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ENRICHMENT OF ALGEBRAIC HIGHER CATEGORIES

BRANDON SHAPIRO

Abstract. We provide a definition of enrichment that applies to a wide variety of categorical
structures, generalizing Leinster’s theory of enriched T -multicategories. As a sample of newly
enrichable structures, we describe in detail the examples of enriched monoidal categories and
enriched double categories, with a focus on monoidal double categories as broadly convenient
bases of enrichment.
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Introduction

In the beginning, V -enriched categories were defined for V a monoidal category (see for instance
[Kel05]), showing that the compositional structure of a category could be expressed in settings
where the collection Hom(a, b) of arrows from a to b is not (necessarily) a set but rather some other
type of mathematical object.

Definition. For (V,⊗, I) a monoidal category, a V -enriched category consists of

• a collection A of objects
• for each a, b ∈ A an object Hom(a, b) of V
• for each a ∈ A a morphism I → Hom(a, a) in V

• for each a, b, c ∈ A, a morphism Hom(a, b)⊗Hom(b, c)→ Hom(a, c) in V

subject to certain unit and associativity equations.

This is useful not only for including in category theory the common feature of a category’s
Hom-sets admitting the extra structure of a group or space or category or what not, but also for
allowing the defining features of categories to apply in settings that would otherwise seem entirely
unrelated: famously, Lawvere showed that a slight generalization of metric spaces can be defined
as simply categories in which Hom(a, b) is not a set but a non-negative real number representing
the distance from a to b.
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Since then, the theory of enrichment has expanded in three directions, each seeking to answer
one of the following questions:

(1) What structures, in lieu of categories, can be enriched?
(2) What structures, in lieu of monoidal categories, can a structure be enriched in? In other

words, what are the possible bases of enrichment?
(3) What are the different ways in which one fixed structure can be enriched in another fixed

structure?

To the first question, many higher category structures such as n-categories and multicategories
can be enriched in a symmetric monoidal category V , replacing the sets of top-dimensional cells
with fixed boundary with objects of V .1 Leinster’s theory defines enriched T -multicategories for
any cartesian monad T (see Section 2 for the definition of T -multicategories). In this paper, we
define enriched T -algebras for any familial monad T , which includes enrichment of most algebraic
categorical structures in common use (see Section 1 for the definition of a familial monad).

We take the position that the fundamental idea of enrichment is varying the nature of the upper-
dimensional parts of any algebraic structure. The algebraic structures we are interested in are
higher categories of various flavors, and in this framework any applicable structure is regarded
as a type of higher category. Higher categories are typically defined using sets and functions,
which can be replaced by objects and morphisms of a different category or category-like structure.
Leinster’s theory applies to a wide variety of higher categories which can be modeled as generalized
multicategories: this includes categories, plain multicategories, and virtual double categories, but
not n-categories, monoidal categories, or double categories. These latter three structures are among
those we highlight as examples of enrichable familial monad algebras.

To the second question, categories enriched in a multicategory are defined in [Lam69], simi-
lar to classical enrichment but with the identity and composition morphisms replaced by 0-to-1
and 2-to-1 morphisms in a multicategory. Categories enriched in a bicategory are described in
[B6́7] (as “polyads”) and [BCSW83], among others. Leinster defines T -multicategories enriched
in T+-multicategories where T+ is a new cartesian monad built from T whose algebras are T -
multicategories (see Appendix A for a definition of T+). In this paper, we define T -algebras
enriched in any T -multicategory V . In the same way as Leinster’s theory (which it generalizes
only slightly), this type of enrichment base *feels* to be the most general possible structure with
which T -algebras can be enriched with the associativity equations holding up to equality. It would
be difficult to precisely state, let alone prove, this kind of statement, but we hope that like with
Leinster’s theory this feeling comes to be shared by many others.

There are also “weak” analogues of enrichment, such as categories enriched in a monoidal bicat-
egory where the usual equations hold up to higher cells (called “enriched bicategories” in [GS16]).2

While it is not the main focus of this paper, as it tends to work in mostly the same way across
the various other types of enrichment definitions, we very briefly discuss in Example A.14 how one
could weaken our definitions of enrichment so that the relevant equations only hold up to higher
isomorphisms.

1We have been unable to find references for enriched algebraic n-categories, though the idea is far from new.
Enriched multicategories in this sense are discussed in [EM09, Section 2] among others, and specialize Leinster’s
earlier definition of enriched multicategories.

2Note that this is orthogonal to the previous notion of categories enriched in a bicategory. The former treats
monoidal categories as 1-object bicategories while the latter treats them as locally discrete bicategories.
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While T -multicategories are the most general type of enrichment base for T -algebras we consider,
we also emphasize a range of specializations of T -multicategories. We describe (in Section 2) T -
multicategories which are trivial, discrete, and/or representable relative to some restriction of the
cell shapes in T -algebras, and discuss how enrichment in these settings can preserve additional
structure and/or recover existing notions of enrichment in the literature. For example, for fc the
free category monad on graphs:

• fc-multicategories are virtual double categories
• representable fc-multicategories are pseudo-double categories
• 0-discrete representable fc-multicategories are bicategories
• 0-trivial fc-multicategories are plain multicategories
• 0-trivial representable fc-multicategories are monoidal categories

A recurring theme in our examples is the prevalence of monoidal double categories as a con-
venient base of enrichment. Double categories arise as the representable fc-multicategories, and
monoidal double categories are the representable fmc-multicategories for fmc the free monoidal
category monad on graphs (see Example 1.2), so monoidal double categories are natural bases of
enrichment for categories and monoidal categories. Monoidal double categories also provide exam-
ples of Leinster’s fm-multicategories for fm the free multicategory monad (Example A.13). We
also show in Example 2.32 and Example 3.10 that monoidal double categories are a natural base for
a certain form of enrichment of double categories. We list again the various structures enrichable
in a monoidal double category in Appendix B.

To the third question, a major emphasis in this paper is placed on the relevance, when enriching
structures more complex than categories, of how much low-dimensional information in an enrich-
able structure should exist or be preserved in the enrichment base. In our recurring example, we
emphasize this choice when enriching monoidal categories in a monoidal double category V : the
underlying monoid structure on the objects can be preserved strictly, weakly, or laxly in V , with
only lax preservation guaranteed by the most general definition of enrichment.

Unlike many mathematical texts which introduce definitions in order to prove theorems, in
this paper we prove results in order to introduce definitions. We believe that a general notion of
enrichment for a variety of higher category structures is of independent interest, and so the provable
claims we make are either to support the existence of the elements of that definition or show that
in examples the definition recovers existing forms of enrichment. We leave the development of
more theory for these enriched structures (along the lines of [Kel05]) to future work, though we
have shown in [Sha22] that in many circumstances the category of T -algebras enriched in the
cartesian monoidal category of T ′-algebras is equivalent to the Eilenberg-Moore category of yet
another familial monad, which implies various convenient properties. We describe in [SS21] (joint
with David Spivak) several examples of structures enriched in a monoidal double category, in the
settings of machine learning and probability.

The novel technical advances presented here are admittedly modest. Most of the supporting
definitions we include (such as T -multicategories, triviality, discreteness, representability, T+) are
covered or alluded to in [Lei04] or [Lei99], as are many of the supporting propositions. Our main
contribution is to extend to all algebraic higher categories Leinster’s definition of enrichment for
generalized multicategories by incorporating the idea of higher and lower dimensional cell-shapes
via a generalized construction of “indiscrete” higher dimensional structures from lower dimensional
structures, and describing in detail how it works for various new examples (most notably monoidal
categories and double categories). Our hope is that this self contained presentation of enrichment,
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leveraging recent approaches to analyzing familial monads and covering old and new examples, will
provide a useful reference for a wide variety of enrichment practitioners.

Notation. 1 denotes the terminal category, while 2 denotes the category 0→ 1.

For C a small category, Ĉ denotes the category SetC
op

of presheaves on C. ∗ denotes the terminal

presheaf in Ĉ.
All of the familial monad algebras and enriched structures we describe here will be small in the

set theoretic sense, which we will not specify each time. Large enriched structures can be defined
similarly without much additional work, but we do not discuss that any further.

Acknowledgements. We would like to thank David Spivak for many enlightening conversations,
and Marcelo Aguiar for sharing his previous work on duoidal enrichment of monoidal/2-/double
categories ([Agu]). This material is based upon work supported by the Air Force Office of Scientific
Research under award number FA9550-20-1-0348.

1. Familial Monads

Definition 1.1. A familially representable (or simply familial) monad T on a presheaf category Ĉ
is a cartesian monad with functor part

TXc =
∐

t∈T (1)c

Hom
Ĉ
(T [t], X)

for each c in C, where T (1) : Cop → Set and T [−] : ∫ T (1)→ Ĉ.

