object xi,i+1

cannot be recovered by a pullback, though it can be recovered in a similar fashion
as xi,i × xi+1,i+1 if C has products, in which case SC is span complete again by
Theorem 4.4.

In [5, Section 3.2], C is further assumed to be gaunt7, so that pullbacks are
strictly unique. This implies the relevant coherences for the resulting fillers, and the
difficulties of making SC into a compository when pullbacks are not strictly unique
are also sketched. Inner span completeness provides a different description of the
structure of SC which allows for such non-uniqueness of inner span fillers, but in
return does not describe the up-to-isomorphism coherence properties of pullbacks that
the compository structure captures when the pullbacks are unique. A more complete
description of this particular structure on SC when C has pullbacks remains open.

Moreover, [5, Example 3.2.5] shows that when C is the category with a single
commuting square of morphisms, SC is not a quasicategory, providing another example
of how span filling properties are strictly weaker than horn filling.

Gleaves on FinSet. Many of the known examples of compositories such as the
simplicial set of finite metric spaces above —with the higher span example as a
notable exception—are in fact (augmented) symmetric simplicial sets in a natural
way, or equivalently gleaves on FinSet [5, Section 5]. While we will not need the
precise definition here, we only note that every gleaf on FinSet is in particular a span
complete simplicial set: the filler condition for basic coface squares (3.6) holds for
i = 0 and j = n as part of the algebraic structure carried by a gleaf (as it already
does for compositories), and this is enough to prove the filler condition in general by
symmetry.

Our final two examples are particular instances of this general construction of
span complete simplicial sets from gleaves.

Example 6.8 (Joint probability distributions). We now sketch the main example
of [5] coming from probability theory. Fix a finite set S, representing the set of

7A category is gaunt if the only isomorphisms are the identities.
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possible values of some random variables; the finiteness assumption on S is merely
for technical simplicity. Then define an n-simplex to be a joint distribution of (n+ 1)
many S-valued random variables, i.e. a probability measure on the cartesian product
S×(n+1). Taking the pushforward of this measure along a projection to a subproduct
is then what defines the faces of such a simplex, and similarly taking the pushforward
along the diagonal S → S × S is involved in the definition of the degeneracy maps,
which intuitively amounts to duplicating the value of a variable. We thus obtain the
desired simplicial set in which the n-simplices are the joint distributions of n + 1
random variables. The fillers of (6.1) then acquire the following significance. Suppose
that we are given a set of n+ 1 random variables and write it as the union of subsets
containing p + 1 and q + 1 random variables, respectively. Then if we are given a
joint distribution of the p+ 1 variables and a joint distribution of the q + 1 variables,
and if these two agree when marginalized to the subsubset of variables contained in
both subsets, then there is joint distribution for all n+ 1 variables which marginalizes
to the given ones. And indeed there is a distinguished choice for this overall joint
distribution: we can make all variables contained in the first subset but not the
second to be conditionally independent of those in the second set but not the first,
conditionally with respect to the variables contained in both, which is exactly the
conditional product that we also used in [2, Example 2.8]. In particular, this simplicial
set is span complete.

However, fillers for (inner or outer) 3-horns do not generally exist as soon as
|S| ≥ 2. For then, we can consider without loss of generality S = {0, 1}, and four
random variables A,B,C,D where D = 0 with probability 1, and the other three
such that they take either value with probability 1/2, but are correlated such that
they take opposite values with probability 1. This defines joint distributions of ABD,
ACD and BCD, thereby forming a 3-horn in the corresponding symmetric simplicial
set. Similar to the examples in the proof of [2, Theorem 4.7], this 3-horn is such
that already its missing 2-face cannot be filled: there is no joint distribution of ABC
which would make all three variables take opposite values with probability 1, since
there is not even a single assignment of values in S which would assign opposite
values to every pair.

We also refer to [6, Section 12], where a more general construction of gleaves of
this type has been proposed. This in particular applies in the context of infinite S
and measure-theoretic probability.

Example 6.9 (Relational databases). A closely related example comes from the
theory of relational databases [16]. Again fixing a set S for possible values, which now
plays the role of the set of possible values for the entries in a table of a database. In
this case, an n-simplex is defined to be a subset of S×(n+1) (rather than a probability
measure as in the previous table). The idea is to interpret the individual factors of
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S×(n+1) as the columns in a table of a database, so that the subset is the set of rows
that appear in the table.

These simplices assemble into a simplicial set, where the face maps are given by
projecting a subset to a subproduct (deleting one or more columns in a table and
eliminating duplicates), and the generating degeneracy maps are defined again in
terms of pushforward along the diagonal S → S × S (duplicating a column). More
abstractly, this simplicial set can be described as the composite functor

∆op FinSetop SetS(−)

Moreover, it is in a canonical way a symmetric simplicial set with respect to permu-
tation of the factors.

This simplicial set has properties closely analogous to the previous example. In
particular it has fillers for all inner spans, which we now describe with the database
terminology. We thus assume that A ⊆ Sp+1 and B ⊆ Sq+1 are tables in a database
with p + 1 and q + 1 columns respectively, and that they have m + 1 columns in
common, so that dropping the other columns from either table results in the same
(m+ 1)-column table (after removing duplicates). Then there is a maximal way to
create a table with n+ 1 columns, where n = p+ q−m, given by using all conceivable
rows whose restriction to the p+ 1 attributes of A occurs in A and whose restriction
to the q + 1 attributes of B occurs in B. This is known as the join of A and B [16,
Section 2.4].

Therefore the simplicial set is indeed span complete. In particular, we also obtain
fillers for all acyclic configurations by Theorem 5.9. This is a classic result of relational
database theory [16]8.
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