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Categories, n-categories, bicategories, double categories, multicategories,

monoidal categories, and monoids are all examples of algebraic structures on dia-

grams of combinatorial cells. Many of these structures have features in common with

categories, such as a nerve functor, a theory of enrichment, a notion of (co)limits, or

a version of the Yoneda lemma. We begin here a program to unify these and other

common features into general constructions to form a “shape independent category

theory” that can apply to a wide variety of algebraic “higher” category structures.

We start with a technical treatment of “familial monads” on presheaf categories,

where each of the structures above form the category of algebras of such a monad.

Using a relationship between familial functors and polynomial diagrams in Cat,

we establish an equivalence between familial monads and the combinatorial data of

how arrangements of cells are composed in an algebraic higher category. This data

provides a language for describing different types of higher categories, which we use

to describe existing results on nerves of familial monad algebras and discuss the

algebraic nature of their underlying cell shapes. We also construct new examples of

familial monads with a focus on cubical cells.

Finally, we build a theory of enrichment for any type of higher category with

top-dimensional cell shapes. This shape independent construction generalizes many

existing forms of enrichment, and produces new types of higher categories. The

theory relies on a generalization of the wreath product of categories, which provides

simple definitions of various universal constructions on categories and an elegant

description of the cells in the nerve of an enriched higher category.
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CHAPTER 0

INTRODUCTION

The theory of categories includes, among other concepts: categories, functors,

natural transformations, isomorphisms, limits, colimits, adjunctions, equivalences,

the Yoneda lemma, nerves, enrichment, internalization, and fibrations. Whenever

a new categorical structure is defined, such as n-categories, double categories, or

multicategories, the first steps in developing the new theory are typically to define

analogues of some of the concepts above that apply to the new structure. Especially

as applications routinely inspire new types of categorical structures, the need to

redefine each concept from scratch for a new structure is an undesirable barrier to

applying compositional reasoning more broadly in mathematics and in modeling real

world phenomena.

The goal of this thesis is to begin the process of automating these definitions,

so that each new categorical structure satisfying appropriate conditions immediately

inherits a specialized version of each of these concepts. We provide a language for

describing a type of algebraic categorical structure or “higher category” and use it

to describe new examples and existing generalizations of categories, functors, nerves,

and internalizations for any type of higher category. We then move on to define

a general theory of enrichment for any structure with top dimensional cell shapes,

such as the arrow in categories or the square in double categories, and show how

enrichment produces new types of higher categories and interacts nicely with nerves.
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Along the way, we make two major technical digressions in support of this story.

The first is to further develop the relationship between familially representable (a.k.a.

familial) functors between presheaf categories Ĉ and polynomial functors between

the categories Cat/C, defining new bicategories of polynomial diagrams in Cat with

bifunctors into CAT landing in familial and polynomial functors respectively. The

categorical structures we consider are defined as algebras for familial monads, and a

comparison between familial and polynomial functors lets us characterize a familial

monad T on Ĉ by the cell shapes in C, the arrangements of cells that can be composed

in a T -algebra, and equations between those composition operations.

The second is to generalize the wreath product of categories and analyze its prop-

erties, which allows for convenient new definitions of several existing constructions

from category theory. We ultimately use the wreath product as a means of combin-

ing together the cell shapes and composition operations of two different categorical

structures to form a new familial monad with enriched structures as algebras.

In numerous examples, we explore how these generalized constructions recover a

wide variety of familiar features of “higher” and “lower” category theory and extend

those features to new types of structures. Here is a sample of some of the new

statements we can make with these general constructions:

� Cyclic sets are algebras for a familial monad on simplicial sets

� Cubical sets with symmetries are algebras for a familial monad on semicubical

sets
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� Cubical ω-categories are algebras for a familial monad on semicubical sets

� Multicategories can be enriched in any Cat-enriched operad

� The wreath product of Set and a category A is the free coproduct completion

of A

� The wreath product of the category Lcmon of free finitely generated commuta-

tive monoids with A is the free finite biproduct completion of A

� (n+m)-categories are n-categories enriched in m−Cat

� A monoid object in a monoidal category V is a monoid enriched in V

� Monoidal categories are algebras for a familial monad on graphs

� Double categories or multicategories enriched in 2 − Cat are algebras for a

familial monad

� Both of the above have fully faithful nerve functors to presheaf categories

Before we proceed to more detailed summaries of each chapter, it is worth placing

this program in the context of others that have unified the theories of other types

of higher categorical structures. In [33], Riehl and Verity develop a “model indepen-

dent” theory of geometric (∞, 1)-categories. “Geometric” means that the objects

they consider are generally defined as presheaves with properties rather than the al-

gebraic composition operations in the sort of higher categories considered here. Many

of their results including unified definitions of limits, adjunctions, and the Yoneda

lemma are among those we hope to one day provide for algebraic higher categories.

Globular algebraic notions of (∞, 1)-categories do fit into our framework, but only as
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a subclass of (∞,∞)-categories (also called weak ω-categories), as familial monads

are not expressive enough to enforce invertibility conditions.

Leinster’s theory of globular operads [28] describes different types of weak n-and

ω-categories, and more broadly generalized operads provide a formalism for studying

weak and lax versions of any fixed (usually strict) algebraic structure that can be

defined as algebras for a cartesian monad (including all familial monads). Our focus is

instead on unifying results across different strict higher category structures, as while

weak higher categories are also algebras for familial monads, their theory relative to

the strict versions is rather well understood.

Familial and Polynomial Functors

The categorical structures we are interested in are algebras for a familially repre-

sentable monad on a presheaf category Ĉ := SetC
op

. Familially representable mon-

ads, which we call simply familial, include the free category monad on graphs, whose

algebras are categories, the free n-category monad on n-globular sets, and similarly

the free construction of each structure mentioned above from an underlying diagram

of cells (modeled as a presheaf on a category C of cell shapes).

As the first step of unifying the different studies of algebras of different familial

monads, we provide a combinatorial language for defining familial monads in terms

of the “composition operations” in their algebras. This language lets us extract the

key properties of these monads for extending concepts of category theory to their
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algebras. The end result of this characterization is as follows:

Theorem. (Theorem 5.1) A familial monad T on a presheaf category Ĉ is completely

specified by the following data:

� A functor S : Cop → Set

� A functor E :
∫
S → Ĉ

� For each c in C, an element η(c) ∈ Sc with an isomorphism Eη(c) ∼= y(c)

� For each t ∈ Sc and f : Et→ S in Ĉ, an element µ(t, f) with an isomorphism

Eµ(t, f) ∼= colim
x∈Et

Ef(x)

subject to several equations. T sends a presheaf X to the presheaf TX with

TXc =
∐
t∈Sc

Hom(Et,X).

An algebra for T is a “higher category” with cells that form a presheaf on C, like

the underlying graph of a category, and for each t ∈ Sc an “operation” sending an Et-

shaped arrangement of cells to a c-cell, like the operation sending a string of arrows in

a category to its composite. The operations η(c) and µ(t, f) ensure that, respectively,

there is always an operation sending a c-cell to itself and applying one operation to

the outputs of others is itself an operation. Labeling these is how equations are

defined, like the associativity equation in a category that ensures composing the first

of three arrows with the composite of the second two agrees with composing them in
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the opposite order: both composites of operations are equal to the single operation

which composes three arrows at once.

It has been shown in [34, Theorem 8.1] and [19, Proposition 3.8] that familial

functors are equivalent to a category of pairs (S,E) as above, which we call a famil-

ial representation. It follows intuitively that familial monads should admit a similar

description, with a translation of their cartesian unit and multiplication transfor-

mations into the language of familial representations. Examples of familial monads

are defined in [34, Section 9], [35, Example 2.14], and [19, Proposition 2.9] in man-

ners similar to the above, but the only general description of the data determining

a familial monad on Ĉ is that of [28, Section C.3] in the case when C is a discrete

category, and a complete list of the coherence equations this data must satisfy does

not appear in the existing literature.

A direct proof of this characterization, showing how to specify η, µ for a tuple

(S,E, η, µ) and checking that they satisfy the unit and associativity equations, would

require several enormous diagrams and scores of tedious naturality proofs. Instead,

we provide a more conceptual argument, taking advantage of the machinery of poly-

nomial functors as developed in [17] and [36]. In particular, we define a bicategory

Rep with 1-cells familial representations (S,E) and show that it is biequivalent to

the 2-category Fam of presheaf categories, familial functors, and cartesian natural

transformations by passing through a bicategory of polynomial diagrams in Cat

(Theorem 4.1). Restricting this biequivalence to formal monads in these bicategories

yields an equivalence between tuples (S,E, η, µ) and familial monads.

6



However, the existing constructions of the bicategory of polynomial diagrams are

not sufficient for this proof, which requires polynomial diagrams in Cat and both

cartesian and vertical morphisms between them. The construction in [17] includes

both cartesian and vertical morphisms of polynomials but only applies in a category

which is locally cartesian closed, unlike Cat, while the bicategory of polynomial

diagrams in [36] applies in any category with pullbacks but only includes cartesian

morphisms. To remedy this, we define a new bicategory of polynomial diagrams in

Cat which, by slightly restricting the polynomials which are included, admits both

cartesian and vertical morphisms of these polynomials. We also construct bifunctors

to CAT sending a polynomial diagram to the polynomial functor it induces on either

categories or presheaves.

Organization

In Section 1, we introduce familial functors and monads along with our main running

examples of n-categories, double categories, multicategories, and monoids. A reader

primarily interested in our results for higher category theories and willing to accept

on faith the characterization of familial monads above (or its more precise formulation

in Theorem 5.1) could skip the remaining sections in Part 1, which are devoted to

the proof of this result.

In Section 2 we recall the various notions of fibration in Cat and provide proofs

of the pullback-stability, composability, and exponentiability of split opfibrations

directly in terms of their classifying functors to Cat. In Section 3 we introduce
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several special classes of polynomial diagrams in Cat and develop their relationship

with familial representations and familial functors. Finally in Section 4 we define the

bicategory structure Rep on familial representations and complete the proof that it

is biequivalent to Fam.

Higher Category Theories

The characterization of familial monads as a tuple (C, S, E, η, µ) provides a general

strategy for defining a familial monad T on Ĉ for any small category C directly

in terms of the composition operations in its algebras, along with their arities and

equations between them. This is the combinatorial language we use to describe the

properties of the type of higher categories that arise as algebras of T , and define how

classical concepts of category theory generalize to those higher categories.

This language allows us to efficiently define several new examples of familial

monads beyond those mentioned above. The algebraic structure in a higher category

typically involves a combination of degeneracies, symmetries, and compositions, and

we describe examples illustrating each of these. A common theme in these examples

is familial monads on semicubical sets, presheaves with minimally structured cubical

cells in each dimension. These cubical cell shapes admit a rich variety of degeneracies,

symmetries, and compositions which illustrate the broad scope of higher category

structures defined by familial monads. In particular we define monads for cubical

sets over semicubical sets, symmetric cubical sets over cubical sets, and cubical ω-
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categories over semicubical sets. We also discuss more general monads for adding

degeneracies indexed by any Reedy category and adding symmetries to presheaves

over C indexed by a crossed C-group in the sense of [6, Definition 2.1].

We also cast into this language various results from the literature generalizing

the nerve functor to any type of higher category. The classical nerve functor from

categories to simplicial sets is based on the idea that all of the algebraic structure of

a category is contained in how finite strings of adjacent arrows are composed. These

compositions are exhibited by the ordinal categories [n] with n adjacent arrows and

all of their composites. The simplex category ∆ can be defined as the category of

these ordinals.

For any type of higher category that arises as T -algebras, where T is represented

in our language by (C, S, E, η, µ), the role of ∆ can be replaced by the “theory

category” ΘT of free higher categories on the arity presheaves Et. Weber’s “Nerve

Theorem” ([35, Theorem 4.10]) shows1 that the functor sending a higher category A

to the presheaf on ΘT whose cells are composable diagrams in A of shape Et is fully

faithful. This means that T -algebras can be equivalently regarded as presheaves on

ΘT satisfying certain conditions. When T is a monad on Set, this nerve functor

sends an algebra to the corresponding model in sets of the Lawvere theory of T .

The objects of ΘT can be thought of as the arity diagrams Et “equipped with all

compositions,” as in the following examples:

1Weber actually proves this more generally for any “monad with arities”
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� for the theory of categories ΘT is ∆, where the ordinals [n] are strings of

composable arrows

� for n-categories ΘT is Joyal’s category Θn of pasting diagrams of n-cells and

their composites [23]

� for multicategories ΘT is the category Ω of trees with compositions [30]

� for double categories ΘT is the product ∆×∆ whose objects can be viewed as

grids of composable squares

The morphisms in ΘT include both the maps between the arity diagrams from Ĉ and

maps built out of “cocompositions” Ty(c)→ TEt for t ∈ Sc which identify the total

composite of the Et-shaped diagram in TEt and provide the composition operations

in nerves of T -algebras.

Organization

In Section 5, we state the characterization of familial monads, discuss how it works

in our recurring examples and in higher categories with top-dimensional cell shapes,

then show how higher category structures behave under restrictions of their cell

shapes. In Section 6, we review Lawvere theories and discuss their generalization to

the categories ΘT for the purpose of defining and recognizing nerves of T -algebras.

We also describe a factorization system on ΘT which will help facilitate the definition

of enriched T -algebras in Part 3. Finally in Section 7 we show how to construct using
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this language familial monads for adding degeneracies, symmetries, and composites

to cell diagrams with a focus on cells shaped like cubes in every dimension.

Shape Independent Enrichment

Enriched categories replace the sets Hom(a, b) of arrows in a category with objects

Hom(a, b) of a monoidal category V , which provides a rigorous compositional frame-

work for settings where Hom(a, b) naturally forms a space, abelian group, or other

mathematical object. Composition in an enriched category is encoded by mor-

phisms Hom(a, b) ⊗ Hom(b, c) → Hom(a, c) in V and identities by morphisms

I → Hom(a, a). Only the sets of arrows are modeled by V , not the objects, and for

higher categories enrichment replaces the sets of top-dimensional cells with objects

in a category V that has extra structure which varies based on the type of higher

category.

Definition. (Theorem 11.5,Theorem 11.14) For a higher category theory T with

top-dimensional cell shapes e, and V a (T, e)-structured category, a higher category

enriched in V consists of:

� the data of a T -algebra without the e-cells

� an object in V for each possible e-cell position

� morphisms in V corresponding to each e-operation which satisfy coherence

equations
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A (T, e)-structured category is a category (or several categories) with extra struc-

ture corresponding to the e-operations of T encoded by the cocomposition maps out

of y(e) in ΘT . For instance when T is the free category monad or the free monoid

monad V is a monoidal category, when T is the free double category or 2-category

monad V is a braided monoidal category, and when T is the free multicategory

monad V consists of categories V0, V1, V2, ... with functors

Vn × Vm1 × · · · × Vmn → Vm1+···+mn

that behave like composition of operations in an operad.