A T -algebra is a presheaf A on Ĉ equipped with a map h : TA → A that, for each t ∈ T (1)c,
sends a : T [t]→ A to h(a) ∈ Ac. Hence h can be viewed as “composing” the arrangement of cells
a into a single c-cell in A. Hence we consider t ∈ T (1)c as an “operation” outputting a c-cell, and
T [t] as its “arity.”

The monad structure on T can be summarized by operations η(c) ∈ T (1)c for each c in C, and
µ(t, f) ∈ T (1)c for each t ∈ T (1)c and f : T [t]→ T (1), with

T [η(c)] ∼= y(c) and T [µ(t, f)] ∼= colim
x∈T [t]

T [f(x)],

satisfying naturality, unit, and associativity equations (see [Sha21, Theorem 2.2]).

Example 1.2. Consider the category G1 = 0
s

⇒
t
1. Ĝ1 is the category of graphs X , where X0 is

the set of vertices and X1 the set of edges, each edge equipped with a source and target vertex. The

standard example of a familial monad is the free category monad fc on Ĝ1, which is the identity
on vertices and has arities given by the walking length n path graph for all n ≥ 0 (see [Sha21,
Example 1.2] for more details).

Our main example of a familial monad, however, will be the free monoidal category monad fmc

on graphs.3 Combining in a sense (which can be made precise in several different ways) the free
monoid monad on sets and the free category monad on graphs, we define fmc via its representing
family (fmc(1), fmc[−]) as follows:

• fmc(1)0 = N, and fmc(1)1 =
∐
n∈N

N
n, with both the source and target maps fmc(1)1 →

fmc(1)0 sending (n,m1, ...,mn) to n

3To be clear, this is the free strict monoidal category monad. There are also free weak and/or symmetric monoidal
category monads on graphs, but we find this one the most illustrative for our definitions of enrichment.
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• fmc[n] is the graph with n vertices and no edges, and fmc[n;m1, ...,mn] is the disjoint union
of walking paths of length mi for 1 ≤ i ≤ n. fmc[n] includes into this graph as the n source

vertices or as the n target vertices, completing the definition of fmc[−] : ∫ fmc(1)→ Ĝ1

• The monad structure on the functor

fmc(X)0 =
∐

n∈fmc(1)0

Hom(fmc[n], X), fmcX1 =
∐

(n;m1,...,mn)∈fmc(1)1

Hom(fmc[n;m1, ...,mn], X)

is described by identifying the operations 1 ∈ fmc(1)0 and (1; 1) ∈ fmc(1)1 with identities
on the 0-cells and 1-cells of X , and by observing that replacing each edge in T [n;m1, ...,mn]
with a disjoint union of paths in a compatible way (as in, adjacent edges are plugged with
the same number of disjoint paths) yields a new, usually larger disjoint union of usually
longer paths.

fmc-algebras are precisely (small) strict monoidal categories, in which objects can be composed
as in a monoid and arrows can be composed either from paths, as in a category, or from potentially
disjoint pairs as in a monoidal category. The unique operations for each disjoint union of paths of
any length witness that any such arrangement has a unique composite, which encodes the strict
unit, associativity, and interchange equations of a monoidal category.

Example 1.3. Let fdc denote the free double category monad on double graphs, which are
presheaves over G1 × G1. In a double graph X , X0,0 is the set of vertices, X1,0 is the set of
horizontal edges, X0,1 is the set of vertical edges, and X1,1 is the set of squares between parallel
pairs of horizontal and vertical edges. Each double graph has a “horizontal underlying graph” and
a “vertical underlying graph” given by the vertices and horizontal or vertical edges, respectively.

fdc acts as the free category monad on both (X0,0, X1,0) and (X0,0, X0,1), and inserts a square
for every n × m grid of squares in X . In other words, fdc(1)i,j = N

i+j , fdc[() ∈ fdc(1)0,0] is a
vertex, fdc[n ∈ fdc(1)1,0] is the string of n composable horizontal edges, fdc[m ∈ fdc(1)0,1] is the
string of m composable vertical edges, and fdc[n,m] is the walking n×m grid of squares.

Example 1.4. Recall that a duoid is a set with two monoidal structures (and no assumed com-
patibility between them).

A duoidal category is a categoryM equipped with two monoidal structures (⋄, I) and (⋆, J) such
that J : 1 → M and ⋆ :M×M → M are lax monoidal functors with respect to (⋄, I) and the
coherence transformations are (⋄, I)-monoidal. (We will assume the monoidal structures are strict,
but there is an analogous definition when they are weak.)

This lax monoidality means that, for instance, there is a not-necessarily-invertible morphism
I → J , a morphism J ⋄ J → J , a morphism I → I ⋆ I, and the interchange equation holds only up
to a morphism

(a ⋆ b) ⋄ (c ⋆ d)→ (a ⋄ c) ⋆ (b ⋄ d).

Duoidal categories are algebras for a familial monad fduc on graphs, where fduc(1)0 is the free
duoid on one object with arities sending each word to its set of variables, and fduc(1)1 is the set
consisting of pairs of words in the free duoid on N such that the second word is reachable by a finite
sequence of the basic non-invertible duoidal structure maps of the four forms above. The arity of
such a pair is the disjoint union of string graphs whose lengths are given by the natural numbers
in the first word (which are the same as those in the second word, though perhaps in a different
order).
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1.1. Restriction of cell shapes. Some documented forms of enrichment for higher dimensional
structures include not just sets of lower dimensional cells, as in classical enriched categories, but
lower dimensional algebraic structures. Enriched 2-categories, for instance, could be defined as a
1-category with an object of some V for each pair of adjacent arrows, equipped with horizontal and
vertical identity and composite maps. To facilitate this sort of definition, we describe how to extract
these lower dimensional algebraic structures from a familial monad T and related constructions.

Definition 1.5. A subcategory D of C is a restriction of cell shapes if it is full and downward
closed, meaning that for any i : c′ → c in C, if c is in D then so is c′.

The goal of this definition is to codify the properties we will need for a meaningful distinction
between “lower dimensional” and “higher dimensional” cell shapes. Restrictions of cell shapes are
sometimes called cribles and are equivalent to functors C → 2 by taking the fiber over 0. We will
write u : D → C for the inclusion of such a subcategory.

There is an adjunction between Ĉ and D̂ where the right adjoint u∗ restricts a presheaf on C to
its d-cells for d in D, and the left adjoint u! sends a presheaf on D to the presheaf on C with no
c-cells for all c ∈ Ob(C)\Ob(D). We say a presheaf in the image of u! (meaning one with no c-cells

for c not in D) “arises from D̂.”

Example 1.6. u : G0 → G1 is a restriction of cell shapes, where G0 is the terminal category

containing the object 0 in G1. Ĝ0 is then the category of sets. u∗ sends a graph to its set of
vertices, and u! sends a set to the graph with that set of vertices and no edges.

Example 1.7. Generalizing the above example, an object of C is an endpoint object if it has no
non-identity outgoing morphisms. A collection of endpoint objects in C determines a restriction of
cell shapes given by the full subcategory of C on all of its other objects. An endpoint object is a
“top dimensional cell shape” in a higher category structure, such as the arrow in categories, the
n-cell in n-categories, and the n-to-1 arrow in a multicategory for all n.

Definition 1.8. A familial monad on Ĉ is D-graded for D a restriction of cell shapes if for all d in

D, t ∈ T (1)d, T [t] arises from D̂.

Proposition 1.9. Given a D-graded familial monad T on Ĉ, there is a familial monad TD on D̂
with TD(1) = u∗T (1) and

TD[−] : ∫ u
∗T (1)→ ∫ T (1)

T [−]
−−−→ Ĉ

u∗

−→ D̂).

Proof. This follows from the straightforward observation that for any X in Ĉ, TDu
∗X = u∗TX .

As u∗ is a right adjoint and u∗u!Y = Y for Y in D̂, this shows that TDY = u∗Tu!Y , so TD is the
transport of T along the adjunction u∗ ⊢ u!. �

Example 1.10. The monad fmc on Ĝ1 is G0-graded, as all of the arities of operations in fmc(1)0
have no edges. The monad fmcG0

is easily seen to be the free monoid monad on sets, which we
write as simply fmc0.

u∗ also has a right adjoint u∗ : D̂ → Ĉ, where u∗Xc = Hom
D̂
(u∗y(c), X). When d is in D,

u∗Xd
∼= Xd, and otherwise Xc has a single c-cell in every position where a c-cell could possibly be

inserted into u∗X (that is, for each map u∗y(c)→ u∗X).

Proposition 1.11. When T is D-graded, u∗ : Ĉ → D̂ and u∗ : D̂ → Ĉ both lift to functors between
T -algebras and TD-algebras.
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Proof. As noted in the proof above, for a T -algebra X we have TDu
∗X = u∗TX , so the TD-algebra

structure on u∗X is given by applying u∗ to the structure map TX → X and the algebra equations
follow easily.

Given a TD-algebra Y , we need to define a structure map Tu∗Y → u∗Y , which for each c in C
unwinds to ∐

t∈T (1)c

Hom
Ĉ
(T [t], u∗Y )→ (u∗Y )c.

Applying the adjunction u∗ ⊢ u∗ equates this map with one of the form
∐

t∈T (1)c

Hom
D̂
(u∗T [t], Y )→ (u∗Y )c.

When c is in D, each u∗T [t] = TD[t] and (u∗Y )c = Yc, so this map can be chosen to be the c-
component of the of the TD-structure map on Y . When c is not in D, then any map u∗T [t] → Y

precomposes with maps of the form TD[i
∗t] = u∗T [i∗t] → u∗T [t] for i : d → c in C and d in D.

This composite map TD[i
∗t] → Y can be composed by the algebra structure into a d-cell in Y ,

and together (ranging over the different possible such i) these cells in Y form the boundary of a
potential c-cell in u∗Y . But there is exactly one c-cell in u∗Y with that boundary, so the composite
of the map u∗T [t]→ Y in (u∗Y )c is uniquely determined. The algebra equations for this structure
map then derive from those for the TD-algebra Y and the uniqueness of c-cells in u∗Y relative to
their boundaries. �

Remark 1.12. While u∗ as a functor between categories of algebras also has a left adjoint, it is not
given by u! on the underlying presheaves unless there is no t ∈ T (1)c for c not in D such that T [t]

arises from D̂. Then for each such t and map T [t]→ Y , a c-cell must be added to u!Y in order to
define an algebra structure.

Example 1.13. u∗ : Ĝ0 → Ĝ1 sends a set to the indiscrete graph on that set, with a single edge
in each direction between any pair of vertices. As functors on algebras for fmc and fmc0:

• u∗ sends a strict monoidal category to its underlying monoid of objects
• u∗ sends a monoid to the indiscrete category on its underlying set, with the unique monoidal

structure induced by the monoid structure on the objects. In particular, for the unique
morphisms a→ b and a′ → b′, there is a unique morphism a⊗ a′ → b⊗ b′, so the choice of
their product is determined.

Example 1.14. Similarly, fduc0 is the free duoid monad on sets, the restriction functor u∗ on
algebras sends a duoidal category to its underlying duoid, and u∗ sends a duoid to the indiscrete
category on its objects, which inherits a canonical duoidal structure (albeit one that arises from a
symmetric monoidal groupoid).

Example 1.15. Let G1∨G1 denote the full subcategory of G1×G1 spanned by (0, 0), (1, 0), (0, 1).
The free double category monad fdc on double graphs is (G1 ∨G1)-graded, where presheaves on
G1∨G1 are graphs with a single set of vertices but two distinct types of edges. This is because the
operations in fdc(1) that output vertices or edges of either type do not have any squares in their
arities, which are all strings of edges. The restriction of fdc to G1 ∨G1 from Proposition 1.9 is
a monad whose algebras are pairs of categories with the same objects, and the restriction functor
on algebras merely forgets the squares of a double category retaining only the underlying pair of
categories.
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Example 1.16. G1 ×G1 also has a full subcategory G1 × 0 spanned by (0, 0), (1, 0), isomorphic
to G1. For this subcategory the “vertical” restriction of fdc is the free category monad on graphs,
and the restriction functor on algebras sends a double category to its vertical category. Given a
category A, u∗A is the double category with a unique horizontal arrow between each pair of objects
and a unique square between each pair of (now vertical) arrows in A.

2. T -Multicategories

We now define T -multicategories and discuss their relationship with T -algebras. More details

and references can be found in [Lei99] and [Lei04]. Fix a familial monad T on Ĉ.

Definition 2.1. A T -multicategory V = (V0, V1) is a span in Ĉ of the form

V1

TV0 V0

dom cod

equipped with unit and multiplication maps (fixing X and TX) from the following two spans

V0

TV0 V0

η

TV1 ×TV0
V1

TV0 V0

µ◦T (dom)◦π1 cod◦π2

satisfying unit and associativity equations.

Unwinding this definition, a T -multicategory consists of:

• V0 in Ĉ, whose elements in (V0)c can be regarded as c-cells
• for each c in C and t ∈ T (1)c, cells (in (V1)c) resembling “arrows” from a map T [t]→ V0 to
a c-cell in V0, which we call t-arrows
• for each i : c′ → c in C and t ∈ T (1)c, every t-arrow restricts along i to a T (1)it-arrow.

There is hence a canonical map V1 → T (1) in Ĉ sending all t-arrows to t ∈ T (1)c
• for each c in C and a ∈ (V0)c, an identity η(c)-arrow from a to a

• for each c in C, t ∈ T (1)c, f : T [t] → T (1), t-arrow α, and β : T [t] → V1 commuting over
T (1), a µ(t, f)-arrow from the combined domains of β in X to the codomain of α
• these identities and composites satisfy unit and associativity equations

For convenience, for c in C we write V c for (V0)c and for t ∈ T (1)c we write V t for the subset of
(V1)c containing the t-arrows. V can in fact be regarded as a presheaf over a category C+T which

is an algebra for a familial monad T+ on Ĉ+T , which we discuss in Appendix A.

Proposition 2.2. For u : D → C a restriction of cell shapes, when T is D-graded a T -multicategory
V = (V0, V1) restricts to a TD-multicategory u∗V = (u∗V0, u

∗V1).

Proof. This is a straightforward observation from the unwinded definition above, as if T is D-graded
the identities and composites of d-cells in V and t-arrows for d in D and t ∈ T (1)d are unaffected
by forgetting the higher dimensional cell shapes and operations. �

Example 2.3. Recall (from, for instance, [Lei99, Section 2.1]) that a fc-multicategory is what is
sometimes called a virtual double category: a structure resembling a double category but without
horizontal composition of horizontal morphisms or squares. Instead of horizontal composition,
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squares can have a string of adjacent horizontal morphisms in the top row as in (1) on the right,
and many such horizontally adjacent squares can be composed vertically above a single square: in
(1), the arrangement on the left composes into a 3-to-1 square as on the right:

(1)

· · · · · · · ·

· · · ·

· · · ·

/ / / / / /

/ /

/ /

As an fc-multicategory, the 0- and 1-cells are the objects and horizontal morphisms of the virtual
double category, the η(0)-arrows are the vertical morphisms, the n-arrows for n ∈ fc(1)1 are the
n-to-1 squares, and the composites and identities agree with the composition and vertical identities
in a virtual double category. Under both descriptions of this structure, the unit and associativity
equations are the same.

Remark 2.4. To make the choice of directions unambiguous when there are many different types
of arrows present in a T -multicategory, we will always say that the t-arrows point in the “forward”
direction. So in a virtual double category, the vertical morphisms and n-to-1 squares all point in
the forward direction in this terminology.

Example 2.5. An fmc-multicategory consists of the following:

• A graph V0 with vertex set V 0 and edge set V 1

• For each n ∈ fmc(1)0, a set V n of arrows from a list of n vertices in V 0 to a single vertex.
These arrows resemble the many-to-1 arrows in a multicategory

• For each (n;m1, ...,mn) ∈ fmc(1)1, a set V n;m1,...,mn of arrows from an arrangement of
paths of length mi in V0 for 1 ≤ i ≤ n to a single edge. These arrows have source and
target n-to-1 arrows in V n. When n = 1, these resemble the many-to-1 squares in a virtual
double category, and in general we call them “many-to-1 multi-squares”

• For each x ∈ V 0, an identity arrow from x to x in V 1

• For each edge x ∈ V 1, an identity arrow from x to x in V 1;1

• Compositions of many-to-1 arrows between vertices that form a multicategory
• Arrows from arrangements of paths to an edge have compositional structure similar to that

of a virtual double category, which respects the multicategory structure on their sources
and targets

In other words, it consists of a plain multicategory, a set of edges between the objects of that
multicategory, and a virtual-double-category-like structure on those edges. When those edges have
the structure of a category that extends to the “squares,” this looks like the double multicategories
of [CGR14, Definition 3.10].

Given such an fmc-multicategory V , u∗V is its underlying multicategory on the vertices V 0,
which is precisely a fmc0-multicategory ([Lei04, Example 4.2.7]).

Example 2.6. An fdc-multicategory V consists of:

• A double graph V0

• A virtual double category Vh whose underlying graph is the horizontal underlying graph of
V0

• A virtual double category Vv whose underlying graph is the vertical underlying graph of V0
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• “(n,m)-arrows” from an n×m grid of squares in V0 to a single square in V0, whose vertical
source and target are squares in Vh and whose horizontal source and target are squares in
Vv

• Identities and composites of these 3-dimensional arrows analogous to those in a virtual
double category, respecting the identities and composites in Vh, Vv and satisfying the usual
unit and associativity axioms

It would also make sense to call this a “virtual triple category.”