A classical way to define n-categories is as categories enriched in (n−1)-categories.

Using this general notion enrichment, we show that under light conditions T -algebras

enriched in the category of T ′ algebras also form a new type of higher category.

Theorem. (Theorem 5.1) For suitable familial monads T and T ′ with cell shapes C

and C ′, T -algebras enriched in alg(T ′) are equivalent to algebras for a familial monad

T ≀ T ′ with cell shapes C ≀ C ′.

This recovers the classical definition of n-categories as well as an elegant variation

on it: n-categories enriched in m-categories are precisely (n+m)-categories. It also

describes higher categories whose cell shapes are a combination of the classical ones,

as well as (strict) monoidal categories, which arise as monoids enriched in categories.

The cell shapes in C ≀ C ′ look like those in C with the top dimensional cell(s)

“stuffed” with the cell shapes from C ′. When C, C ′ both contain the shapes of a

12



vertex and an arrow between two vertices (as in the cell shapes of a category), C ≀ C ′

consists of a vertex, an arrow, and a 2-cell which resembles an arrow stuffed inside

an arrow:

· · ≀
·

·
= · ·

Underlying this result is an elegant theory generalizing the wreath product of cat-

egories ([5, Definition 3.1, Remark 3.4], itself a generalization of the wreath product

of groups). The wreath product A ≀γ B has objects given by objects of A equipped

with a set of objects in B, and morphisms given by a morphism in A along with an ar-

rangement of morphisms in B between the adorning objects. The sizes of the sets and

shapes of the arrangements of morphisms are controlled by a functor γ : A → Span

to the category of sets and spans between them.

Not only does this generalized wreath product help define the cell shape cate-

gories C ≀ C ′ and the operations for composing diagrams of those cells, but it also

recovers simple definitions of universal constructions from category theory. The

wreath product Set ≀ A is the free coproduct completion of A, Setop ≀ A is the free

product completion of A, and Span ≀ A is the free biproduct completion of A, with

corresponding finite variants given by restricting to finite sets.

The classical relationship between enrichment and nerves is that n-categories are

categories enriched in (n − 1)-categories, and their nerves are presheaves over Θn,

which is the wreath product ∆ ≀ Θn−1. Using our generalized wreath product, this

relationship holds for a wide variety of higher categories.
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Theorem 0.1. (Theorem 11.28) For suitable familial monads T, T ′, we have ΘT ≀T ′ ∼=

ΘT ≀ΘT ′.

In most of the examples discussed here the usual wreath product of categories

suffices, but the generalized version allows for more diverse inputs. For instance,

monoidal categories have a nerve functor to presheaves over Lmon ≀̄∆ for Lmon the

category of free finitely generated monoids, which cannot be defined using the usual

wreath product.

Organization

In Section 8 we define (T, e)-structured categories and T -algebras enriched in such a

category V . In Section 9 we define the generalized wreath product of categories and

discuss several examples and properties of the construction. In Section 10 we use the

wreath product to construct new cell shapes via “stuffing” and study presheaves over

stuffed cell shapes. Finally in Section 11 we prove our main results on enrichment of

T -algebras in alg(T ′), using the wreath product to define the monad T ≀ T ′ and its

theory category.

Notation and Terminology

For a small category C, we write Ĉ for the category SetC
op

of presheaves over C. For

X a presheaf in Ĉ, we write Xc for its set of “c-cells” and Xi : Xc → Xc′ for its action
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on a morphism i : c′ → c of C.

We write ∫ X for its category of elements, whose objects are pairs (c ∈ Ob(C), x ∈

Xc), often abbreviated as simply x, and morphisms of the form ix : Xi(x) → x for

i : c′ → c in C and x ∈ Xc.

We write ∗ for the terminal presheaf in Ĉ, and {∗c} for its singleton set of c-cells

for each c ∈ Ob(C).

We say that a natural transformation between functors is cartesian if all of its

naturality squares are pullbacks.

We write N for the set of natural numbers 0, 1, 2, ..., and n for the set {1, ..., n},

where 0 is the empty set.

We denote by Set, Cat, and CAT the categories of sets, small categories, and

locally small categories respectively, where the latter two are often regarded as 2-

categories.

We will sometimes refer to “presheaves over C” as “cell diagrams over C,” as we

prefer to think of them as diagrams/complexes of cells with shapes coming from C

(and these presheaves are not used here in connection to any sort of sheaves).
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CHAPTER 1

FAMILIAL AND POLYNOMIAL FUNCTORS

1 Familial Functors and Monads

A functor from a category A to Set is representable if it is isomorphic to HomA(A,−)

for some object A in A, called a representation of the functor. Set ∼= Ĉ when C is the

terminal category and an object A in A is equivalently a functor from the terminal

category to A, which suggests how to define representable functors A → Ĉ for general

C. Given a functor S : C → A, we get a functor A → Ĉ given by c 7→ Hom(Sc,−).

In algebra, one often encounters functors to Set which are not representable but

instead disjoint unions of representables, represented by a family of objects instead

of just one.

Example 1.1. The free monoid functor Set→ Set sends a set X to ∗ ⊔X ⊔X2 ⊔

X3⊔· · · . Each Xn is isomorphic to the set of functions HomSet(n,X), so this functor

is represented by the family of sets {n}n∈N. Each n corresponds to the unique n-ary

operation in a monoid; this operation has arity n.

In the free monoid example, the representation of the functor consists of the set

N and a functor N→ Set, regarding N as a discrete category. In higher dimensional

algebra though, we encounter functors into Ĉ more general than disjoint unions of

representables.
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1.1 Categories as Algebras

Example 1.2. When C = G1, the category 0
s

⇒
t
1, Ĉ is the category of directed

graphs. For a graph X, Xs : X1 → X0 identifies the source vertex of each edge and

Xt identifies the target. We write
n−→ for the graph

·→·→ n· · · → ·→·
consisting of a single path of length n: n+1 vertices and n successive edges connecting

them, for n ≥ 0. When n = 0, 1, these “walking paths” include the single vertex and

the single edge graphs.

The free category functor Ĉ → Ĉ sends X to the graph with the same vertices and

an edge for every (finite, directed) path in X, including length 0 paths which consist

of just a vertex. The set of paths in X of fixed length n is precisely Hom(
n−→, X),

and the set of all paths in X is then

∐
n∈N

Hom(
n−→, X).

However, the free category functor is not a disjoint union of representables, as

paths of all lengths have the same original set of vertices as their sources and targets.

But the vertex part of the functor is representable, asX0
∼= Hom(

0−→, X). This functor

is then a disjoint union of representables only in each type of cell separately, and

the structure maps are also representable: the source vertex of a length n path is

the first vertex in the path, and the function Hom(
n−→, X)→ Hom(

0−→, X) identifying

this source is represented by the map of graphs from
0−→ to

n−→ picking out the first

17



vertex.

The data of the free category functor then amounts to the sets { n−→}n∈N and { 0−→}

of graphs and the source/target maps from
0−→ to

n−→. This can be described as a

functor S : Cop → Set sending 0 to {0} and sending 1 to N, along with a functor

E : ∫ S → Ĉ sending n to
n−→ and s, t : 0 → n to the inclusions of the source and

target vertices in
n−→.

Functors Ĉ → Ĉ of this form are called familially representable, or just familial,

and describe a wide variety of freely generated higher category structures, as we

discuss below. The functor S : Cop → Set describes the operations which output

each cell type in C, and E : ∫ S → Ĉ identifies the arity of each operation, which for

the composition of n arrows in a category is the graph
n−→. The equations such as

unit and associativity laws for categories are then between operations of the same

arity: the composite of an arrow with the composite of two more arrows, in either

order, agrees with the operation composing three arrows all at once.

Our main result describes how to represent the data of a familial functor equipped

with the structure of a cartesian monad, giving a direct and simplified method for

defining new types of higher categories that fit this pattern.
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1.2 Familial Functors

Definition 1.3. For C, C ′ small categories, a familial representation from C ′ to C is

a pair (S,E) where

� S is a functor Cop → Set

� E is a functor ∫ S → Ĉ ′

Associated to (S,E) is a functor H(S,E) : Ĉ ′ → Ĉ given by, for X a presheaf over C ′,

� H(S,E)(X)c =
∐
t∈Sc

HomĈ′(Et,X) for each c ∈ Ob(C)

� H(S,E)(X)i :
∐
t∈Sc

HomĈ′(Et,X)→
∐

t′∈Sc′
HomĈ′(Et′, X) for i : c′ → c is given by

E(it)
∗ : HomĈ′(Et,X)→ HomĈ′

(
E(Si(t)), X

)
.

We say that t ∈ Sc is an operation with output c and arity Et, as every diagram of

shape Et in X contributes a c-cell to H(S,E)(X). Note that we treat S as a functor

rather than a presheaf over C, as we prefer to think of presheaves as geometric

objects while S plays more of a bookkeeping role, tracking the relationships between

the various operations. That said, as a presheaf S is isomorphic to H(S,E)(∗).

Definition 1.4. A functor T : Ĉ ′ → Ĉ is familially representable, or simply familial,

if it is naturally isomorphic to a functor of the form H(S,E), where (S,E) is called

a familial representation of T . We write Fam(Ĉ ′, Ĉ) for the category of familial

functors from Ĉ ′ to Ĉ and cartesian natural transformations between them.
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Remark 1.5. Familial functors into Set were introduced in [12] as “locally repre-

sentable functors”. They are first called “familially representable” in [21]. In [28],

familially representable functors A → Ĉ are defined using a slight variation on the

notion of familial representations: instead of a pair (S,E : ∫ S → A), they are equiv-

alently represented by a functor from Cop into a category of “families” of objects in A.

In [34], functors which admit “strict generic factorizations” are (nontrivially) equiv-

alent to familial functors in the setting of presheaf categories, with (S,E) called the

“spectrum” and “exponent” of a “parametric representation” of a functor. In [35],

these functors are called “parametric right adjoints” or “p.r.a. functors.” Most of

this overlapping terminology remains in current use, so we choose “familial functors”

and “familial representations” as the most suitable for our purposes.

We now describe morphisms of familial representations, which will correspond

precisely to cartesian natural transformations of the associated familial functors.

Definition 1.6. For (S,E), (S ′, E ′) familial representations from C ′ to C, a mor-

phism ϕ : (S,E) → (S ′, E ′) consists of a morphism ϕS : S → S ′ in Ĉ and a natural

isomorphism ϕE

∫ S ∫ S ′

Ĉ

∫ ϕS

E

ϕE

E′

We write Rep(C ′, C) for the category of familial representations from C ′ to C and

morphisms of this form between them.

Proposition 1.7. For small categories C ′, C, the assignment (S,E) 7→ H(S,E) extends

to an equivalence of categories H : Rep(C ′, C)→ Fam(Ĉ ′, Ĉ).
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This is proven in [19, Proposition 3.8] for the equivalent notion of pointwise

familial functors, but for clarity we give a proof here as well. The ideas in this proof

are closely related to [34, Theorem 7.6].

Proof. The functor H sends a morphism ϕ : (S,E) → (S ′, E ′) to the natural trans-

formation given on c-cells (c ∈ Ob(C)) by∐
t∈Sc

HomĈ′(Et,−)→
∐
t′∈S′c

HomĈ′(E
′t′,−)

mapping HomĈ′(Et,−) to HomĈ′(E ′ϕS(t),−) by precomposition with the isomor-

phism

ϕEt : Et
∼= E ′ϕS(t).

This assignment is natural in c precisely because ϕE is natural in t.

H is essentially surjective by Definition 1.4, so it remains only to show it is

fully faithful. First, we observe that given any cartesian natural transformation

ψ : H(S,E) → H(S′,E′) we have for each presheaf X over C ′ the following diagram, nat-

ural in c, where the vertical maps are given on each component by postcomposition

with the unique map X → ∗, the upper square is a naturality pullback square, and

ψc is the unique map making the lower square commute.∐
t∈Sc

HomĈ′(Et,X)
∐

t′∈S′c

HomĈ′(E ′t′, X)

∐
t∈Sc

HomĈ′(Et, ∗)
∐

t′∈S′c

HomĈ′(E ′t′, ∗)

Sc S ′c

⌟

∼= ∼=
ψc
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As the composite square is also a pullback, the top map above restricts to an iso-

morphism HomĈ′(Et,X) → HomĈ′(E ′ψc(t)) for each t ∈ Sc, natural in X and t

(as an object of ∫ S). By the Yoneda lemma, this isomorphism must be given by

precomposition with an isomorphism ψt : E
′ψc(t) ∼= Et, natural in t. We can then

define a morphism of representations H−1(ψ) : (S,E) → (S,E) with H−1(ψ)Sc = ψc

and H−1(ψ)Et = ψ−1
t , and it is straightforward to check that the assignments

H : Rep(C ′, C)
(
(S,E), (S ′, E ′)

)
⇄ Fam(Ĉ ′, Ĉ)

(
H(S,E), H(S′,E′)

)
: H−1

are inverse to one another, completing the proof that H is fully faithful.

We now describe how familial functors form a sub-2-category Fam of CAT.

Proposition 1.8. Categories of the form Ĉ for small C, familial functors, and carte-

sian natural transformations form a 2-category.

Proof. It suffices to show that familial functors are closed under identities and com-

posites; the corresponding properties of cartesian transformations follow immedi-

ately, noting that familial functors preserve pullbacks ([34, Theorem 8.1]).

That the identity functor is familial is a consequence of the Yoneda lemma, as for

each X in Ĉ we have Xc
∼= Hom(y(c), X), for each object c in C. Given two familial

functors F : Ĉ ′ → Ĉ and G : Ĉ ′′ → Ĉ ′ represented by (S,E) and (S ′, E ′) respectively,

[19, Propositions 3.11, 3.12] show that

FG(X)c ∼=
∐
t∈Sc,

f : Et→S′

HomĈ′′

(
colim

x : y(c′)→Et
E ′f(x), X

)
,
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which can also be shown directly using basic properties of limits and colimits.

These representations for identities and composites are discussed in more detail

in Section 4, where they are shown to form the identities and composites of the

bicategory Rep whose morphism categories are given by Rep(C ′, C).

Definition 1.9. The familial representation of idĈ is given by (S0, E0), where S0
c =

{∗c} be the terminal functor and E0 : ∫ S0 ∼= C y−→ Ĉ.