We now define T -multifunctors and transformations between them.

Definition 2.7. A T -multifunctor is a map of spans determined by maps on V0 and V1, which
commutes with identities and composites.

Concretely, for T -multicategories V, V ′, the map of spans amounts to maps V c → V ′c and
V t → V t natural in c and t.

Definition 2.8. For T -multifunctors F,G : V → V ′, a T -multinatural transformation (or simply
transformation) is a natural assignment of, for all t-arrows in V from a : T [t] → V0 to b ∈ V c, a
t-arrow in V ′ from Fa : T [t] → V0 → V ′

0 to Gb ∈ V ′c. Here natural means that these arrows are
closed under precomposition with arrows under F and postcomposition with arrows under G.

2.1. Trivial T -multicategories. In Section 3, we define T -algebras enriched in a T -multicategory
V . In order to recover the classical definitions of enrichment of categories and other fundamental
categorical structures, we describe in the next few subsections various specializations of the notion
of T -multicategory that recover more familiar bases of enrichment, such as monoidal categories.
This process is a generalization of [Lei99, Table 2.1], where we provide definitions of the condi-
tions “vertically discrete” (which we call 0-discrete), “vertically trivial” (which we call 0-trivial),
“representable,” and “uniformly representable” listed in that table for the case when T is familial.

When fc-multicategories are specialized to plain multicategories (see [Lei99, Example 2.1.1.v]),
it is assumed that the sets of objects (or in our terminology, vertices) and vertical arrows (here
0-arrows) have only one element. This reduces the dimension of the structure by allowing the set
of horizontal arrows (here I-cells), each of which has the unique object as its source and target, to
instead be treated like objects and the many-to-one squares (here n-arrows) like many-to-one arrows.
This process of imposing that there is only one cell and one arrow of certain lower-dimensional
shapes in a T -multicategory applies broadly to specializing T -multicategories to more classical or
classically-inspired bases of enrichment.

Definition 2.9. For u : D → C a restriction of cell shapes and T a D-graded familial monad on Ĉ,
a T -multicategory V is D-trivial if for each d in D, there is a unique d-cell and for each t ∈ T (1)d,
there is a unique t-arrow. When V is C-trivial, we say that V is simply trivial.

It is important to assume that T is D-graded, as otherwise for t ∈ T (1)d the arity T [t] could
contain c-cells for c not in D, so it would not be clear what the source diagram of the unique t-arrow
in a D-trivial T -multicategory should be.

Example 2.10. For the restriction G0 → G1, a G0-trivial fc-multicategory, which we call simply
0-trivial, has a unique 0-cell and η(0)-arrow. The only remaining pieces of data are the 1-cells and
n-arrows, which form the objects and n-to-1 arrows of a plain multicategory as discussed above.

Example 2.11. A 0-trivial fmc-multicategory is quite similar to a 0-trivial fc-multicategory. In
place of the n-to-1 squares in the latter that are interpreted as n-to-1 arrows in a plain multicategory,
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in a 0-trivial fmc-multicategory V the set V n;m1,...,mn of (m1, ...,mn)-to-1 multi-squares can be
interpreted as (m1 + · · · + mn)-to-1 arrows. Unlike the multi-arrows in a plain multicategory
however, the many 1-cells (interpreted as objects) are arranged arranged in n different rows rather
than 1, and such a multi-arrow can only be precomposed with multi-arrows into each domain
object such that the arrows into objects of the same row each have the same number of rows in
their domains.

Example 2.12. When u : D → C is a restriction of cell shapes away from a choice e = {ek} of end-

point objects (Example 1.7) and T is a D-graded familial monad on Ĉ, D-trivial T -multicategories
are similar to plain multicategories: the objects are ek-cells for all of the chosen endpoints ek in C,
and the many-to-1 arrows go from ek-cells typed according to the e-cells in T [t] to an ek′ -cell for
t ∈ T (1)ek′

.
We say T is finitary over e if T is D-graded and for all t ∈ T (1)e, T [t]e is finite. By [Lei04, Corol-

lary C.4.8], when T is finitary over e any symmetric multicategory forms a D-trivial T -multicategory,
albeit in a non-canonical way.

2.2. Discrete T -multicategories. For a T -algebra h : TA → A, there is a corresponding T -
multicategory MA given by the span

TA

TA A.

h

This T -multicategory has a single t-arrow from a to h(a) for each c in C, t ∈ T (1)c, and a : T [t]→ A,
with identities and composites uniquely determined by their domains.

This construction can be interpreted as replacing the algebraic structure ofAwith more geometric
“witnesses” in MA in the form of the unique arrow from a to h(a) for each composable arrangement
a : T [t] → A. The algebraic structure in MA is then comparatively simple, merely recognizing
that witnesses to a nested composition in A assemble into a witness of the corresponding total
composition.

T -multifunctors MA→ V , for A a T -algebra, tend to behave like lax functors out of A when A

is interpreted as a category-like structure.

Example 2.13. Given a strict monoidal category A, MA is the following fmc-multicategory:

• The vertices and edges are those of the underlying graph of A
• There is an n-to-1 arrow from a1, ..., an to b precisely when b = a1 ⊗ · · · ⊗ an
• There is an arrow from the paths

a1,1 → · · · → a1,m1
· · · an,1 → · · · → an,mn

to the edge b→ b′ precisely when b = a1,1 ⊗ · · · ⊗ an,1, b = a1,m1
⊗ · · · ⊗ an,mn

, and b→ b′

is the product of the composites of the paths
• Identities are given by the unique arrow from a to a, where a is any vertex or edge
• Each arrangement of paths has a unique outgoing arrow, which determines arrow compo-

sition. This composition is possible because of the algebra structure on A which ensures
every arrangement has a composite

A fmc-multifunctor from MA to V then consists of a vertex va of V for each object of A, and
n-to-1 cells from va1

, ..., van
to vb whenever b = a1 ⊗ · · · ⊗ an (and similar structure for paths of

morphisms). This is the sense in which this resembles a lax monoidal functor, as a statement like
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“vb = va1
⊗ · · · ⊗ van

” may not even make sense in V but there can be an arrow from a list of
objects to another object. Below we describe conditions on V such that these statements actually
do make sense.

However, fmc-multifunctors MA → MA′ precisely correspond to strict monoidal functors
A → A′, as the action on arrows ensures that the assignment on objects and morphisms respects
composition and products.

Just like the notion of triviality of a T -multicategory, T -algebras are characterized among T -
multicategories by a uniqueness condition on the arrows of V .

Definition 2.14. For u : D → C a restriction of cell shapes, a T -multicategory V is D-discrete if
for each d in D, t ∈ T (1)d, and a : T [t]→ V0, there is a unique t-arrow with domain a. When V is
C-discrete, we say that V is simply discrete.

The name “discrete” corresponds to Leinster’s notion of “vertically discrete” fc-multicategories,
emphasizing that the forward arrows to D-cells in a discrete T -multicategory only encode TD-algebra
structure (if there is any, unlike fc0 = id), rather than additional data.

Proposition 2.15. V is D-discrete if and only if u∗V ∼= MA for some TD-algebra A.

Proof. If V is D-discrete, u∗V1 is isomorphic to TDA, and it is easy to see that such a TD-
multicategory is isomorphic to one of the form MA, where A = u∗V0 and the codomain map

TDu
∗V0
∼= u∗V1 → u∗V0

provides the algebra structure. The converse is immediate from the definition. �

Example 2.16. An fmc-multicategory V is therefore discrete if it has the form MA for A a
monoidal category, and G0-discrete (or simply 0-discrete) if there is a monoid structure on its
vertices and it has only unique n-to-1 arrows from a1, ..., an to the product a1 · · · an.

2.3. Representable T -multicategories. A t-arrow could be interpreted as a witness to the fact
that its domain can compose into its codomain, as in the discrete T -multicategories, but in practice
they often resemble something more like “the composite of the domain maps into the codomain.”
We now make this latter interpretation precise by defining the corresponding condition on a T -
multicategory.

We now describe weaker conditions in which each a can be the domain of many t-arrows, but
with one or more still distinguished as witness(es) to composition.

Definition 2.17. In a T -multicategory V , for c in C, t ∈ T (1)c, and a : T [t] → V0, a universal
t-arrow for a is a t-arrow ha with domain a such that every t-arrow with domain a factors uniquely
as ha composed with an η(c)-arrow with domain cod(ha).

This definition, as well as the following one, should be compared with universal arrows in rep-
resentable multicategories as in [Her00], which resemble the arrows from a1, ..., an to a1 · · · an in a
discrete T -multicategory but in a setting where there may still be additional arrows out of the list
a1, ..., an, as in the classical underlying multicategory of a monoidal category.

Definition 2.18. For u : D → C a restriction of cell shapes, a T -multicategory V is D-representable
if:

• for each d in D, t ∈ T (1)d, and a : T [t]→ V0, a has a universal t-arrow
• universal arrows in u∗V are closed under composition
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V is furthermore uniformly D-representable if each such a is equipped with a choice of universal
t-arrow ha, closed under identities and composition. When V is (uniformly) C-representable, we
say that V is simply (uniformly) representable.

Note that identity arrows are automatically universal, and more generally universal arrows can
be interpreted as a generalization of isomorphisms for t-arrows in V . Uniformly representable T -
multicategories describe the situation of t-arrows corresponding to maps out of the composite of
the domain, while representable T -multicategories provide a weaker version of this picture where
an arrangement a can have multiple valid composites, though all must be isomorphic.

Proposition 2.19. A uniformly D-representable T -multicategory V induces a TD-algebra structure
on u∗V0.

Proof. For t ∈ T (1)d, h : TDu
∗V0 → u∗V0 composes a : T [t] → V0 into the codomain of ha,

and these compositions respect η and µ as the universal arrows ha are closed under identities and
composition. �

Example 2.20. As in [Lei99, Examples 2.1.1.i and 2.1.1.ii], an fc-multicategory V is representable
when there is a horizontal composition operation on 1-cells and squares making V into a pseudo-
double category, and uniformly representable when it is a strict double category. In the strict case,
the choice of universal n-arrows for each string of n adjacent 1-cells determines their composition,
while horizontal composition of n squares is induced by composing the codomain 1-cells in this
manner and then factoring the resulting n-to-1 square through the universal n-arrow out of the
domain 1-cells. When V is merely representable, any choice of universal n-arrow for each n adjacent
1-cells suffices to define the composition, which will be associative and unital up to (1-arrow)
isomorphism as the universal n-arrows out of a fixed choice of n adjacent 1-cells are unique up to
isomorphism.

Example 2.21. A uniformly representable fmc-multicategory is given by a strict monoidal double
category: all of the n-to-1 arrows from a1, ..., an to b are given by vertical morphisms a1⊗· · ·⊗an →
b, and all of the arrows from an arrangement of paths to an edge are given by squares from the
product of the composites of those paths to an edge.

A representable fmc-multicategory corresponds to a weak monoidal pseudo-double category,
where there may be many universal arrows out of a list of vertices a1, ..., an but all are canonically
isomorphic, with similar behavior for composites and products of edges.

Example 2.22. The double multicategories of [CGR14, Definition 3.10] don’t fit neatly into these
properties of a fmc-multicategory, because they are those which are “uniformly representable in
the category direction but not representable in the monoidal direction.” In other words, they admit
horizontal composition of 1-cells and multi-squares, but the multicategories of 0-cells and n-arrows,
and of 1-cells and (n; 1, ..., 1)-arrows do not arise from monoidal categories.

However, double multicategories are precisely the uniformly representable fm-multicategories for
fm the free plain multicategory monad on graphs with many-to-1 arrows. As double multicategories
are defined as categories internal to plain multicategories, this is a straightforward example of the
following characterization of (uniformly) representable T -multicategories.

Proposition 2.23. Uniformly representable T -multicategories are equivalent to categories internal
to T -algebras.

This claim is analogous to the same result equating representable plain multicategories and
monoidal categories in [Her00, Section 9]. The proof is entirely analogous, but we sketch the
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correspondence below. The relationship between T -multicategories and categories internal to T -
algebras (also called “T -structured categories”) is discussed further in [Lei04, Section 6.6].

Proof. Given a T -structured category (C0, C1), we can define its underlying uniformly representable
T -multicategory as follows:

• its c-cells are the same as C0

• for t ∈ T (1)c, its t-arrows from a : T [t]→ C0 to b ∈ (C0)c are the c-cells in C1 with source
the composite of a and target b

• identities and composites derive directly from the category structure on (C0, C1); as a
compatible arrangement of arrows corresponds to a c-cell in C1 from the composite of
a : T [µ(t, f)] → C0 to the composite of b : T [t] → C0, which can be composed in the
categorical (forward) direction with a t-arrow from the composite of b to another c-cell

• the distinguished universal arrows are the t-arrows given by the identities in C1 on the
composite of T [t]→ C0, which are closed under T -multicategory composition as identities
are closed under composition in an internal category

Conversely, given a uniformly representable T -multicategory V , we define its corresponding T -
structured category (C0, C1) by:

• C0 is precisely V0, consisting of the c-cells of V , which forms a T -algebra by Proposition 2.19
• C1 has c-cells given by the η(c)-arrows in V , with source and target c-cells in C0 defined as

the source and target of the arrow in V

• the T -algebra structure on C1 is defined as in Example 2.20, where a : T [t] → C1 is
composed by first composing its target t(a) : T [t] → C1 → C0, where the distinguished
universal arrow witnessing that composition composes with a in V into a t-arrow from a to
t(a).4 This t-arrow then factors through the universal arrow out of s(a) via an η(c)-arrow
which we regard as the composite of a

• identities are given by identity arrows in V

• composition is given by composition in V

�

Representable T -multicategories are equivalent to a weaker analogue of T -structured categories.
This requires redefining the latter as algebras for a monad analogous to T on the 2-category of
Cat-valued presheaves on C. T -structured categories are the strict algebras for this 2-monad, while
pseudo-algebras provide a notion of weak T -structured categories (as discussed in [Lei04, Section
6.6]) which are equivalent to representable T -multicategories. When T is the free monoid monad,
this recovers the equivalence of monoidal categories and representable multicategories of [Her00,
Section 9].

Example 2.24. A uniformly representable fdc-multicategory is by Proposition 2.23 a strict triple
category, and a representable fdc-multicategory is a triple category which is weak in the horizontal
and vertical directions, though strict in the forward direction.

Definition 2.25. For E → D a further restriction of cell shapes, a T -multifunctor between D-
representable T -multicategories is E-strong if it preserves universal arrows when restricted to E , and
a T -multifunctor between uniformly D-representable T -multicategories is E-strict if it preserves the

4The notation t(a) means the target of a; not to be confused with the operation t ∈ T (1)c. We do not believe
this unfortunate overload of notation occurs anywhere else in this paper.
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distinguished universal t-arrows ha when restricted to E . We say such a T -multifunctor is simply
strong (resp. strict) when it is D-strong (resp. D-strict).

Example 2.26. For V, V ′ weak monoidal pseudo-double categories, general fmc-multifunctors
V → V ′ correspond to lax monoidal lax double functors, while strong fmc-multifunctors correspond
to strong monoidal pseudo-double functors. When V, V ′ are strict (in both senses), strict fmc-
multifunctors correspond to strict monoidal double functors.

Meanwhile, 0-strong (resp. 0-strict) fmc-multifunctors look like lax monoidal lax double functors
which are strong (resp. strict) monoidal on objects.

2.4. Triviality plus representability as extra structure. The ultimate specialization of fc-
multicategories from [Lei99, Table 2.1] is the combination of “vertically trivial” and “(uniformly)
representable,” which recovers (strict) monoidal categories and, ultimately, the classical definition of
enriched categories. The combination of these two conditions generally produces lower-dimensional
data (by D-triviality) with extra algebraic structure (from representability) that often recovers
bases of enrichment already present in the literature.

Example 2.27. Completing the table in [Lei99, Table 2.1], a (uniformly) representable 0-trivial
fc-multicategory is a (strict) monoidal category, and a (uniformly) representable 0-discrete fc-
multicategory is a bicategory (2-category).

Example 2.28. A 0-trivial (uniformly) representable fmc-multicategory is a category with two
compatible (strict) monoidal structures, which by a standard Eckmann-Hilton type argument is
the same as a braided (strict symmetric) monoidal category. A 0-discrete representable fmc-
multicategory is analogously to a monoidal bicategory which is strict monoidal on objects, and a
uniformly representable 0-discrete fmc-multicategory corresponds to a strict monoidal 2-category.

Example 2.29. When u : D → C is a restriction of cell shapes away from a choice e of endpoint

objects (Example 1.7) and T is a D-graded familial monad on Ĉ, D-trivial (uniformly) representable
T -multicategories are equivalent to a (strict) (T, e)-structured category in the sense of [Sha22,
Section 8.1]. Again using [Lei04, Corollary C.4.8], when T is finitary over e this includes (albeit
non-canonically) any symmetric monoidal category.