Definition 1.10. For F,G familial functors as above represented by (S,E), (S ′, E ′),

the familial representation of FG is given by (SS ′, EE ′), where

SS ′
c =

∐
t∈Sc

HomĈ′(Et, S) and EE ′(t, f) = colim
x : y(c′)→Et

E ′f(x).

Definition 1.11. A familial monad is a monad on a presheaf category Ĉ whose func-

tor part is familial and whose unit and multiplication transformations are cartesian.

A familial monad is the same as a formal monad in the 2-category Fam, and this

description will facilitate our characterization of familial monads in Theorem 5.1.

Familial monads are of interest for their precision in describing algebraic struc-

tures on categories Ĉ of presheaves with operations taking as input an “arity di-

agram,” such as strings of composable edges in a graph, and outputting a single

cell, like the composite arrow in a category. These kinds of algebras include most

familiar higher category structures, whose operations typically encode the structure

of unit cells, composition of cells, or symmetries where the various “sources” and/or

“targets” of a cell can be permuted to form a new cell.
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The unit and multiplication transformations are expected to be cartesian to en-

code (as in the proof of Proposition 1.7) that the equations in these algebraic struc-

tures are always between operations with the same arity. For instance, associativity

for categories asserts that any binary parenthesization of the same string of arrows

has the same total composite; this is an equation between two potentially different

operations with the same arity diagram.

1.3 Examples of familial monads

Throughout this work, we will exhibit each construction for each of the following

fundamental higher category theories: monoids, ordinary categories, n-categories,

multicategories, and double categories. Familial representations for the free monoid

monad on sets (Example 1.1) and free category monad on graphs (Example 1.2, also

[28, Example C.3.3]) are described above, and so we now provide the same for the

free n-category, multicategory, and double category monads.

Example 1.12. (See also [28, Proposition F.2.3].) n-categories are algebras for a

familial monad on n-globular sets, which are presheaves over

Gn = 0
s

⇒
t
· · ·

s

⇒
t
n

with s ◦ s = t ◦ s and s ◦ t = t ◦ t at each level. For an n-globular set X, we call the

elements of Xn n-cells, which for n = 0, 1 look like a vertex and edge, respectively,
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and for n = 2, 3 look like those below left.

· · · · · · · ·

The operations and arities of the free n-category monad outputting an m-cell

correspond to the m-dimensional free globular pasting diagrams of composable n-

cells, which are a single vertex for m = 0, the strings
k−→ of composable arrows for

m = 1, and for m = 2 include diagrams such as that above right.

Globular sets are the arbitrarily-high-dimensional analogue of n-globular sets,

defined as diagrams over the glob category

G = 0
s

⇒
t
1

s

⇒
t
· · ·

s

⇒
t
n

s

⇒
t
· · · ,

which is equivalently the colimit of the categories Gn with the evident inclusions.

There is similarly a familial monad on globular sets whose algebras are strict ω-

categories, with operations outputting an n-cell for all n-dimensional pasting dia-

grams ([28, Proposition F.2.3]).

Example 1.13. (See also [35, Example 2.14].) Multicategories (symmetric or non-

symmetric) are algebras for a familial monad on multigraphs1. Multigraphs are

presheaves over the category M with objects 0, (0, 1), (1, 1), (2, 1), ... and morphisms

s1, ..., sn, t : 0→ (n, 1) for each n ≥ 0 with no nontrivial compositions. Cell diagrams

1We use the word “multigraph” in analogy with “multicategory,” not to mean a graph that can
have multiple edges between the same two vertices, which we call simply a “graph.”
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X over M look like graphs with vertices in X0 and n-to-1 edges as below left in X(n,1)

with n sources determined by the functions Xsi and a single target determined by

Xt.

··
n ···

·
· ·
· ·
· ·
·

· ·· ·
n m· ·· ·

The familial functor of the free non-symmetric multicategory monad has oper-

ations and arities corresponding to any “tree” as above center, an arbitrarily large

finite composable diagram of these many-to-one edges given by gluing together a

source vertex of one such “multi-edge” to the target vertex of another. Each tree

provides an operation outputting an n-to-1 edge where n is the number of leaves of

the tree (unattached source vertices). These trees describe the possible composites

of “multi-arrows” in multicategories, which are precisely the algebras for the monad.

As in the free n-category monads, there is only a single operation outputting a ver-

tex with arity the vertex, as there are no non-trivial operations on vertices in a

multicategory.

There are also familial monads for variations on the notion of multicategory. The

free symmetric multicategory monad on multigraphs has operations given by pairs

of a tree as above and a choice of ordering on its leaves, with the underlying tree as

the arity. There are also free polycategory and free properad monads on polygraphs,

whose cells are vertices and n-to-m arrows as above right (see [19, Proposition 2.9]).

Example 1.14. A double graph is a diagram of vertices, two distinct types of edges
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drawn as ↣ (“horizontal edges”) and ◦→ (“vertical edges”), and filled-in squares as

below left. Double graphs are precisely presheaves over the category below center

with four objects corresponding to vertices, both types of edges, and squares, and

relations shs = svs, sht = tvs, ths = svt, tht = tvt corresponding to each vertex of

the square, or equivalently the cartesian product G1 ×G1.

· ·

· ·

◦ ◦ (·) (↣)

(◦→) (□)

s

t

ts tvsv

sh

th

· · · ·

· · · ·

· · · ·

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

Double categories (see [15]) are algebras for a familial monad on double graphs

whose operations and arities on horizontal and vertical arrows, respectively, look

like those for arrows in the free category monad: a single operation for composing a

string of n arrows of the same type. For squares, there is for each n,m ∈ N a single

composition operation with arity the n×m grid of squares as above right.

An algebra for this monad thus has both its horizontal and vertical arrows form

categories, and additionally has horizontal and vertical compositions of squares which

satisfy the usual unit, associativity, and interchange equations as any composite of

those operations must agree with the unique operation with the relevant grid as its

arity. We describe how to formally specify these equations in the data of such a

monad in Example 5.5.
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2 Grothendieck Constructions

Before discussing polynomials in Cat built out of Grothendieck fibrations and opfi-

brations, we review the relevant definitions and provide convenient constructions of

pullbacks, composites, and distributivity pullbacks of opfibrations, then establish a

basic functoriality result for two sided fibrations.

2.1 Operations on Opfibrations

Grothendieck fibrations and opfibrations are usually defined as functors between cat-

egories satisfying certain lifting properties allowing them to be equivalently defined

in terms of their fibers over each object and morphism in the codomain. For conve-

nience, we use this “Grothendieck correspondence” between such functors and their

fibers, usually considered a theorem, as our definition of (op)fibrations:

Definition 2.1. A functor p : A → B is an opfibration if it is (up to isomorphism

of the domain) of the form pΦ :
∮
Φ → B for some Φ: B → Cat, where

∮
Φ is the

following category:

� Objects are pairs (b, x) for b ∈ ObB, x ∈ ObΦb

� Morphisms are pairs (i0, i1) : (b, x)→ (b′, x′) for i0 : b→ b′ in B, i1 : Φ(i0)(x)→

x′ in Φb′

� The identity at (b, x) is given by (idb, idx)
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� Composites are given by (i′0, i
′
1) ◦ (i0, i1) =

(
i′0 ◦ i0, i′1 ◦ Φ(i′0)(i1)

)
� The functor pΦ :

∮
Φ→ B sends (b, x) to b and (i0, i1) to i0

For an opfibration p, written p : A ↠ B, we write Φp for the corresponding functor

B → Cat, where Φp(b) is (up to isomorphism) the fiber of p over the object b in B.

Dually, fibrations A → B are those functors corresponding to an analogous con-

struction for functors Bop → Cat, and discrete fibrations correspond to functors

Bop → Set ↪→ Cat, precisely the categories of elements for functors in B̂, hence the

similar notation ∫ .

(Op)fibrations are often taken to be a more general class of functors corresponding

instead to pseudofunctors B → Cat, with those corresponding to strict functors

called “split opfibrations.” For our purposes we can restrict to split opfibrations,

though it is straightforward to extend the constructions on split opfibrations below to

the more general setting. For a more thorough account of fibrations and opfibrations

see [20] or [32, Appendix].

Remark 2.2.
∮
Φ can be seen as the “lax colimit” of Φ: B → Cat, in the sense that

it is initial among categories with a lax cocone from Φ (see [32, Remark 2.13]). In

this case the lax cocone is given by the functors Jb : Φ(b) ↪→
∮
Φ: x 7→ (b, x) for each

object b in B and natural transformations Ji : Jb ⇒ Jb′ ◦ Φ(i) for each morphism

i : b→ b′ in B with x component given by

(i, id) : (b, x)→
(
b′,Φ(i)(x)

)
.
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As lax cocones generalize strict cocones, this universal property provides a canonical

functor QΦ :
∮
Φ → colim(Φ) from the lax colimit to the strict colimit of Φ in Cat

(see [32, Example 4.8]).

While the following propositions are usually proven using equivalent definitions

of opfibrations in terms of lifting properties ([20, Proposition 3.1]), our main result

relies on a more explicit description of pullbacks and composites of opfibrations in

terms of Cat-valued functors. These constructions are widely understood but do not

appear in the literature.

Proposition 2.3. Opfibrations are closed under pullback.

Proof. Consider the diagram below left in Cat:

C

A B

f

p

D C

A B

ψ

ϕ u

p

We show that the opfibration p(Φp◦u) :
∮
(Φp ◦u) ↠ C is the pullback of p along u.

For any pair of functors ϕ, ψ commuting as above right, we define γ : D →
∮
(Φp ◦ u)

by

d 7→
(
ψ(d), ϕ(d)

)
, (i : d→ d′) 7→

(
ψ(i), ϕ(i)

)
where ψ(d) ∈ C and ϕ(d) = (b, x) for

b = pϕ(d) = uψ(d) ∈ ObB, x ∈ ObΦp(uψ(d)).

ψ(i) : ψ(d)→ ψ(d′) in C, and ϕ(i) = (i0, i1) : (b, x)→ (b′, x′) for

i0 = pϕ(i) = uψ(i) in B, i1 : Φp(i0)(x)→ x′ in Φp(uψ(d
′)).
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Clearly p(Φp◦u) ◦ γ = ψ, and likewise ϕ factors as γ followed by the functor

∮
u :

∮
(Φp◦u)→

∮
Φp
∼= A,

(
c ∈ C, x ∈ Φp(u(c))

)
7→

(
u(c), x

)
, (j0, j1) 7→

(
u(j0), j1

)
.

Recall the lax overcategory Cat//C with objects small categories over C and

morphisms diagrams as below in Cat:

X Y

C

We will also sometimes consider Cat//C for C a large category, the lax slice over C

of the inclusion Cat→ CAT of small into large categories, though for our purposes

it will not make much difference whether C is large or small.

Remark 2.4. The assignment u 7→
∮
u in the proof above extends the assignment

∮
into a functor Cat/Cat→ Cat. However, given functors

u : C → B, Φ: C → Cat, Φ′ : B → Cat,

a functor
∮
Φ→

∮
Φ′ commuting with u corresponds to functors ϕc : Φ(c)→ Φ′(u(c))

which are lax natural in c, meaning they are equipped with natural transformations

ϕi : Φ
′(u(i))ϕc ⇒ ϕc′Φ(i) for each i : c→ c′, functorial in i. Given such data, we can

define ∮
(u, ϕ) :

∮
Φ→

∮
Φ′, (c, x) 7→

(
u(c), ϕc(x)

)
,

sending a map
(
i0 : c→ c′, i1 : Φ(i0)(x)→ x′

)
to(

u(i0),Φ
′(u(i0))(ϕc(x))

ϕi0,x−−−→ ϕc′(Φ(i0)(x))
ϕc′ (i1)−−−→ ϕc′(x

′)
)
,
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and it is straightforward to check that every such functor arises in this way. When

ϕ is strictly natural, this shows that
∮
extends to a functor Cat//Cat→ Cat

Proposition 2.5. Opfibrations are closed under composition.

Proof. Consider two opfibrations p : A↠ B, q : B ↠ C. We define a functor Φ: C →

Cat and show that the corresponding opfibration agrees with pq. For an object c of

C, let

Φ(c) =

∮ (
Φq(c)

Jc−→ B Φp−→ Cat
)
.

For a morphism i : c→ c′, we have a morphism

Φq(c) Φq(c
′)

B

Cat

Φq(i)

Jc

Ji

Jc′

Φp

in Cat//Cat. This assignment evidently respects identities and composites, so as
∮

is functorial over Cat//Cat, Φ defines a functor C → Cat.

It remains to show that
∮
Φ agrees with pq. We define an isomorphismA ∼=

∮
Φp
∼=∮

Φ over C by, for i0 : c→ c′ in C, i1 : Φq(i0)(x)→ x′ in Φq(c
′), and i2 : Φp(i0, i1)(y)→

y′ in Φp(x
′),

(
(c, x), y

)
7→

(
c, (x, y)

)
,

(
(i0, i1), i2

)
7→

(
i0, (i1, i2)

)
.

32



Recall that for a fixed morphism p : A→ B in a category A with pullbacks, there

are functors Σp : A/A ⇌ A/B : ∆p, where ∆p is defined by (choices of) pullback

along p and its left adjoint Σp by postcomposition with p. p : A → B in A is

exponentiable if ∆p also has a right adjoint Πp : A/A→ A/B.

Weber shows ([36, Section 2.2]) that p is exponentiable if for all maps u : X → A,

there exists a terminal pullback square among those of the form:

Z Y

X

A B

Πp u

u

p

This square is called a distributivity pullback, and given a choice of distributivity

pullbacks Πp u is defined as the map Y → B in A/B.

Proposition 2.6. Opfibrations are exponentiable in Cat.

This was proven in [22, Corollary 6.2] using lifting properties, but as above we

construct Πp explicitly in terms of the functor Φp associated to an opfibration p.

Proof. Given u : X → A, p : A↠ B in Cat, we construct the following distributivity

square:

Z Y

X

A B

w

q

v

u

p
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An object in Y is a pair
(
b ∈ ObB, f : Φp(b)→ X

)
with uf = Jb, and a morphism

(b, f) → (b′, f ′) is a pair
(
i : b → b′, σ : f ⇒ f ′Φ(i)

)
with uσ = Ji. The functor v

sends (b, f) to b and (i, σ) to i.

q is the pullback of p along v given by Proposition 2.3. Objects of Z are then

triples
(
b, f, x ∈ ObΦp(b)

)
, and morphisms of Z amount to triples (i, σ, j) where

j : Φp(i)(x) → x′ in Φp(b
′). The functor w : Z → X sends (b, f, x) to f(x) and

(i, σ, j) : (b, f, x)→ (b′, f ′, x′) to f ′(j) ◦ σx. uw agrees with the projection map from

Proposition 2.3 as each f is a partial section of u.