Example 2.30. An example of a restriction of cell shapes away from an endpoint object is G1∨G1

inside G1 ×G1, and a (G1 ∨G1)-trivial representable fdc-multicategory is a weak triple category
with a unique object, vertical morphism, horizontal morphism, forward morphism, vertical-forward
square, and horizontal-forward square. What remains are the vertical-horizontal squares and the
cubes, which form the objects and morphisms of a category. This category has two weak monoidal
structures given by horizontal and vertical composition which have isomorphic units and satisfy
the interchange law, so by an Eckmann-Hilton type argument the two monoidal structures agree
up to isomorphism and the resulting monoidal category is braided. Similarly a (G1 ∨G1)-trivial,
uniformly representable fdc-multicategory is a category with two strict mooidal structures satisfying
interchange, resulting in a strict symmetric monoidal category.

Example 2.31. If we relax the definition of representability so that universal arrows need not be
closed under composition, we see that a duoidal categoryM (strict/weak) also provides a (G1∨G1)-
trivial (uniformly/not uniformly) representable fdc-multicategory: the squares are the objects of
M , a composite of universal arrows goes from an n×m grid of objects in M to any possible duoidal
composite of that grid, and an (n,m)-arrow is then any composite of universal arrows followed by a
morphism in M . Horizontal composition and identities are given by (⋆, J) and vertical composition
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and identities by (⋄, I). Every grid has a universal arrow to the vertical composite of its horizontal
composites, and these are closed under vertical composition but not horizontal composition.

Example 2.32. A (G1 × 0)-trivial (or vertically trivial) representable fdc-multicategory V is a
weak triple category with just one object, one vertical morphism, one forward morphism, and
one vertical-forward square. This is precisely the data of a double category whose objects are
the horizontal morphisms of V , vertical morphisms are the vertical-horizontal squares, forward
morphisms are the horizontal-forward squares in V , and squares are the cubes in V . Furthermore,
horizontal composition in V makes this a monoidal double category.

3. Enrichment

Throughout this section, u : D → C will denote a restriction of cell shapes, T a D-graded familial

monad on Ĉ, and V will denote a T -multicategory. We will also sometimes consider a further
restriction of cell shapes v : E → D

Definition 3.1. A (V,D)-enriched T -algebra consists of a TD-algebra A and a T -multifunctor
Hom : Mu∗A→ V .

Unpacking this, an enriched T -algebra with the cell shapes of D regarded as lower-dimensional
consists of:

• a TD-algebra A

• for each d-cell in A, a d-cell in V with an arrow in V from ay composable arrangement
of these cells to their composite. These cells can be considered as “book-keeping,” merely
recording the types of objects that will describe the higher dimensional cells in the enriched
T -algebra
• for each c in C but not in D, and each possible c-cell position in A (that is, each map

u∗y(c) → A in D̂), a c-cell in V whose boundary d-cells agree under Hom with the cor-
responding boundary cells in A. These are the “Hom-objects” of the enriched T -algebra,
which are closest to the classical setting when the c-cells of V are similar to sets with addi-
tional structure. The lower dimensional book-keeping for the d-cells in A determines which
c-cells are eligible to be a particular Hom-object
• for each t ∈ T (1)c and a : u∗T [t]→ A which composes on its boundary into b : u∗y(c)→ A,
a “composition map” t-arrow in V from Hom(a) : Mu∗u

∗T [t]→Mu∗A→ V to Hom(b).
This map from the many Hom-objects (c-cells) in V making up Hom(a) to the single Hom-
object Hom(b) is analogous to the map from Hom(x, y) ⊗Hom(y, z) to Hom(x, z) in a
classical enriched category.

Definition 3.2. A map of (V,D)-enriched T -algebras from (A,Hom) to (A′, H ′) is a map of
TD-algebras A→ A′ along with a transformation of T -multifunctors as below:

Mu∗A Mu∗A
′

V
H H′

Example 3.3. A category (fc-algebra) enriched in an fc-multicategory V is precisely as described
in [Lei99, Section 2.2]. It consists of:

• a set (fc0-algebra) A
• vertices Hom(a) in V for each element a of A
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• edges Hom(a, b) in V from Hom(a) to Hom(b) for each pair of objects a, b in A

• composition n-arrows from Hom(a0, a1), ...,Hom(an−1, an) to Hom(a0, an) for each n ∈ N

and a0, ..., an ∈ A, satisfying unit and associativity equations

Example 3.4. If D is the empty category ∅, T∅ is the identity monad on the terminal category
∅̂. For A the unique T∅-algebra, u∗A is the terminal T -algebra and Mu∗A is the terminal T -
multicategory. A (V,∅)-enriched T -algebra then consists of:

• for each c in C, a c-cell Hom(c) in V forming a map Hom0 : ∗ → V0 in Ĉ
• for each t ∈ T (1)c, a single t-arrow from Hom0◦! : T [t]→ ∗ → V0 to Hom(c), natural in c

• such that these arrows are closed under identities and composites

For instance a (V,∅)-enriched category is then a horizontal monoid in the virtual double category
V , meaning a horizontal endomorphism m equipped with squares from the nth iterated composite
of m to m for n ≥ 0 closed under composition in V .

Example 3.5. When u : D → C is a restriction of cell shapes away from a choice e of endpoint

objects (Example 1.7), T is a D-graded familial monad on Ĉ, and V is D-trivial and representable
(that is, a (T, e)-structured category as in [Sha22, Section 8.1]), a (V,D)-enriched T -algebra is the
same as a V -enriched T -algebra in the sense of [Sha22, Section 8.2].

Example 3.6. We call a (V,G0)-enriched fmc-algebra simply a V -enriched monoidal category. It
consists of:

• A monoid A

• For each a ∈ A a vertex Hom(a) in V0

• For each a, a′ ∈ A, an edge Hom(a, a′) from Hom(a) to Hom(a′) in V . This is because
an edge in u∗A is determined by its source and target

• For each a1, ..., an ∈ A, an n-to-1 arrow from Hom(a1), ...,Hom(an) to Hom(a1 · · · an) in
V . This includes a 0-to-1 arrow to Hom(e) for e the unit of A

• For each list of elements a1,0, ..., a1,m1
, ..., an,0, ..., an,mn

∈ A, an arrow in V from the
arrangement of paths of the form

Hom(ai,0, ai,1), ...,Hom(ai,mi−1, ai,mi
)

to the edge

Hom(a1,0 · · · an,0, a1,m1
· · ·an,mn

).

• These arrows are closed under identities and composition in V

This definition is rather complicated, but simplifies in the case when V is representable, which is to
say a monoidal double category (we will assume it is weak and pseudo- henceforth unless otherwise
specified) where we can call the edges “morphisms.”. In that case, a V -enriched monoidal category
consists of:

• A monoid A

• For each a ∈ A an object Hom(a) in V

• For each a, a′ ∈ A, a morphism Hom(a, a′) in V from Hom(a) to Hom(a′)
• A forward arrow I → Hom(e) for e the unit of A and I the unit of V
• For each a1, a2 ∈ A, a forward arrow Hom(a1)⊗Hom(a2)→ Hom(a1a2) in V

• These forward arrows satisfy the unit and associativity equations of a lax monoidal functor
from the discrete monoidal category A to the forward monoidal category of V
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• For each a1, a2, a
′
1, a

′
2 ∈ A, a square

Hom(a1)⊗Hom(a2) Hom(a′1)⊗Hom(a′2)

Hom(a1a2) Hom(a′1a
′
2)

Hom(a1,a
′

1
)⊗Hom(a2,a

′

2
)

Hom(a1a2,a
′

1
a′

2
)

• For each a, a′, a′′ ∈ A, a square

Hom(a) Hom(a′) Hom(a′′)

Hom(a) Hom(a′′)

Hom(a,a′) Hom(a′,a′′)

Hom(a,a′′)

• These squares satisfy unit and associativity equations with respect to both products and
compositions, as well as an interchange equation

This data can be summarized as a monoid A and a lax monoidal lax double functor from the
monoidal category5 u∗A to V .

The book-keeping in V for the lower dimensional cells has thus far only assumed a t-arrow in V

from Hom(a) to Hom(b) for t ∈ T (1)d, a : T [t]→ A, and b ∈ Ad, meaning a lax monoidal functor
to V in the previous example. But when V is representable or uniformly representable, we can
impose universality conditions on these arrows that correspond to the book-keeping part of Hom

weakly or strictly preserving T -algebra structure (so replacing this lax monoidality with strong or
strict monoidality).

Definition 3.7. When V is (uniformly) E-representable, a (V,D)-enriched T -algebra (A,Hom) is
E-strong (resp. E-strict) if Hom is E-strong (resp. E-strict). We say (A,Hom) is simply strong
(resp. strict) when it is D-strong (resp. D-strict).

Example 3.8. A V -enriched monoidal category (A,Hom), where V is a monoidal double category,
is 0-strong when the vertical morphisms Hom(a1) ⊗Hom(a2) → Hom(a1a2) are isomorphisms.
When V is strict monoidal, (A,Hom) is 0-strict when these are in fact identities.