To see that this square is terminal, consider a pullback q′ : Z ′ ↠ Y ′ as below:

Z ′ Y ′

X

A B

w′

q′

v′

u

p

There is a functor k : Y ′ → Y over B sending c in Y to

Φp(v
′(c)) ∼= Φq(c)

Jc−→ Z ′ w′
−→ X,

which is a partial section of u as uw′ agrees with the projection functor from Propo-

sition 2.3, and defined similarly on morphisms. There is also a functor ℓ : Z ′ → Z

over X sending
(
c, x ∈ ObΦp(v

′(c))
)
to

(
v′(c), k(c), x

)
, so that qℓ = kq′, and (ℓ, k)

are unique with respect to these properties.

Remark 2.7. If u is a fibration, then for i : b→ b′ there are functors

Fun/A

(
Φp(b

′), X
)
→ Fun/A

(
Φp(b), X

)
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exhibiting Πp u as the Grothendieck construction for fibrations of the functor

Bop → Cat : b→ Fun/A

(
Φp(b), X

)
,

and if u is a discrete fibration then each category Fun/A

(
Φp(b), X

)
is discrete, so

Πp preserves (discrete) fibrations. ∆p also preserves (discrete) fibrations, as does

Σp when p is a (discrete) fibration.

2.2 Two Sided Fibrations

In the polynomials of the following sections, we consider opfibrations A↠ B whose

domain is equipped with a functor to another category C, which is made up of

compatible fibrations from each fiber. For Φ: B → Cat, the data of a functor∮
Φ → C is precisely that of an extension of Φ to Cat//C. We will be interested in

the case when this Φ: B → Cat//C factors through the category Fib(C) (orDFib(C))

of categories with a (discrete) fibration to C and functors which correspond to strict

natural transformations in Fun(Cop,Cat). In DFib(C) these are all functors which

commute strictly over C, and in Fib(C) these are the functors over C which preserve

the cartesian morphisms.

Definition 2.8. A (discrete) two sided fibration from C to B is a diagram of the

form

C p1←− A p2−→ B,

where p2 is an opfibration such that Φp : B → Cat is equipped with a lift along the
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forgetful functor Fib(C)→ Cat (resp. DFib(C)→ Cat). Abusing notation slightly,

we also write Φp : B → Fib(C) for this lift.

Remark 2.9. This definition agrees with the existing notion of (split) two-sided fi-

bration (see [29, Definition 2.3.4]), as Fib(C) ≃ Fun(Cop,Cat) and therefore so

Fun(B, F ib(C)) ≃ Fun(Cop×B,Cat) as in the standard definition. This shows that

two-sided fibrations could be defined dually to the above as a fibration over C with

fibers opfibered over B, and in particular that p1 in the above definition is a fibration.

The following will be useful for composing polynomials built from two-sided fi-

brations.

Proposition 2.10.
∮

extends to a functor Cat//F ib(C)→ Fib(C).

Proof. As p1 above is a fibration, it remains only to show that given

B B′

Fib(C)

u

Φ

ϕ

Φ′

the map
∮
(u, ϕ) :

∮
Φ→

∮
Φ′ of Remark 2.4 commutes over C and preserves cartesian

morphisms. This follows from the same property of the functors ϕb : Φ(b)→ Φ′(u(b)),

as the cocartesian maps on both sides are sent to identities in C and all of the

cartesian morphisms in
∮
Φ are contained in some Φ(b) (by the same property of its

objects).

We will primarily be interested in obtaining discrete two sided fibrations, which
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in addition to naturally arising functors B → DFib(C) ≃ Ĉ can also be obtained

from general two sided fibrations:

Example 2.11. Recall the functor | − |C : Fib(C) → DFib(C), left adjoint to the

inclusion DFib(C) → Fib(C) and sending a fibration u over C to the discrete fibra-

tion whose fibers are the sets of connected components of the fibers of u. | − | is

equivalently given by (π0)∗ : Fun(Cop,Cat) → Fun(Cop,Set), left adjoint to post-

composition with the inclusion Set→ Cat.

Given Φ: B → Fib(C) corresponding to the two sided fibration p, we obtain

|Φ| : B → Fib(C) → DFib(C), and denote the corresponding discrete two sided

fibration by |p|. The natural unit map u → |u| in Fib(C) induces a map Φ → |Φ|

and accordingly p→ |p|, where in the latter the map π : A → |A| sends each element

of the (intersection) fiber over (c, b) to its connected component.

3 Fibrous Polynomials in Cat

We now describe a bicategory of “very fibrous polynomials” in Cat, along with other

convenient properties of polynomials which help facilitate the comparison of familial

representations and familial functors.
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3.1 Special Classes of Polynomials

Recall from [36] that a polynomial p in Cat from C ′ to C is a diagram as below such

that p2 is exponentiable:

A B

C ′ C

p1

p2

p3

Definition 3.1. A polynomial p in Cat is:

� fibrous if p2 is an opfibration

� very fibrous if p2 is an opfibration and p3 is a discrete fibration

� quasi-familial if (p1, p2) is a two sided fibration and p3 is a discrete fibration

� familial if (p1, p2) is a discrete two sided fibration and p3 is a discrete fibration

These properties form a hierarchy: familial =⇒ quasi-familial =⇒ very fibrous

=⇒ fibrous. The opfibration p2 corresponds to a functor Φp : B → Cat, which we

also use to denote the functor:

� Φp : B → Cat//C ′ if p is (very) fibrous

� Φp : B → Fib(C ′) is p is quasi-familial

� Φp : B → DFib(C ′) ≃ Ĉ ′ if p is familial
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Recall ([36, Section 3.2]) that given any polynomial p in Cat, its associated

polynomial functor P (p) is the composite

Cat/C ′
∆p1−−→ Cat/A

Πp2−−→ Cat/B
Σp3−−→ Cat/C.

If p2 is an opfibration then by Proposition 2.6 we have, for X a category over C ′,

Πp2 ∆p1 X is the category with:

� objects pairs
(
b ∈ ObB, f : Φp(b)→ X

)
with f commuting over C

� morphisms pairs
(
i : b → b′, σ : f ⇒ f ′Φp(i)

)
: (b, f) → (b, f ′), with σ lying

over the canonical transformation from Φp(b) to Φp(b
′) in C ′

When p is very fibrous, each of these components of P (p) preserves discrete

fibrations: discrete fibrations are closed under pullback, exponentiation along an

opfibration by Remark 2.7, and composition with a discrete fibration. As discrete

fibrations are equivalent to presheaves, such a P (p) therefore restricts to a functor

between presheaf categories:

Definition 3.2. For p a fibrous polynomial as above, we associate to it the functor

Pd(p), defined as the composite

Ĉ ′
∆p1−−→ Â

Πp2−−→ B̂
Σp3−−→ Ĉ.
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Consider a diagram X in Ĉ ′, represented below as a discrete fibration over C ′:

· Πp2 ∆p1 X

∆p1 X Σp3 Πp2 ∆p1 X

X A B

C ′ C

p1

p2

p3

Unwinding the definitions, Pd(p)(X) = Σp3 Πp2 ∆p1 X has c-cells

∐
b∈Bc

Fun/C′

(
Φp(b), X

)
.

If p is familial, Φp lands in DFib(C ′) ≃ Ĉ ′ and we have

Pd(p)(X)c ∼=
∐
b∈Bc

HomĈ′

(
Φp(b), X

)
,

hence Pd(p) is a familial functor.

Proposition 3.3. For any very fibrous polynomial p, Pd(p) is a familial functor.

Proof. Let p be quasi-familial; we can form the familial polynomial |p|, called its

familial replacement, by replacing Φp : B → Fib(C ′) with |Φp| : B → DFib/C ′. By

the adjunction discussed in Example 2.11, we have for X discretely fibered over C ′

Fun/C′

(
Φp(b), X

)
∼= HomFib(C′)

(
Φp(b), X

)
∼= HomĈ′

(
|Φp|(b), X

)
,

natural in b, which establishes an isomorphism

Πp2 ∆p1
∼=Π|p|2 ∆|p|1 .
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As |p|3 = p3, this shows that Pd(p) ∼= Pd(|p|), so Pd(p) is a familial functor.

The general proof for a very fibrous polynomial proceeds similarly by noting that

the left adjoint Cat/C ′ → Fib(C ′) to the inclusion functor extends to Cat//C ′, but

the only example we will need at this level of generality is the identity polynomial

discussed below, so we do not discuss this further.

Pd is full in the sense that it can recover any familial functor by a familial poly-

nomial.

Definition 3.4. For any familial functor Ĉ ′ → Ĉ with representation (S,E), we can

form the familial polynomial gr(S,E) given by∮
E ∫ S

C ′ C

p1

p2

p3

where
∮
E is the Grothendieck construction of the functor ∫ S E−→ Ĉ ′ ∼= DFib/C ′.

Pd(gr(S,E)) then agrees with the familial functor associated to (S,E) by Defini-

tion 3.2.

Example 3.5. The representation of the identity functor on Ĉ is given by (S0, E0),

where S0 is the terminal functor Cop → Set and E0 : ∫ S0 ∼= C → Ĉ is the Yoneda

embedding (Definition 1.9). The Grothendieck construction of E0 is then the discrete

two sided fibration with HomC(c
′, c) as the (intersection) fiber over (c′, c). Morphisms

in the fiber over c′ are given by commuting triangles under c′, and morphisms from

in the fiber over c are given by commuting triangles over c, with general morphisms
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given by composites of these which form commutative squares (below left). gr(S0, E0)

is then isomorphic to the polynomial below right:

c′ ·

· c

C→ C

C C

dom

cod

3.2 Cartesian Morphisms

To extend gr to a functor from familial representations to polynomials, we recall the

definition of morphisms between polynomials.

In [36], morphisms f between polynomials p and q are commuting diagrams of

the following form:

A B

C ′ C

A′ B′

p1

p2

u0

⌟ p3

u1

q1

q2

q3

which for fibrous polynomials amounts to a (pseudo) natural isomorphism Φp
∼=

Φq ◦ u1 in Cat//C with components in the subcategory Cat/C.

These cartesian morphisms between polynomials induce natural transformations

between polynomial functors as follows:

Σp3 Πp2 ∆p1
∼=Σq3 Σu1 Πp2 ∆u0 ∆q1

∼=Σq3 Σu1 ∆u1 Πq2 ∆q1
ϵ−→Σq3 Πq2 ∆q1

The first isomorphism comes from pseudofunctoriality of Σ,∆, the second is the

Beck-Chevalley isomorphism for the pullback square, and the final map is the counit
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of the adjunction Σu ⊣∆u. ϵ is cartesian, hence so is the induced natural transfor-

mation ([17, 2.1]).

Lemma 3.6. P : Poly(C ′, C)× → Poly(Cat/C ′,Cat/C)×, where the codomain is the

category of polynomial functors and cartesian transformations, is fully faithful.

Proof. While Cat is not locally cartesian closed, as every functor C → 1 is expo-

nentiable, Cat/C has the same tensoring and enrichment as described in [17, 1.3],

which suffices to replicate the proof of [17, Proposition 2.9] in this setting. It then

remains only to observe that any strict natural transformation between Cat-enriched

functors is strong, so any cartesian transformation between polynomial functors is

uniquely represented by a cartesian morphism of polynomials.

As Ĉ ≃ DFib(C) forms a full subcategory of Cat/C, Pd also sends cartesian

morphisms to cartesian natural transformations, which for (u0, u1) as above unwinds

to the map

Pd(p)(X)c ∼=
∐
b∈Bc

Fun/C′

(
Φp(b), X

)
→

∐
b′∈B′

c

Fun/C′

(
Φq(b

′), X
)
∼= Pd(q)(X)

sending
(
b, f : Φp(b)→ X

)
to

(
u1(b),Φq(u1(b))

(u0)
−1
b−−−−→ Φp(b)

f−→ X
)
.

Definition 3.7. Given a morphism (ϕS, ϕE) : (S,E)→ (S ′, E ′) of familial represen-

tations from C ′ to C, we have the following cartesian morphism of familial polynomi-
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als: ∮
E ∫ S

C ′ C

∮
E ′ ∫ S ′

p1

p2

∮
ϕE

⌟ p2

∫ ϕS

q1

q2

q3

where the square is a pullback as ϕE restricts to an isomorphism E(t) ∼= E ′(ϕS(t))

on the fibers of p2, q2.

Every cartesian morphism between parallel familial polynomials arises uniquely

in this manner, as functors u0 : ∫ S → ∫ S ′ over C are in bijective correspondence

with maps u0 : S → S ′ in Ĉ, and a functor u1 :
∮
E →

∮
E ′ commuting with the

rest of such a diagram restricts to natural isomorphisms ∫ Et → ∫ E ′u0(t) over C ′,

corresponding to isomorphisms Et→ E ′u0(t) in Ĉ ′.

gr therefore extends to a fully faithful functor from Rep(C ′, C). Denoting by

Polyvf (C ′, C)× the category of very fibrous polynomials from C ′ to C and cartesian

morphisms between them, we have now established the following.

Proposition 3.8. H : Rep(C ′, C)→ Fam(C ′, C) factors as

Rep(C ′, C) gr−→ Polyvf (C ′, C)×
Pd−→ Fam(C ′, C),

where gr is fully faithful and Pd is surjective on objects.

Remark 3.9. As gr is fully faithful and essentially surjective onto familial polynomials,

the full subcategoryPolyfam(C ′, C)× of familial polynomials and cartesian morphisms

is equivalent to Rep(C ′, C) and therefore Fam(Ĉ ′, Ĉ).
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3.3 Vertical Morphisms

While they are not included in the bicategory of polynomials in Cat defined in [36],

[17] describe a larger bicategory of polynomials and morphisms between them, in the

more restrictive setting of a locally cartesian closed category. The additional mor-

phisms are sent by an extension of P to non-cartesian transformations of polynomial

functors, and morphisms from p to q admit a factorization system with right class

the cartesian morphisms and left class the vertical morphisms, given by diagrams of

the following form:

A B

C ′ C

A′ B

p1

p2

p3

q1

v

q2

p3

which for fibrous p, q amounts to (by Remark 2.4) a lax natural transformation Φq →

Φp in Cat//C ′ with components in Cat/C and lax structure lying over identities in

C.

If v is exponentiable there is a transformation P (p)→ P (q) given by

Σp3 Πp2 ∆p1

η−→Σp3 Πp2 Πv∆v∆p1
∼=Σp3 Πq2 ∆q1 ,

where η is the unit of the adjunction ∆v ⊣ Πv and the second isomorphism comes

from pseudofunctoriality. However, when p2, q2 are opfibrations, the desired trans-

formation can be defined for any v.

Lemma 3.10. (Analogue of [17, Proposition 2.8]) For fibrous polynomials p, q as
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above, natural transformations P (p) ⇒ P (q) : Cat/C ′ → Cat/C that restrict to the

identity on idC′ correspond bijectively with maps v as above.

Proof. As idC′ is terminal in Cat/C ′ and P (p)(idC′) = P (q)(idC′) ∼= B, any such

transformation lifts uniquely to a natural transformation

Πp2 ∆p1 →Πq2 ∆q1 : Cat/C ′ → Cat/B,

so it suffices to show that such transformations β correspond bijectively with lax

natural transformations ϕ : Φq → Φp strict over C.

β : Πp2 ∆p1 → Πq2 ∆q1 , restricted to the fiber over b ∈ ObB, is a map

Fun/C

(
Φp(b), X

)
→ Fun/C

(
Φq(b), X

)
natural inX, which by Yoneda is uniquely determined by a functor ϕb : Φq(b)→ Φp(b)

over C (this is essentially the argument in [17, Proposition 2.8]). To extend this

correspondence to morphisms, for each i : b→ b′ in B β requires a mapping, natural

in X, from transformations as pictured below (right side) to natural transformations

filling in the outer diagram (all over C):

Φq(b) Φp(b)

X

Φq(b
′) Φp(b)

ϕb

Φq(i) Φp(i)

u

ϕb′

u′

Such a mapping could arise from precomposition with a natural transformation
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ϕi : Φp(i)ϕb ⇒ ϕb′Φq(i) (satisfying coherence conditions corresponding to functori-

ality in i). In a Yoneda style argument, we can set

X = Φp(b
′), u = Φp(i), u′ = idΦp(b′)

in the diagram above and apply such a mapping to the identity transformation on

Φp(i) to recover a transformation Φp(i)ϕb ⇒ ϕb′Φq(i), and it is straightforward to

check that these transformations satisfy the desired coherence conditions and provide

a bijective correspondence between such β’s and ϕ’s.

Remark 3.11. The analogous extension of Pd sends v to the natural transformation

Pd(p)(X)c ∼=
∐
b∈Bc

Fun/C′

(
Φp(b), X

)
→

∐
b′∈Bc

Fun/C′

(
Φq(b

′), X
)
∼= Pd(q)(X)

mapping
(
b, f : Φp(b)→ X

)
to

(
b,Φq(b)

vb−→ Φp(b)
f−→ X

)
.

Just as in Lemma 3.6, the tensoring of Cat/C over Cat lets us replicate the proof

of [17, Proposition 2.4] in this setting. Therefore, as all strict natural transformations

in a Cat-enriched category are strong, the functor Poly(Cat/C ′,Cat/C) → Cat/C

given by evaluating a polynomial functor or cartesian transformation at the terminal

object idC′ is a fibration. The cartesian maps with respect to this fibration are the

cartesian transformations, and vertical maps are those whose component at idC′ is

the identity.

The factorization system on cartesian and vertical maps with respect to this

fibration provides a canonical means of commuting past each other cartesian and

vertical morphisms of polynomials from C ′ to C, which uniquely represent cartesian
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and vertical transformations, respectively, of the corresponding functors (Lemma 3.6,

Lemma 3.10). Any composite of cartesian and vertical morphisms then has a unique

factorization as a vertical morphism followed by a cartesian morphism, which suffices

to define the category Polyf (C ′, C) of fibrous polynomials from C ′ to C and general

morphisms between them of this form, with full subcategory Polyvf (C ′, C) of very

fibrous polynomials.

Remark 3.12. The transformation induced by a vertical morphism is only cartesian

when the map v is an isomorphism, in which case it is identified with the cartesian

morphism with (u0, u1) given by (v−1, id).

We have now extended P to a functor Polyf (C ′, C)→ Poly(Cat/C ′,Cat/C), and

Pd to a functor Polyvf → Fam(Ĉ ′, Ĉ).

Example 3.13. Consider the familial polynomial gr(S0, E0) of Example 3.5. We

have the following vertical morphism ϵ from gr(S0, E0) to the identity polynomial

on C
C→ C

C C

C C

dom

cod

id(−)

where the vertical map (which is not exponentiable) sends an object c in C to its

identity morphism idc in C→. The transformation

Pd(ϵ) : Pd

(
gr(S0, E0)

)
(X)c ∼= Fun/C

(
∫ y(c), X

)
→ Fun/C(∗, X) ∼= Pd(1C)(X)c

is induced by the map ∗ → ∫ y(c) ∼= C/c picking out idc, and by Yoneda this is an

48



isomorphism. gr(S0, E0) is the familial replacement of 1C, in the sense of Proposi-

tion 3.3.

Example 3.14. For a quasi-familial polynomial p, the map π : A → |A| forms a

vertical morphism of polynomials from |p| to p, which Pd sends to an isomorphism

by Proposition 3.3, π being the unit of the adjunction between two sided fibrations

and discrete two sided fibrations. This will be the key to comparing the compositions

of familial representations and familial polynomials.

3.4 Bicategory Structure

[36] constructs a bicategory whose objects are small categories with morphism cate-

gories Poly(C ′, C)×, and a bifunctor Poly× → CAT sending C to Cat/C and each

polynomial to the corresponding polynomial functor, likewise for cartesian transfor-

mations. The bicategory structure of polynomials in [17] which also includes vertical

morphisms, while only claimed for locally cartesian closed categories, agrees on carte-

sian morphisms with that of [36].

Extending Weber’s bifunctor to a bicategory of polynomials on Cat with vertical

morphisms would require, at a minimum, restricting vertical morphisms to those

whose map A′ → A is exponentiable. To avoid this restriction, we instead work

with the sub-bicategory of (very) fibrous polynomials, between which all vertical

morphisms induce unique transformations of the corresponding polynomial functors.

Lemma 3.15. Fibrous, very fibrous, and quasi-familial polynomials are each closed
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under polynomial composition.

Proof. Recall ([17, 1.11], [36, Definition 3.1.7]) that for composable polynomials p, q

their composite is defined as the outer diagram below, where all squares are pullbacks

and the pentagon on the right is a distributivity pullback:

Ā′ Ā B̄

B̄′

A′ B′ A B

C ′′ C ′ C

q̄2

p̄1

p̄2

q̄3

q2

q1 q3

p2

p1 p3

This definition requires a choice of pullbacks and distributivity pullbacks in Cat,

which is provided by the constructions in Proposition 2.3 and Proposition 2.6.

For p, q fibrous, p̄2q̄2 is an opfibration by Proposition 2.3 and Proposition 2.5. If

they are very fibrous, q̄3 is a discrete fibration by Remark 2.7, hence so is p3q̄3.

Now assume p, q are quasi-familial. B̄ is precisely Pd(p)(B′), so its objects are of

the form
(
b, f : Φp(b)→ B′

)
, where f commutes over C ′. Using, Proposition 2.3 and

Proposition 2.5, p̄2q̄2 corresponds to the functor Φ: B̄ → Cat sending (b, f) to∮ (
Φp(b)

f−→ B′ Φq−→ Fib(C ′′)
)
,

where Φ factors through Fib(C ′′) by Proposition 2.10 as a morphism in B̄ from (b, f)

to (b′, f ′) is a natural transformation f ⇒ f ′ ◦ Φp(i) over C ′ for i : b → b′ (which in
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fact must be the identity by discreteness of q3). Therefore (q1p̄1, p̄2q̄2) forms a two

sided fibration.

Remark 3.16. As discussed above, in the composite fibrous polynomial B̄ consists

of diagrams in B′ indexed by a fiber of p2, and the fiber in Ā′ over such a diagram

is the lax colimit of the corresponding fibers of q2. In the next section we use the

comparison map from each such lax colimit to a strict colimit to analyze composites

of familial polynomials, which are not closed under composition.

Theorem 3.17. Small categories, fibrous polynomials between them, and general

morphisms of polynomials form a bicategory Polyf under polynomial identities and

composition, with a bifunctor P : Polyf → CAT sending C to Cat/C and acting

on morphism categories by P : Polyf (C ′, C) → CAT(Cat/C ′,Cat/C). Very fibrous

polynomials form a sub-bicategory Polyvf .

Proof. As fibrous polynomials are closed under polynomial identities and composition

which agree with identities and composition of polynomial functors, it suffices to

define horizontal composites of morphisms of polynomials and show that it agrees in

the appropriate sense with horizontal composition in CAT. These constructions can

proceed exactly as in [17] by a transport argument, as by Lemma 3.6, Lemma 3.10,

and the analogue of [17, Proposition 2.4] we have the analogue of [17, Lemma 2.15],

upon which these constructions rely.

As the inclusion Polyvf (C ′, C) ↪→ Polyf (C ′, C) is full, to show that Polyvf is a

subcategory is suffices to note that very fibrous polynomials include the identities
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and are closed under horizontal composition.

Corollary 3.18. There is a bifunctor Pd : Poly
vf → CAT sending a small category

C to Ĉ and all polynomials to familial functors.

Proof. Pd is constructed as a sub-bifunctor of P given by restricting the categories

Cat/C to discrete fibrations over C, the category of which is equivalent to Ĉ. That

Pd sends all polynomials to familial functors follows from Proposition 3.3.

Note that Pd does not land in Fam as vertical morphisms are not necessarily sent

to cartesian transformations, though as discussed below the vertical morphisms we

are interested will be sent to isomorphisms.

Example 3.19. Consider the composition of a fibrous polynomial p with the familial

polynomial |1C| ∼= gr(S0, E0):

A B C→ C

C ′ C C

C C

p1

p2

p3 dom

cod

id(−)

The resulting composite opfibration Ā → B̄ with corresponding functor Φ: B̄ →

Cat//C ′ has B̄ = Pd(|1C|)(B) ∼= B by Example 3.13, and for b a c-cell of B,

Φ(p) =

∮ (
C/c ∼= ∫ y(c) b−→ B Φp−→ Cat//C

)
.
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Up to the unitor of Polyf , ϵ · idp can be factored as the vertical followed by cartesian

morphism:

Ā B̄

C ′ A B̄ C

A B

(id(−),−)

≀
p1

p2

p3

where the natural transformation Φp ⇒ Φ corresponding to the vertical map sends

x in Φp(b) to (idc, x), with the evident action on morphisms.

The composite of |1C′| and p is then the opfibration Ā → B̄ with corresponding

functor Φ: B̄ → Cat//C ′, where B̄ = Pd(p)(idC′) ∼= B as Πp2 ∆p1 as a right adjoint

preserves terminal objects, and

Φ(p) =

∮ (
Φp(b)→ C ′

C′/−−−→ Cat//C ′
)
.

Up to the unitor of Polyf and a cartesian morphism like above, idp ·ϵ : |1C′|p→ p is

the vertical morphism given by the transformation Φp ⇒ Φ sending x in Φp(b) lying

over c in C ′ to (x, idc), with the evident action on morphisms.

4 The Bicategory Rep

The equivalence of categories H : Rep(C ′, C)→ Fam(Ĉ ′, Ĉ) in Proposition 1.7, rang-

ing over any small categories C ′, C and landing in the morphism categories of the

2-category Fam, resembles the functors on morphism categories making up a bifunc-

tor from a bicategory Rep with objects small categories and morphism categories
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given by Rep(C ′, C). The main technical result of this chapter is that this is in fact

the case.

Theorem 4.1. There is a bicategory Rep with objects small categories, 1-cells fa-

milial representations, and 2-cells given by morphisms of representations, such that

H : Rep→ Fam sending a small category C to its presheaf category Ĉ and acting on

morphisms as described above is a biequivalence.

Proof. It suffices to show that Rep is a bicategory and H is a bifunctor, as H is

bijective on objects and an equivalence on morphism categories by Proposition 1.7.To

do so, we consider the diagram

Rep
gr−→ Polyvf

Pd−→ CAT,

where Pd is the bifunctor from Corollary 3.18 landing in familial functors between

presheaf categories (but not necessarily cartesian transformations), gr has the el-

ements of a colax bifunctor (Theorem 4.3), and Polyvf is the bicategory of very

fibrous categorical polynomials in Cat.

We show (Remark 4.4) that Pd sends the colax structure maps of gr to natural

isomorphisms in Fam, so that the composite Pd ◦ gr has the elements of a bifunctor.

Furthermore, the composite (unlike Pd) lands in cartesian natural transformations

(Section 3.2), so it factors through Fam. The assignment Rep → Fam then sends

C to Ĉ and agrees with H on morphism categories (Proposition 3.8), so H has the

elements of a bifunctor.
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By “elements of a (colax) bifunctor”, we mean that after describing the identities,

composites, unitors, and associators of Rep, but without directly proving that the

triangle and pentagon laws hold, gr and its colax structure maps are shown to satisfy

the unitality and associativity equations of a colax bifunctor. The composite H then

has all of the elements of a bifunctor except for a complete proof that its domainRep

is a bicategory. To complete the proof, we recall (Proposition 4.5) that given such

data with H consisting of faithful functors on morphism categories, the triangle and

pentagon equations for Rep can be deduced from those for Fam and the unitality

and associativity equations for H.

We now proceed to concretely define the bicategory Rep and prove the outstand-

ing claims in the proof above.

The bicategory Rep will have small categories as objects and Rep(C ′, C) as mor-

phism categories, while simultaneously assembling the functors gr : Rep(C ′, C) →

Polyf (C ′, C) into an identity-on-objects colax bifunctor gr : Rep → Polyvf . The

colax coherence maps for gr are sent to isomorphisms by Pd : Poly
f → CAT, en-

dowing the composite Pdgr : Rep→ CAT, sending a representation to its associated

familial functor, with the structure of a bifunctor.
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4.1 Identity

The identity representation in Rep(C, C) is given by (S0, E0). The identitor of gr at

C is the (vertical) transformation in Polyf from Example 3.13:

C→ C

C C

C C

dom

cod

id(−)

The identitor ϵ goes from gr(S0, E0) to 1C and is not invertible in Polyf (C, C),

though by Example 3.13 it is sent to an isomorphism by Pd. The direction of ϵ is

opposite that of a lax bifunctor, so as the same holds for the productor below, gr

will be a colax bifunctor, which we prove in the following subsections.

4.2 Composition

In Definition 1.10, we showed that for familial functors F : Ĉ ′ → Ĉ and G : Ĉ ′′ →

Ĉ ′ with representations (S,E) and (S ′, E ′), their composite has representation

(SS ′, EE ′), where

SS ′
c =

∐
t∈Sc

Hom(Et, S ′), EE ′(t, f) = colim
x : y(c′)→Et

E ′f(x).