This may seem unusual from the perspective of lax double functors (it is uncommon to consider
functors which are strong monoidal on objects but lax monoidal on morphisms), but from an
enrichment point of view it is fairly natural, as it is reasonable to expect the monoid A of objects
in an enriched monoidal category to maintain its form in V . In other words, the emphasis in
enrichment is on modeling only the higher dimensional cells in V using the Hom(a, a′)’s, so it is
expected that there would be a non-invertible map

Hom(a1, a
′
1)⊗Hom(a2, a

′
2)→ Hom(a1a2, a

′
1a

′
2),

describing how morphisms are tensored together. The objects Hom(a) do not carry the same
interpretation as collections of cells, instead serving more of a book-keeping role. They merely
allow the Hom(a, a′)’s to live in different categories when desireable, so there is no intuitive reason
to expect that the maps Hom(a1)⊗Hom(a2)→ Hom(a1a2) should not be isomorphisms or even
identities.

5Here u∗A is regarded as a double category with only identity forward morphisms and squares
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Example 3.9. When M is a duoidal category regarded as a representable (G1 ∨G1)-trivial fdc-
multicategory, an (M,G1∨G1)-enriched double category agrees with the definition of ++-enriched
double category in [Agu], which amounts to a pair A of 1-categories with the same objects, for each
square boundary α in A an object Hom(α) in M , and morphisms in M corresponding to identities
and composition:

• when α has identities as its horizontal arrows, a morphism J → Hom(α) in M

• when α has identities as its vertical arrows, a morphism I → Hom(α) in M

• when α, α′ are horizontally adjacent with composite square boundary α′′, a morphism
Hom(α) ⋆Hom(α′)→ Hom(α′′)

• when α, α′ are vertically adjacent with composite square boundary α′′, a morphismHom(α)⋄
Hom(α′)→ Hom(α′′)

These morphisms must satisfy unit, associativity, and interchange laws analogous to those in a
double category, including a unit interchange equation which says that when α has identities as
both its horizontal and vertical arrows, I → J → Hom(α) agrees with I → Hom(α).

A double category enriched in a representable fdc-multicategory V , namely a weak triple cate-
gory, consists of forward-lax functors from the horizontal/vertical categories of a shared-object pair
of categories A to the horizontal/vertical categories of V , along with horizontal-vertical squares for
each square boundary in A and composition cubes. It is strong when these are pseudo-functors,
and when V is uniformly representable (a strict triple category) the enriched double category is
strict when these are ordinary functors.

Example 3.10. For V a virtual triple category, u : G1×0→ G1×G1, and A a category, a virtual
triple functor Mu∗A→ V amounts to suitable choices of objects and vertical arrows for those in A

with forward-vertical squares witnessing each composition in A, a horizontal arrow for each pair of
objects in A, a square for each pair of arrows in A, and squares/cubes in the forward direction of
V for each composition map in this vertically V -enriched double category.

When V is representable and vertically trivial, hence a monoidal double category (Example 2.32),
a vertically V -enriched double category amounts to

• a category A

• for each pair of objects a, b in A, an object Hom(a, b) of V
• for each pair of morphisms f : a → b, f ′ : a′ → b′ in A, a vertical arrow Hom(f, f ′) of V

from Hom(a, b) to Hom(a′, b′)
• for each object a in A, a forward arrow I → Hom(a, a)
• for each triple of objects a, b, c in A, a forward arrow Hom(a, b)⊗Hom(b, c)→ Hom(a, c)
• for each morphism f in A, a square from idI to Hom(f, f)
• for each triple of morphisms f, f ′, f ′′ in A, a square from Hom(f, f ′) ⊗ Hom(f ′, f ′′) to

Hom(f, f ′′)
• for each object a in A, a forward-globular square from idHom(a,a) to Hom(ida, ida)

• for a
f
−→ b

g
−→ c and a′

f ′

−→ b′
g′

−→ c′ in A, a forward-globular square from Hom(g, g′) ◦
Hom(f, f ′) to Hom(g ◦ f, g′ ◦ f ′)

• these composition maps satisfy unit, associativity, and interchange equations and commute
with sources and targets in A

This definition is in fact equivalent to the following:

• a category A

• a category enriched in the forward monoidal category of V with the same objects as A
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• a category enriched in the monoidal category of vertical arrows and squares in V whose
objects are the morphisms of A

• these enriched categories respect sources and targets, and laxly respect identities and com-
posites in A

This definition is very nearly saying that “a category internal to categories enriched in a category
internal to monoidal categories is the same as a category internal to enriched categories.” A
statement like this could perhaps be made more formal given a suitable definition of morphism
between enriched categories with varying enrichment bases, but we do not pursue this further.

Appendix A. Enriched T -Multicategories

We describe how for T a familial monad on Ĉ, T -multicategories are algebras for a familial monad

T+ on Ĉ+. The monad T+ was defined by Leinster for any cartesian monad T in [Lei99, Appendix
A, Theorem 1.2.1], and shown to be familial whenever T is in [Lei04, Proposition 6.5.5]. Here we
give unwinded descriptions of the category C+ and the familial representation of T+ for familial T .

There is always a restriction of cell shapes C → C+, and we show that enriching T -multicategories
with respect to this restriction recovers Leinster’s definition of enrichment for T -multicategories.

A.1. C+ and T -graphs.

Definition A.1. For T a familial monad on Ĉ, C+ is the category containing:

• a copy of C, whose objects represent “c-cells”
• a disjoint copy of ∫ T (1), whose objects represent “t-arrows.” When t ∈ T (1)c, for each

face of the cell shape c (given by a morphism i : c′ → c in C) there is a corresponding face
it : ti → t, where ti = T (1)it ∈ T (1)c′

• for each t ∈ T (1)c, a “target” face map τt : c→ t in C+

• for each t in T (1) and x ∈ T [t]d, a “source” face map σx : d→ t in C+

subject to the equations:

• τt ◦ i = it ◦ τti : c
′ → t for each i : c′ → c in C and t ∈ T (1)c

• σx ◦ j = σxj
: d′ → t for each t ∈ T (1)c, j : d

′ → d in C, and x ∈ T [t]d
• it ◦ σx = σT [it]x : d→ t for each i : c′ → c, t ∈ T (1)c, and x ∈ T [ti]d

There is a canonical restriction of cell shapes u : C → C+, as there are no morphisms in C+ from
the objects in ∫ T (1) to those of C.

Remark A.2. A more concise definition of C+ which differs from that of Leinster in [Lei04, Propo-
sition 6.5.5] is given by the “Grothendieck Construction” for functors G1 → Prof , the category of
profunctors. Any functor 2 → Prof has a corresponding collage category over 2, and so a pair of
parallel profunctors yields a category over G1. In this case, consider the “polynomial” or “bridge
diagram” representation of T first described in [Web07, Remark 2.12] and further discussed sur-
rounding [Sha21, Definition B.4]. Each familial monad T determines a functor ∫ T (1) → C and a
span C ←

∮
T [−]→ ∫ T (1), both of which induce profunctors from C to ∫ T (1). The Grothendieck

Construction of this pair yields C+, and the resulting functor C+ → G1 sends all of C to 0, all of
∫ T (1) to 1, the target maps to t : 0→ 1, and the source maps to s : 0→ 1.

Example A.3. When C = 1 and T = idSet, C
+ is G1, as the identity monad on sets is represented

by a single operation with the singleton set as its arity, hence the unique source morphism from 0

to 1 in G1.
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Example A.4. When C = 1 and T = list, the free monoid monad, C+ consists of a vertex 0 as
well as n-to-1 arrows for all n ∈ N, each with n source maps from 0 and one target map from 0.
Presheaves on this category are many-to-one graphs, which underly plain multicategories.

More generally, presheaves in Ĉ+ admit a description as spans.

Definition A.5. A T -graph is a span in Ĉ of the form

Y

TX X,

dom cod

and a morphism of T -graphs is a map of spans such that the left leg is in the image of T .

Proposition A.6. The category of T -graphs is equivalent to Ĉ+.

Proof. (Sketch) Given a T -graph as in Definition A.5, we define a presheaf on C+ as follows:

• the c-cells and their faces are those of X
• the t-arrows for t ∈ T (1)c are the c-cells of Y with domain of the form T [t]→ X in TXc

• the arrow faces of a t-arrow are given by the corresponding face maps in Y

• the target face of a t-arrow is given by its codomain c-cell in the T -graph
• the source faces of a t-arrow are given by the d-cells in its domain T [t]→ X

Conversely, given a presheaf V in Ĉ+ we define a T -graph as follows:

• let X be the restriction u∗V along the canonical restriction of cell shapes of C+. In other
words, X contains the c-cells of V

• let Y be the left Kan extension of the restriction of V to ∫ T (1) along the discrete fibration
∫ T (1)→ C. In other words, Yc is the disjoint union of t-arrows in V over all t ∈ T (1)c

• the codomain map is determined by the targets of the t-arrows, and the domain map is
determined by their sources, which for a t-arrow is precisely the desired map T [t]→ X

It is straightforward to check that these constructions are quasi-inverse to each other. �

A.2. Free T -multicategories and enrichment. We now define the “free T -multicategory” famil-
ial monad T+, by first describing some notation for the composable operations in a T -multicategory.