Let this define the horizontal composition in Rep, where both of these formulas are

functorial in S,E, S ′, E ′.
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From the proof of Lemma 3.15, the polynomial composite gr(S,E)gr(S ′, E ′) is of

the form
A ∫ SS ′

C ′′ C

p1

p2

p3

where Φp(t, f : Et→ S ′) is given by∮ (
∫ Et f−→ ∫ S ′ E′

−→ Ĉ ′′ ∼= DFib(C ′′)
)
.

gr(S,E)gr(S ′, E ′) is quasi-familial by Lemma 3.15 but not familial, as Φp(t, f)→ C ′′

is not a discrete fibration: the fiber over c′′ includes nontrivial morphisms of the form

(ix, id) :
(
Eit(x), y

)
→

(
x,E ′f(ix)(y)

)
for i : d→ c in C, x ∈ Etc, and y ∈ E ′f(Eit(x))c′′ .

Proposition 4.2. The familial replacement |gr(S,E)gr(S ′, E ′)| is isomorphic to

gr(SS ′, EE ′).

Proof. We have the following chain of isomorphisms

Pd

(
gr(SS ′, EE ′)

)
∼= Pd

(
gr(S,E)

)
Pd

(
gr(S ′, E ′)

)
= Pd

(
gr(S,E)gr(S ′, E ′)

)
∼= Pd

(
|gr(S,E)gr(S ′, E ′)|

)
by Definition 1.10, bifunctoriality of Pd, and Proposition 3.3 respectively.

As Pd restricted to familial polynomials reflects isomorphisms (Remark 3.9),

gr(SS ′, EE ′) ∼= |gr(S,E)gr(S ′, E ′)|.

More conceptually, the corresponding Φ|p|2(t, f)c is the set of connected com-

ponents of
∮
(E ′ ◦ f) over c, which are precisely the c-cells of EE ′(t, f) =
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colim
x : y(c′)→Et

E ′f(x), and (π0)∗ :
∮
(E ′ ◦ f)→ colim(E ′ ◦ f) is the canonical map from

the lax colimit of E ′ ◦ f to the strict colimit. The corresponding vertical map π,

pictures below, is the productor gr(SS ′, EE ′)→ gr(S,E)gr(S ′, E ′).∮
EE ′ ∫ SS ′

C ′′ C

A ∫ SS ′

π

By Example 3.14, Pd sends π to an isomorphism.

4.3 Unitors

The left unitor λ in Rep sends
(
∗c, t : y(c) → S

)
∈ S0Sc to t ∈ Sc and

has as its E-part the canonical colim
j : y(c′)→y(c)

E(tj) ∼= Et. The right unitor ρ

sends
(
t, ! : Et→ S0

)
∈ SS0c to t ∈ Sc and has as its E-part the canonical

colim
x : y(c′)→Et

y(c′) ∼= Et.

The left unitality law making gr a colax bifunctor amounts to the following for

(S,E) a representation from C ′ to C:

1Cgr(S,E) gr(S0, E0)gr(S,E)

gr(S,E) gr(S0S,E0E)

≀

ϵ·id

gr(λ)

π

By Example 3.13 and Example 3.19, for Φ: ∫ S0S → Fib(C ′) corresponding

to gr(S0, E0)gr(S,E) and t ∈ Sc, ϵ · id is the composite of a cartesian morphism

58



containing λS and the vertical morphism given by the natural transformation

∫ Et (idc,−)−−−−→
∮ (
C/c t−→ ∫ S E−→ DFib(C ′)

)
= Φ(∗c, t),

which composed with the transformation (π0)∗ contracting to identities the mor-

phisms of the form
(
i : c′′ → c′, idt

)
in Φ(∗, t) yields the canonical isomorphism

E(t) ∼= colim
j : y(c′)→y(c)

E(tj), inverse to that of λ. The top composite then amounts to

∮
E0E

∫
S0S

C ′
∮
E ∫ S0S C

∮
E ∫ S

∫
(λE)−1

∫
λS

which by Remark 3.12 is precisely gr(λ), so the diagram commutes.

The right unitality law is the square:

gr(S,E)1C′ gr(S,E)gr(S0, E0)

gr(S,E) gr(SS0, EE0)

≀

id ·ϵ

gr(ρ)

ϕ

Similarly, for Φ: ∫ SS0 → Fib(C ′) corresponding to gr(S,E)gr(S0, E0) and t ∈

Sc, id ·ϵ is the vertical morphism given by the natural transformation

∫ Et (−,id)−−−→
∮ (
∫ Et→ C ′ C′/−−−→ DFib(C ′)

)
= Φ(t, !),

which composed with the transformation (π0)∗ contracting morphisms of the form

(it, idc′) :
(
Eti(x), ji : c

′′ → c
)
→

(
x, j : c′ → c

)
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in Φ(t, !) for i : c′′ → c′ yields the canonical isomorphism E(t) ∼= colim
x : y(c′)→Et

y(c′),

inverse to that of ρ. The top composite then agrees with
∫
ρ as in the left unitality

square.

4.4 Associator

In this section, we fix the following familial polynomials

C ′′′ r=gr(S′′,E′′)−−−−−−−→ C ′′ q=gr(S′,E′)−−−−−−→ C ′ p=gr(S,E)−−−−−−→ C,

writing Apq → Bpq to denote the opfibration in the polynomial pq corresponding to

Φpq, and likewise for the other composites. We will show that the following diagram

commutes in Polyf (C ′′′, C), which using the shorthand |pq| = gr(SS ′, EE ′) suggested

by Proposition 4.2 expresses the associativity law for the colax bifunctor gr:

(pq)r p(qr)

|pq|r p|qr|

|(pq)r| |p(qr)|

αPoly

π·id id ·π

π

gr(αRep)

π

For t ∈ Sc and f : Et→ S ′, we have

B|(pq)r|c = B|pq|rc = (SS ′)S ′′c =
∐

(t,f)∈SS′c

HomĈ′′(colim(E ′ ◦ ∫ f), S ′′)

B(pq)rc = Pd(pq)(S
′′)c =

∐
(t,f)

HomFib(C′′)(
∮
(E ′ ◦ ∫ f), ∫ S ′′)
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where ∫ Et ∫ f−→ ∫ S ′ E′
−→ Ĉ ′′. The B-component of π : |(pq)r| → |pq|r is the identity

and that of π · id is the map B|pq|r → B(pq)r induced by the maps Q :
∮
(E ′ ◦ ∫ f) →∫

colim(E ′ ◦ ∫ f), which is an isomorphism by Example 3.14 as ∫ S ′′ is a discrete

fibration. Meanwhile, as Pd(q)(S
′′) = S ′S ′′, we have

B|p(qr)|c = Bp|qr|c = Bp(qr)c = Pd(p)(S
′S ′′) = S(S ′S ′′)c =

∐
t∈Sc

HomĈ′′(Et, S
′S ′′)

with the B component of |p(qr)| π−→ p|qr| id ·π−−→ p(qr) the identity.

The associator αRep has S-component given by

(
t ∈ Sc, f : Et→ S ′, F : colim(E ′◦∫ f)→ S ′′

)
∈ (SS ′)S ′′c 7→ (t, G) ∈ S(S ′S ′′)c

where G sends x ∈ Etc′ to(
f(x) ∈ S ′c′, Fx : E

′f(x)→ colim(E ′ ◦ ∫ f) F−→ S ′′
)
∈ S ′S ′′c′.

This is an isomorphism as every such G uniquely arises in this way: if G sends x to(
g(x) ∈ S ′c′, Gx : E

′g(x)→ S ′′
)
we can set f(x) = g(x) and use (Gx) to induce F

from the colimit.

The associator αPoly has B-component

∐
(t,f)

HomFib(C′′)

(∮
(E ′ ◦ ∫ f), ∫ S ′′

)
→

∐
t∈Sc

HomĈ′′(Et, S
′S ′′)

sending (t, f, F̄ ) in the domain, where by Example 3.14 F̄ :
∮
(E ′ ◦ ∫ f)→ ∫ S ′′ must

be of the form Q ◦ ∫ F for some F : colim(E ′ ◦ ∫ f)→ S ′′, to the same G constructed

for F above. This shows that the B-parts of the associativity diagram commute.
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We now fix (t, f, F ) as above along with the corresponding F̄ and G that they

determine. The fiber of A(pq)r over (t, f, F̄ ) is∮ (∮
(E ′ ◦ ∫ f) Q−→ ∫ colim(E ′ ◦ ∫ f) ∫ F−−→ ∫ S ′′ E′′

−→ Ĉ ′′′
)
,

while the fiber of A|(pq)r| over (t, f, F̄ ) is

∫ colim
(
∫ colim(E ′ ◦ f) ∫ F−−→ ∫ S ′′ E′′

−→ Ĉ ′′′
)
.

The A-part of the map (π · id) ◦ π between them contracts first the inner lax colimit

to a strict colimit, then contracts the outer lax colimit to a strict colimit (which Q

no longer affects, see [32, Example 4.8]). The fiber of Ap(qr) over (t, G) is∮ (
x 7→

∮ (
∫ E ′f(x)

∫ Fx−−→ ∫ S ′′ E′′
−→ Ĉ ′′′

))
for x in Et, while the fiber of A|p(qr)| over (t, G) is

∫ colim
(
x 7→ colim(E ′′ ◦ ∫ Fx)

)
.

Similarly, the A-part of the map (id ·π) ◦ π between them contracts first the inner

and then the outer lax colimits to strict ones.

The E component of αRep is given by the colimit decomposition isomorphism

(see [4, Lemma 7.13], [32, Theorem 5.4]),

colim
x′∈colim

x∈Et
E′f(x)

E ′′F (x′) ∼= colim
x∈Et

colim
x′∈E′f(x)

E ′′Fx(x
′),

while the A component of αPoly is the analogous isomorphism for lax colimits, send-

ing
(
(x, x′), x′′

)
to

(
x, (x′, x′′)

)
as in Proposition 2.5. Both sides of the A-part of the
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associativity equation, where the cartesian associator maps act in the direction indi-

cated and the vertical productor maps act in the opposite direction, send
(
(x, x′), x′′

)
to the image of

(
x, (x′, x′′)

)
in the strict double colimit, either by first reindexing

with αPoly then quotienting twice from lax to strict colimits or first quotienting then

reindexing with αRep.

In conclusion, the diagram commutes, showing gr satisfies the associativity law

for colax bifunctors. In somewhat counterintuitive fashion, we have now proven

that gr is by all accounts a colax bifunctor before proving that the identity, unitor,

product, and associator in Rep satisfy the laws of a bicategory. This is resolved

below, but for now we summarize our results on gr in the following:

Theorem 4.3. gr : Rep→ Polyvf has the data, structure, and properties of a colax

bifunctor.

Remark 4.4. Pd : Poly
vf → CAT is a bifunctor which sends the colax structure maps

ϵ, π of gr to isomorphisms, so the composite Pdgr has the structure and properties

of not just a colax bifunctor, but an actual bifunctor, as the structure maps of the

composite are build out of those of Pd along with Pd applied to those of gr, and all

of these maps are isomorphisms.

4.5 Pentagon and Triangle Laws

To demonstrate that the pentagon and triangle laws hold in Rep, we recall the

following more general fact about bicategories:
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Proposition 4.5. Assume A denotes all of the data and structure of a bicategory

(objects, categories of morphisms, identities, composition functors, unitors λA, ρA,

associator αA), B is a bicategory, and H contains the data, structure, and properties

of a bifunctor A → B (mapping on objects, functors between morphism categories,

productor π, identitor ϵ, unitality and associativity equations) such that the func-

tor HC′,C : A(C ′, C) → B(C ′, C) is faithful for all objects C, C ′ in A. Then A is a

bicategory and H is a bifunctor.

Proof. By definition of A and H, it only remains to show that the pentagon and

triangle laws hold in A, and as H is locally injective on 2-cells, it suffices to show

that the images of the pentagon and triangle diagrams commute in B. We show

this for the triangle law; the (much larger) diagram for the pentagon is constructed

similarly from the pentagon diagram in B. For composable 1-cells p, q in A, we have

the following diagram:

H
(
(p1)q

)
H
(
p(1q)

)

H(p1)H(q)
(
H(p)H(1)

)
H(q) H(p)

(
H(1)H(q)

)
H(p)H(1q)

H(p)H(q)
(
H(p)1

)
H(q) H(p)

(
1H(q)

)
H(p)H(q)

H(p)H(q)

H(pq)

H(αA)

π−1 π−1

H(ρA)·id

π−1·id αB

id ·ϵ−1·id id ·ϵ−1·id

id ·π−1

id ·H(λA)

π

ρB·id αB

ρB·id id ·λB

id ·λB

π

π
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The diagram commutes by the associativity and unitality of H, naturality of αB,

and the triangle law for B. The outer left and right composites equal H(ρA · id) and

H(id ·λA), respectively, by naturality of π, so this is precisely the image under H of

the triangle diagram for p, q in A.
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CHAPTER 2

HIGHER CATEGORY THEORIES

5 Higher Category Schema

Our motivation for the preceding technical results is to describe familial monads on

Ĉ exclusively in terms of their operations and arities, for which we use the following

immediate consequence of Theorem 4.1.

Theorem 5.1. For any small category C, H restricts to an equivalence between

monoids in Fam(Ĉ, Ĉ) and monoids in the monoidal category Rep(C, C).

In this section we begin to explore how this result provides a unifying language

for different higher category theories. We first give an explicit description of what

constitutes a monoid in Rep(C, C) (sometimes denoted simply RepC) and show how

this information encodes equations between composition operations in a higher cat-

egory theory. We then discuss how these “schema” or behave when there are top-

dimensional cell shapes or the cell shapes are a restriction of those of another higher

category theory.

5.1 Monad Representations

By Theorem 5.1, a familial monad is uniquely determined by a monoid in Rep(C, C),

which by the definitions in Section 4 consists of the data below. We call such a familial
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representation over C a monad representation or higher category schema and say that

such a monad T is represented by the pair (S,E), which implicitly includes the data

of η, µ described below.

� A functor S : Cop → Set

� A functor E : ∫ S → Ĉ

These alone define the functor T = H(S,E) : Ĉ → Ĉ by

TXc =
∐
t∈Sc

Hom(Et,X).

� A map ηS from S0 : c 7→ {∗c} to S, for which we will often write simply

η(c) ∈ Sc, along with an isomorphism ηE : E ∫ ηS → E0, which amounts to

natural isomorphisms

Eη(c) ∼= y(c)

This provides the unit map

ηX : Xc
∼= Hom

(
y(c), X

)
∼= Hom

(
Eη(c), X

)
↪→

∐
t∈Sc

Hom(Et,X) = TXc.