Definition A.7. A length n (T, c)-sequence for n ∈ N and c in C is a sequence (t1, ..., tn) ∈ T (1)c
equipped with maps fk : T [tk] → T (1) such that tk+1 = µ(tk, fk) for k = 1, ..., n− 1. We say tn is
the outer operation of the sequence, which we sometimes refer to as a decomposition of tn. When
n = 0, we define its outer operation to be η(c) ∈ T (1)c.

These sequences will form the operations in the free T -multicategory monad. We now proceed
to define their arities inductively.

Definition A.8. The unique length 0 (T, c)-sequence has arity y(c) in Ĉ+. The length 1 (T, c)-

sequence (t) has arity y(t) in Ĉ+, the representable t-arrow. We now proceed inductively on the
assumption that the arity of a length n (T, c)-sequence contains a “source subdiagram” of the form

u!T [tn], which is to say, a copy of T [tn] built out of c-cells in Ĉ+. Of course this assumption holds
in the base case as y(t) has a copy of T [t] as its source cells.

Assuming this hypothesis for n − 1 and given a length n (T, c)-sequence (t1, ..., tn), we can
construct the arity T+[t1, ..., tn−1] of its length n− 1 subsequence (t1, ..., tn−1). We now define the
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arity of (t1, ..., tn) as the pushout under u!T [tn−1] of T
+[t1, ..., tn−1] along its source subdiagram

and

colim
(
∫ T [tn−1]

∫ fn−1

−−−−→ ∫ T (1) →֒ C+ →֒ Ĉ+
)

along its target subdiagram

colim
x∈T [tn−1]c

y(fk−1(x))← colim
x∈T [tn−1]c

y(c) ∼= u!T [tn−1].

Example A.9. An (fc, 1)-sequence of length 2 has as its arity the diagram in depicted below.
Longer sequences would have aritities given by similarly shaped towers of n-to-1 squares with
greater height. These are the composable diagrams in an fc-multicategory.

· · · ·

· · · ·

· ·

/ / /

/ /

/

This diagram can be defined as the pushout of the lower square and the upper row of squares along
the pair of adjacent edges connecting them, where the upper row of squares is a colimit of the form
in Definition A.8. The outer operation of this sequence is 3 ∈ fc(1)1, and as such the diagram
resembles a decomposition of a 3-to-1 square.

Definition A.10. The monad T+ on Ĉ+ is represented as follows:

• T+(1)c = {∗c} for all c in C, with T+[∗c] = y(c) the representable c-cell in Ĉ+

• T+(1)t for t ∈ T (1)c is the set of (T, c)-sequences of any length with outer operation t. The
corresponding arities T+[t1, ..., tn = t] are as defined in Definition A.8.

• the unit operations for c-cells are the unique such operaitons, and for t-arrows are given by
the sequences (t) of length 1 and representable arity

• multiplication is defined by observing that a map T+[t1, ..., tn] → T+(1) in Ĉ+ amounts
to choices of decompositions of each t′-arrow in T+[t1, ..., tn] such that all t′-arrows in the
kth row are assigned decompositions of length mk. Transposing this assignment results

in mk maps T [tk] → T (1) in Ĉ which after applying the multiplication µ for T form a
(T, c)-sequence of length mk. These sequences for k = 1, ..., n concatenate into a sequence
of length m1 + · · · +mn in T+(1)tn , which defines the multiplication and can be checked
to have the the appropriate arity (see discussion following Definition 1.1)

It is straightforward to check that these operations are generated under the unit and multiplica-
tion constructions by the sequences of length 0 (which are only in T+(1)η(c)) and length 2, which
are precisely the identities and compositions listed in the expanded definition of T -multicategories
following Definition 2.1. Hence algebras for this monad are T -multicategories, which are defined as
T -graphs with the identities and composites indexed by the length 0 and 2 sequences satisfying the
same unit and associativity equations determined by the definition of multiplication for T+.

Example A.11. When T = list, the free monoid monad on sets, T+ is the free multicategory
monad fm on many-to-one graphs. Indeed, the trees which make up its operations and arities (see
[Web07, Example 2.14], ignoring the symmetries) are exactly the list-sequences from Definition A.7,
where the height of a tree is the length of the corresponding sequence, and each term in the sequence
is the number of vertices in each level of the tree (a number regarded as an element of list(1) ∼= N).



ENRICHMENT OF ALGEBRAIC HIGHER CATEGORIES 23

The definition of T+ makes clear that it is C-graded, as the operations for c-cells have repre-

sentable arities arising from Ĉ. The restricted monad (T+)C is simply the identity monad on Ĉ,
having a single operation for each c in C with representable arity y(c).

Lemma A.12. For u : C → C+ the canonical restriction of cell shapes and A in Ĉ, u∗A is
isomorphic to the T -multicategory given by the span

TA
π1←− TA×A

π2−→ A.

Proof. This follows from the observation that for each t ∈ T (1)c, u
∗y(t) in Ĉ is isomorphic to the

disjoint union of the arity T [t] and the representable y(c). Therefore, (u∗A)t = Hom(T [t], A) ×
Ac, so as products distribute over disjoint unions and TAc =

∐
t∈T (1)c

Hom(T [t], A), applying the

construction of a T -graph from u∗A as in Proposition A.6 yields TA × A as the apex of the T -
graph, with the domain map given by projection to TA and the codomain by projection to A as
desired. �

We can now conclude that for V a T+-multicategory, a (V, C)-enriched T+-algebra in the sense of
Definition 3.1 is the same as a V -enriched T -multicategory in the sense of [Lei99, Definition 1.3.1].
That is, Mu∗A, for u the canonical restriction of cell shapes C → C+, is the same as M applied to
the indiscrete T -multicategory defined in [Lei99], so both notions of enriched T -multicategory are
defined as a T+-multifunctor from Mu∗A to V .

Example A.13. When C = 1 and T = list, our definition of enrichment then says that (V,1)-
enriched multicategories are the same as Leinster’s V -enriched multicategories, for V an fm-
multicategory ([Lei99, Section 3]). They consist of a set A of objects, an object Hom(a) in V for
each a ∈ A, an n-to-1 edge in V from Hom(a1), ...,Hom(an) to Hom(b) for each a1, ..., an, b ∈ A,
and identities and composite arrows in V corresponding to the structure of a plain multicategory.

Multicategories can, like many other structures we have discussed, be enriched in a monoidal dou-
ble category, by noting that representable fm-multicategories are double multicategories, namely
category objects in the category of multicategories. Restricting those multicategories to repre-
sentable multicategories, which are in turn monoidal categories, recovers monoidal double categories
as a special case of fm-multicategories which are in this sense “doubly representable.” Examples
of multicategories enriched in a monoidal double category can be found in [SS21].

Example A.14. While we defer a detailed description of this to future work, a “n-category-
enriched T -multicategory” is a convenient base of enrichment for when one wants the equations
between composition operations in an enriched T -algebra to hold only up to coherent (higher)
isomorphism. When, for instance, there is a category (or n-category) of fixed-boundary t-arrows in
a T -multicategory rather than a set, it is straightforward to demand that two sides of an equation
between such t-arrows are merely isomorphic (or equivalent) rather than equal.

This can be defined for any version of strict, weak, or semi-strict n-categories, though what
precisely the T+-multicategory of n-categories should look like is rather subtle in full generality. In
many cases however, the symmetric monoidal category of n-categories is sufficient to define such a
T+-multicategory.

Appendix B. Structures Enrichable in a Monoidal Double Category

Here we list various monads T for which T -algebras are enrichable in a monoidal double category
(presumed to be weak in both the monoidal and horizontal directions) and recall for each how
monoidal double categories relate to T -multicategories.
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• Categories can be enriched in fc-multicategories (Example 3.3), which include monoidal
double categories by forgetting the monoidal structure, as double categories are repre-
sentable fc-multicategories.
• As discussed in Example 2.22 and Example A.13, plain multicategories can be enriched
in fm-multicategories, and monoidal double categories are representable representable fm-
multicategories, or equivalently representable double multicategories, meaning categories
internal to representable multicategories.
• Monoidal categories can be enriched in fmc-multicategories, and monoidal double categories
are representable fmc-multicategories as discussed in Example 3.6.
• Double categories can be horizontally enriched in fdc-multicategories, and monoidal double
categories are representable, vertically trivial fdc-multicategories as discussed in Exam-
ple 3.10.
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