� A map µS from SS : c 7→
∐

t∈ScHom(Et, S) to S, for which we will often

write simply µ(t, f) ∈ Sc, along with an isomorphism µE : E ∫ µS → EE, which

amounts to natural isomorphisms

Eµ(t, f) ∼= colim
x∈Et

Ef(x)
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This provides the multiplication map

TTXc
∼=

∐
(t∈Sc,f : Et→S)

Hom
(
colim
x∈Et

Ef(x), X
)
∼=

∐
(t,f)

Hom
(
Eµ(t, f), X

)
→

∐
t′∈Sc

Hom(Et′, X) = TXc.

� Commutativity of the following left unitality diagrams:

S0S SS

S
λS

ηS ;id

µS

colim
ι : y(c′)→y(c)

E(tι) colim
x : y(c′)→Eη(c)

E(tηE(x))

Et = Eµ(η(c), t : y(c)→ S)

colim
ηE

id

λE
µE

� Commutativity of the following right unitality diagrams:

SS SS0

S

µS

ρS

id;ηS colim
x : y(c′)→Et

Eη(c′) colim
x : y(c′)→Et

y(c′)

Eµ(t, ηS◦! : Et→ S0 → S) = Et

colim
id

ηE

ρE
µE

� Commutativity of the following associativity diagrams, where for t ∈ Sc,

f : Et → S, F : colim
x : y(c′)→Et

Ef(x) → S, αS((t, f), F ) is given by (t, G) where

G : Et→ SS with G(x) = (f(x), F |Ef(x)):

(SS)S S(SS)

SS SS

S

αS

µS ;id id;µS

µS µS
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colim
x′ : y(c′′)→ colim

x : y(c′)→Et
Ef(x)

EF (x′) colim
x : y(c′)→Et

colim
x′ : y(c′′)→Ef(x)

EG(x)(x′)

colim
x′ : y(c′′)→Eµ(t,f)

EF (µEx′) colim
x : y(c′)→Et

Eµ(f(x), G(x))

Eµ(µ(t, f), FµE) Eµ(t, x 7→ µ(f(x), G(x)))

αE

colim
µE

id colim
id

µE

µE µE

These equations ensure that (T, η, µ) satisfy the unit and associativity laws. Recall

that λS, ρS, αS are defined (in Section 4) by

λS
(
∗c, t : y(c)→ S

)
= t ∈ Sc, ρS

(
t, ! : Et→ S0

)
= t ∈ Sc,

αS
(
(t, f : Et→ S), F : colim

x : y(c′)→Et
Ef(x)→ S

)
=

(
t, G : Et→ SS : x 7→ (f(x), Fx)

)
,

where Fx is the composite Ef(x)→ colim
x′ : y(c′)→Et

Ef(x′)
F−→ S.

These isomorphisms and equations may appear tedious to check, but in practice

many interesting higher category theories have properties that ensure they arise

automatically.

Many examples have E land in rigid diagrams, objects in Ĉ with no nontriv-

ial automorphisms, in which case all isomorphisms in the class of the representing

diagrams Et are then unique.

Definition 5.2. A familial representation is rigid if all of the arities Et are rigid.

In this case it suffices to define η : S0 → S, µ : SS → S such that E ∫ η ∼= E0 and

E ∫ µ ∼= EE hold as properties rather than structure, then check only the diagrams

for the S-parts above. This is the case for all of our recurring examples.
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Another common property among our examples is that the set Sc of operations

outputting a c-cell contains at most one operation with each possible (isomorphism

class of) arity. This and the isomorphisms E ∫ η ∼= E0 and E ∫ µ ∼= EE ensure that

the S-parts of the unit and associativity equations hold automatically, so it suffices

to show that the arities present are closed under the appropriate colimits (and if they

are not rigid check that the E-parts of the monoid equations hold).

This is the case for n-categories, non-symmetric multicategories, and double cate-

gories. Symmetric multicategories by contrast have n! different operations with arity

given by each tree with n leaves. However, a slightly more permissive condition with

the same effect does apply to symmetric multicategories.

Definition 5.3. A familial representation is shapely ([19]) if among the functors

C/c ∼= ∫ y(c) t−→ ∫ S E−→ Ĉ

for t ∈ Sc, each isomorphism class of functor C/c→ Ĉ appears at most once.

By naturality of η, µ, this also ensures that the S-parts of the monoid equations

automatically hold. Shapeliness can be regarded as a general form of strict asso-

ciativity: any pair of composites µ(t, f), µ(t′, f ′) with t, t′ ∈ Sc that have the same

arity (and restrictions of that arity) must be equal. Counterexamples can then only

be found in higher categories with multiple different ways of composing the same

diagram that don’t merely rearrange its faces: in bicategories for instance, there are

different operations for composing n successive arrows for each parenthesization.
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Example 5.4. The monad structure on the familial representation (S,E) for cate-

gories in Example 1.2 (with S0 = {0}, S1 = N, En =
n−→) is given by

η(0) = 0 ∈ S0, η(1) = 1 ∈ S1, µ(0, 0) = 0 ∈ S0, µ(n, (m1, ...,mn)) =Σ
i
mi ∈ S1.

It suffices to define µ in terms of µ(0, 0) and µ(n, (m1, ...,mn)) as a map
0−→∼= y(0)→ S

is determined by an element of S0 and a map
n−→→ S is determined by n different

elements of S1, since all of the vertices in
n−→ must be sent to the unique element of

S0.

This definition of µ encodes both the classical unit and associativity equations

for categories in an unbiased way: µ(2, (0, 1)) and µ(2, (1, 0)) describe the binary

composite on either side of a single edge with an identity (the edge produced by a path

of length 0 in a graph), and both equal 1 ∈ S1, the unit operation on edges, so both

composites must agree with the original edge. Similarly µ(2, (2, 1)) = 3 = µ(2, (1, 2))

imposes associativity.

As this representation is rigid, to give the isomorphisms ηE, µE it suffices to check

that there merely exist isomorphisms

Eη(c) ∼= y(c) Eµ(t, f) ∼= colim
x∈Et

Ef(x) = colim
(
∫ Et ∫ f−→ ∫ S E−→ Ĉ

)
.

For η this follows from the graphs
0−→ and

1−→ being the single vertex and single edge,

respectively. For µ, ∫ En is the category with objects (0, 0), ..., (0, n), (1, 1), ..., (1, n)

and morphisms s : (0, i)→ (1, i+ 1) and t : (0, i)→ (1, i) with no nontriial compos-
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ites. The the colimit on the right hand side above is of the diagram

m1−→ · · · mn−−→

y(0) y(0) · · · y(0) y(0)

s t s t s t

whose colimit is indeed
Σimi−−−→. This colimit can be envisioned as “plugging

mi−→ into

the ith arrow of
n−→” which results in a (usually) longer string of arrows.

As this representation is shapely, we could have merely checked that there existed

some operation in S1 with this colimit as its arity rather than picking out µ in

advance, but in practice there isn’t much difference between the two.

In an algebra A for this monad (a category), this definition of η ensures that

the operation 1 sending an arrow in A to an arrow in A is the identity (as is the

operation 0 on vertices), while µ ensures that the n-ary composite of adjacent mi-ary

composites agrees with the (Σimi)-ary composite of the underlying string of arrows,

which encodes the unit and associativity equations.

n-categories, double categories, and multicategories also have their monad struc-

ture determined from their operations and arities, as they are all rigid and shapely.

This means that to show they fit the definition of a higher category schema it suffices

to show that their arities are closed under the appropriate colimits.

Example 5.5. Recall that the representation (S,E) of the familial monad onG1×G1

whose algebras are double categories has

S(·) = {0}, S(↣) = N, S(◦→) = N, S(□) = N× N,
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where for both Ssv, Stv : N×N→ N are the first projection while Ssh, Sth are both

the second projection. This is because the vertical source and target of an n×m grid

are both the string of n horizontal arrows while the horizontal source and target of

such a grid are both the string of m vertical arrows. E0 is the single vertex, En for

n ∈ S(↣) is the string of n horizontal arrows, Em for m ∈ S(◦→) is the string of

m vertical arrows, and E(n,m) is the n×m grid of squares shown in Example 1.14,

which we denote by
n−→ ⊗ m−→.

This familial representation is rigid and shapely, so it suffices to show that

these arities are closed under the appropriate colimits. This is clearly the case for

operations outputting a vertex or either arrow type as in Example 5.4. A map

f :
n−→ ⊗ m−→→ S, as Ssh = Sth = π2, must send all squares in the same row of

the grid to pairs (i, j) with the same j; similarly, as Ssv = Stv = π1, all squares in

the same column must be sent to pairs (i, j) with the same i. Such a map is then

entirely determined by n choices of i ∈ S(↣) and m choices of j ∈ S(◦→). The

corresponding colimit defining µ((n,m), f) then arises from plugging new grids into

the squares of
n−→ ⊗ m−→ which agree on their boundaries, and this ensures that the

resulting double graph is again a rectangular grid of squares, as below.

• · • • · · •

• · • • · · •

· · · · · · ·

• · • • · · •

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦
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Composite operations in 2-categories behave similarly, where the operations

plugged into the 2-cells of a pasting diagram must agree on their vertical bound-

aries (as horizontal boundaries are always just a single vertex on either side).

Example 5.6. (See also [35, Example 2.14].) The definition of η and µ for the

free nonsymmetric multicategory monad on multigraphs (Example 1.13) is largely

analogous to Example 5.4 where n-leaf trees are plugged into the n-to-1 edges of

another tree to form a composite tree, but for symmetric multicategories as alluded to

above the way the shapeliness determines how η, µ are defined is more complicated, as

it determines not only the underlying tree of the composite but also the permutation

of the leaves.

Note that for each operation t ∈ S(n, 1) for the free symmetric multicategory

monad, determined by a tree Et and an ordering on its n leaves, the map E(si)t :

Eη(0) ∼= y(0) → Et are given by the inclusion of the vertex as the ith leaf in the

tree Et according to that ordering. For nonsymmetric multicategories the planar

ordering on the leaves is always used, meaning a ≤ b when there is a multi-edge in

the tree such that the leaf a descends from its ith source and the leaf b descends from

its jth source with i ≤ j.

Consider how to choose η(n, 1) ∈ S(n, 1): the operation must have as its arity

the height 1 tree with n leaves, but there are n! such operations corresponding to the

possible orders on the leaves. Naturality of the isomorphism ηE : Eη(n, 1) ∼= y(n, 1)

means that Esi : Eη(0) → Eη(n, 1) agrees (up to the isomorphisms ηE) with the

inclusion y(0) → y(n, 1) of the vertex as the ith source of the multi-edge y(n, 1).
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This condition, for all i, imposes that η(n, 1) must be the height 1 tree with n leaves

with the planar order on the leaves. While there are many operations with arity

a single n-to-1 edge, when accounting for the faces (inclusions of y(0) as leaves) it

becomes unique.

µ is similarly determined. When the composite tree Eµ(t, f) is constructed by

plugging m-leaf trees with ordered leaves Ef(x) into each m-to-1 edge x in the tree

Et with an order on its n leaves, naturality of µE requires that the ith (1 ≤ i ≤ n)

inclusion of a vertex into the composite tree Eµ(t, f) corresponds to the ith leaf of

Et. As µE mediates between Eµ(t, f) and the colimit

colim(∫ Et f−→ ∫ S E−→ Ĉ)

where the ith leaf of Et is a vertex including into Ef(x) for the multi-edge x in Et to

which the leaf belongs, in the colimit this is the jth leaf in Ef(x), where the ith leaf

of Et is the jth source of x. Therefore, the order on Eµ(t, f) is constructed from the

planar order by reordering according to the order on each Ef(x) for all multi-edges

x in Et, then again reordering by the order on Et.1

For example, consider the tree Et below with its leaves ordered as (3, 2, 5, 1, 4)

(with respect to the planar order) and the map f : Et→ S sending each n-to-1 edge

to the height 1 tree consisting of a single n-to-1 edge with the orders on leaves as

1For this description it is perhaps easier to use permutations of leaves in place of orders.
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written below.
2

1 2

3 ·
2 1

1

The composite Eµ(t, f) has the same underlying tree as Et. To construct the order

on the leaves, start with the planar order (1, 2, 3, 4, 5). Applying the orders on the

leftmost multi-edges yields (2, 1, 3, 5, 4), then applying the order on the rightmost

2-to-1 edge yields (5, 4, 2, 1, 3). Finally, applying the order on Et (essentially, com-

posing the two permutations of the planar order) turns this into (4, 1, 2, 3, 5). This

construction agrees with composing multimorphisms and their symmetric group ac-

tions in a symmetric multicategory.

5.2 Endpoint Objects

Endpoint objects in a category of cell shapes are precisely those which are “top

dimensional” in the sense of not being a face of any other cell shape. These objects

are the cell shapes that can be affected by enrichment, just as enriched categories

only modify the structure of the arrows in a category, not the objects.

Definition 5.7. An object e in a category C is an endpoint if it has no non-identity

outgoing morphisms.

Example 5.8. In the category G1 = 0
s

⇒
t
1, the object 1 is an endpoint. This is the
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sense in which edges are the top-dimensional cells in a graph. More generally

Gn = 0
s

⇒
t
1

s

⇒
t
· · ·

s

⇒
t
n

has endpoint object n, as n-cells are top-dimensional in n-globular sets, and G1×G1

has the square as an endpoint object.

A choice of endpoint object e in a category C gives rise to a canonical functor

C →∆1 sending e to 1 and all other objects to 0.

We will often write e = {ek} for a set of endpoint objects indexed by elements k

of some implicit indexing set, and when X is in Ĉ we write Xe for
∐

kXek .

Example 5.9. In M, the indexing category for multigraphs, all n-to-1 edges are

top-dimensional.

Proposition 5.10. For e a set of endpoint objects in C, X in Ĉ, and Y : ∫ X → Ĉ

with Y (x)e empty whenever x��∈Xe,

(colim
x∈X

Y (x))e ∼=
∐
x∈Xe

Y (x)e.

Proof. Y (x)e is assumed empty whenever x��∈Xe, and as e is an endpoint object no

two e-cells in X are related by maps in ∫ X. Therefore the e-cells in the colimit,

generally a quotient of the disjoint union of those in Y (x) for all x, are simply the

disjoint union of Y (x)e for x ∈ Xe as none of these e-cells will be related by maps in

the diagram Y ..
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For e a set of endpoint objects, we let C\e denote the full subcategory of objects

in C which are not in e.

Definition 5.11. A famillal endofunctor on Ĉ represented by (S,E) is e-graded for

a set of endpoint objects e if Ete is empty for all t ∈ Sc with c in C\e.

Example 5.12. For the choices of endpoint(s) e described above, the free n-category,

double category, and multicategory monads are all e-graded, as only the arities of

operations outputting e-cells contain any e-cells.

Corollary 5.13. For familial endofunctors on Ĉ represented by (S,E) and e-graded

(S ′, E ′), and (t ∈ Sc, f : Et→ S ′) ∈ SS ′c,

EE ′(t, f)e ∼=
∐
x∈Ete

E ′f(x)e.

Proof. This follows immediately from the previous proposition and the definition of

EE ′(t, f) as a colimit over ∫ Et.

Example 5.14. This is explicitly encoded in µ for the free category monad, ex-

pressed as a sum in N. For the other recurring examples, it is straightforward to

check that this is the case. For instance, the set of multi-edges in a composite tree

Eµ(t, f) is indeed the disjoint union of the multi-edges in the subtrees Ef(x) for x

ranging over multi-edges in Et.
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5.3 Restriction of Cell Shapes

We will often be interested in restricting a familial monad on Ĉ to a monad on

diagrams over a subcategory of C. To this end, we fix a functor u : C ′ → C, which

will typically be the inclusion of a full subcategory, and write u∗ : Ĉ → Ĉ ′ for the

corresponding restriction functor and u!, u∗ for its left and right adjoints, respectively.

Definition 5.15. Given a familial endofunctor T on Ĉ represented by (S,E), its re-

striction along u is the endofunctor on Ĉ ′ denoted u∗T and represented by (u∗S, u∗E)

where u∗E is the composite functor

∫ u∗S → ∫ S E−→ Ĉ u∗−→ Ĉ ′,

where the leftmost functor is the pullback of u along the discrete fibration ∫ S → C.

In particular, for X in Ĉ ′ and c′ in C ′,

(u∗T )Xc′ =
∐

t∈Su(c′)

HomĈ′(u
∗Et,X).

It is straightforward to check that u∗ forms a functor RepC → RepC′ .

Definition 5.16. A familial endofunctor T represented by (S,E) is u-graded if the

natural transformation u!u
∗E → E is an isomorphism when restricted along ∫ u∗S →

∫ S.

Lemma 5.17. If X is in Ĉ and u!u
∗X → X is an isomorphism, then the functor

∫ u∗X → ∫ X is final (in the sense of [29, Definition 2.1.4]).
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Proof. Recall that ∫ u∗X is the pullback of ∫ X → C along u, and ∫ u!u∗X is the final-

(discrete fibration) factorization ([29, Proposition 2.1.5]) of the composite functor

∫ u∗X → C ′ → C. As the latter is isomorphic to ∫ X by assumption, the functor

∫ u∗X → ∫ X must be final.

Proposition 5.18. u∗ : RepC → RepC′ restricted to u-graded monads is a monoidal

functor when u is fully faithful.

Proof. Restriction preserves terminal presheaves, so u∗S0 = S0 in Ĉ ′. u∗E sends

∗c′ ∈ u∗S0c′ to u∗y(u(c′)) ∼= u∗u!y(c
′), which is isomorphic to y(c′) via the unit of the

adjunction precisely when u is fully faithful.

(u∗S)(u∗S ′)c′ =
∐

t∈Su(c′)

HomĈ′(u
∗Et, u∗S ′) ∼=

∐
t∈Su(c′)

HomĈ(u!u
∗Et, S)

∼=
∐

t∈Su(c′)

HomĈ(Et, S) = (u∗SS ′)c′,

the last isomorphism given by the u-gradedness condition. We then have

(u∗E)(u∗E ′)(t, f : u∗Et→ u∗S ′) = colim
x∈∫ u∗Et

u∗E ′f(x) ∼= u∗( colim
x∈∫ u∗Et

E ′f(x))

→ u∗(colim
x∈∫ Et

E ′f(x)) ∼= u∗(EE ′(t, f)) = (u∗EE ′)(t, f).

The above is therefore an isomorphism if the functor ∫ u∗Et → ∫ Et is final (as by

definition then the induced map on colimits is an isomorphism), which follows from

Lemma 5.17 (in fact, this functor is an isomorphism). Verifying the unitality and

associativity equations is tedious but straightforward.
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Note that the assumption that u is fully faithful is only used to show that u∗

preserves units; without that assumption u∗ is nearly colax-monoidal, but the map

between units would be a non-cartesian maps between familial representations.

The following is an immediate consequence of Proposition 5.18

Corollary 5.19. u∗ : RepC → RepC′ lifts to a functor from u-graded familial mon-

ads on Ĉ to familial monads on Ĉ ′ when u is fully faithful.

Finally, we show that restriction along u induces a functor between algebras.

Proposition 5.20. For T a u-graded familial monad on Ĉ with u fully faithful,

u∗ : Ĉ → Ĉ ′ lifts to a functor from T -algebras to u∗T -algebras.

Proof. Given X in Ĉ, observe that

(u∗T )(u∗A)c′ =
∐

t∈Su(c′)

HomĈ′(u
∗Et, u∗A)

∼=
∐

t∈Su(c′)

HomĈ(u!u
∗Et,A) ∼=

∐
t∈Su(c′)

HomĈ(Et,A)
∼= u∗(TA)c′ ,

so (u∗T )(u∗A) ∼= u∗(TA).

Now given a T -algebra TA → A, applying u∗ gives a map (u∗T )(u∗A) ∼=

u∗(TA) → u∗A in Ĉ ′, and it is straightforwad to check that this map satisfies the

properties of a u∗T -algebra.

Example 5.21. Consider a small category C with a set e = {ek} of endpoint objects,

with u : C\e→ C the canonical inclusion. For X in Ĉ, we write ∂eX for u∗X.
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A familial monad T on Ĉ is then u-graded precisely when it is e-graded (Defini-

tion 5.11). We write ∂eT for the familial monad u∗T on Ĉ\e, which has the same

operations and arities as T excluding the e-operations. As T is e-graded, the arities

Et for t ∈ Sc, c��∈e, do not include any e-cells, so applying ∂e leaves them entirely

unchanged.

Example 5.22. For the free category or free multicategory monads with e containing

all endpoint objects and u as in Example 5.21, u∗ produces the identity monad on

sets, as C\e is the one-object category and µ∗T has just one operation with the

singleton as its arity. The functor u∗ on algebras sends a small (multi)category to

its set of objects.

Example 5.23. Let u be the inclusion Gm → Gn for m ≤ n sending i to i, s to s,

t to t. The free n-category monad T on n-globular sets is u-graded as u!u
∗X simply

deletes the cells in X above dimension m, and operations outputting cells of at most

dimension m have no such higher dimensional cells to begin with. The restricted

monad u∗T on m-globular sets is the free m-category monad and the functor u∗

on algebras sends an n-category to its underlying m-category, forgetting the higher

dimensional cells.

Example 5.24. Consider G1×G1 and the free double category monad T on double

graphs. For u as in Example 5.21 with e the endpoint object □, T is u-graded

and restricts to the monad on graphs with two types of edges that applies the free

category monad to both types of edges, with algebras pairs of categories which have

the same objects. T is also u-graded when u : G1 → G1 ×G1 sends 0 to · and 1 to

↣ (resp. ◦→). In this case the restriction of T is the free category monad, and the
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restriction functor on algebras sends a double category to its underlying category of

horizontal (resp. vertical) arrows.

u : G1 → G1 ×G1 could also send 0 to ↣ and 1 to □. In this case u∗ sends a

double graph to the graph with vertices the horizontal arrows and edges the squares

between them. u! sends a graph to the double graph with a horizontal edge for

each vertex and a square for each edge, where no two horizontal edges or squares are

horizontally adjacent. T is not u-graded, as applying u!u
∗ to an n×m grid of squares

separates the grid into n disjoint 1 ×m grids. One interpretation for this failure is

that u can “see” the horizontal composition of squares and model it as composition

of edges in a graph, but vertical composition can’t be preserved in any way by this

restriction as there is no way to check in a graph whether two vertices or edges are

“vertically adjacent” in a sense compatible with u.

6 Lawvere Theories and Nerves

The construction of the nerve functor Cat → ∆̂ can be replicated for any familial

monad T , with the role of ∆ replaced by a category ΘT . When T is a finitary monad

on sets (meaning all of its arities are finite), ΘT is the opposite of the Lawvere Theory

of T . We review Lawvere Theories and show how the category ΘT generalizes key

features of both Lawvere Theories and ∆.
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6.1 Lawvere Theories

Definition 6.1. Let T be a finitary monad on Set. The Lawvere Theory of T is

the category LT , where LT is the full subcategory of T -algebras spanned by the free

T -algebras Tn.

In LT the object Tn is a finite coproduct of T1, as T : Set → alg(T ) is a left

adjoint and hence preserves coproducts.

Remark 6.2. Lawvere theories are often considered via the opposite of LT in which

every object is a finite product of T1, but like in [25, Chapter II, Proposition III.2]

we call LT the theory.

Definition 6.3. ([25, First definition of Chapter III]) An LT -model is a product

preserving functor LopT → Set.

Example 6.4. Let T be the free monoid monad on Set. For a fixed monoid M ,

there is a product preserving functor M− : LopT → Set sending Tn to Mn. The

functor preserves projections, diagonals, and products of morphisms, so it suffices

to specify the image of the maps T2 → T1 and T0 → T1 given by x1 7→ x1x2 and

x1 7→ e respectively (recall that a map of monoids from T1 ∼= N, which is a map to

T1 in LopT , is determined by the image of the generator which we denote x1). These

are sent to the functions M2 → M and 1→ M that define the product and unit in

the monoid M .

In a similar fashion, for any finitary monad T , a T -algebra A gives rise to a
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LT -model A− sending Tn to An, with the action on morphisms determined by the

cartesian product structure and algebra structure maps in A.

Theorem 6.5. Up to isomorphism, every LT -model is of the form A− for some

T -algebra A.

In other words, the category of LT -models is equivalent to the category of T -

algebras. This can also be phrased as a fully faithful embedding of the category of

T -algebras into the presheaf category L̂T , where the essential image of this embedding

is given by those functors LopT → Set which preserve products.

6.2 The Theory Category ΘT and Nerves

We first recall the definition of the nerve of a category.

Example 6.6. ∆ can be defined as the full subcategory of Cat on the finite

nonempty ordinal categories [n] with n + 1 objects and n generating arrows for

each natural number n. The nerve functor N : Cat→ ∆̂ is then defined as

NAn = HomCat([n],A).

Notably, N is fully faithful.

We now fix a familial monad T on Ĉ represented by (S,E). The idea of ΘT is to

imitate LT when T is a familial monad on any Ĉ.
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Definition 6.7. The theory category of T , denoted ΘT , is the full subcategory of

T -algebras spanned by the free algebras TEt on each arity diagram. Likewise, Θ0

(or ΘT,0 when T is not clear from context) is the full subcategory of Ĉ spanned

by the arity diagrams Et, and the free algebra functor on Ĉ restricts to a functor

TΘ : Θ0 → ΘT .

The “theory” terminology is inspired by Lawvere theories and [5, Definition 1.5].

ΘT could equivalently be defined as a full subcategory of the Kleisli category of T

on the arity diagrams; using alg(T ) will be more convenient for defining the nerve

functor, while the Kleisli category description is better suited for the constructions

in Section 6.3.

Remark 6.8. We will treat all of the functors

C η−→ ∫ S E−→ Θ0
TΘ−→ ΘT

as inclusions of subcategories, the latter two identity-on-objects. Hence in ΘT we

will write simply t for the free algebra TEt (t ∈ Sc), and write c for TEη(c) (which

is isomorphic to Ty(c)). To this end, any two operations in S are treated as dis-

tinct objects in Θ0 and ΘT even if their arities are isomorphic (though often it is

more convenient to work with the skeleton, especially in the situations described in

Section 6.4).

C ↪→ ΘT will occasionally be called the elementary subcategory, and Θ0 is called

the inert subcategory. We show in Lemma 6.21 that TΘ is in fact a faithful inclusion

of Θ0 into ΘT .
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Example 6.9. When T is the free category monad on graphs, ΘT is the full subcat-

egory of Cat on the ordinal categories [n] which are the free categories on the string

graphs
n−→, but by our convention on objects [0] is counted twice, for both 0 ∈ S0 and

0 ∈ S1. ΘT is then the usual category ∆ but with two uniquely-isomorphic copies

of [0]. This makes no meaningful difference to the theory of nerves of categories, but

becomes more significant when considering active subcategories in Section 6.3 and

Section 6.4.

We are now ready to generalize the nerve functor to T -algebras.

Definition 6.10. The nerve functor for T -algebras is defined as

NT : alg(T )→ Θ̂T NT (A)t = Homalg(T )(TEt,A).

Example 6.11. For T the free n-category monad on n-globular sets, ΘT is the full

subcategory of free n-categories on the n-dimensional pasting diagrams such as in

Example 1.12. This is precisely Joyal’s category Θn ([23]), and the corresponding

nerve functor from n-categories to Θ̂n is the standard cellular nerve of n-categories

(see [5, Theorem 1.12, Remark 1.13]). As with ∆, our definition of Θn includes

n−m+1 different uniquely-isomorphic copies of eachm-dimensional pasting diagram,

0 ≤ m ≤ n, corresponding to the operations with that pasting diagram as arity

outputting an ℓ-cell for m ≤ ℓ ≤ n.

Similarly, the theory category for the free ω-category monad on globular sets is

Joyal’s category Θ, the sequential colimit of the categories Θn.

Example 6.12. For T the free double category monad on double graphs, ΘT is the
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category of free double categories on n ×m grids of squares, whose morphisms are

easily checked to correspond to linear inclusions of grids such as the one depicted

below.

· · ·

· · ·

· · ·

◦ ◦ ◦

◦ ◦ ◦ 7→

• • · · • ·

· · · · · ·

• • · · • ·

• • · · • ·

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

These morphisms are uniquely determined by the pair of morphisms in ∆ describing

the action on horizontal arrows and vertical arrows respectively. It is then straight-

forward to see that ΘT is in fact ∆ × ∆ (this product even perfectly accounts for

our convention on repeated objects). The corresponding nerve functor from double

categories to bisimplicial sets is the standard one ([15, Definition 2.14]).

More generally, there is a free n-tuple category monad on diagrams over G×n
1

whose arities are given by n-dimensional grids of n-cubes, with theory category ∆×n

and nerve functor to n-simplicial sets.

Example 6.13. For T the free (symmetric/nonsymmetric) multicategory monad

on multigraphs, ΘT is the (ordinary/planar) tree category Ω of Moerdijk and Weiss

([30]), which is defined as the full subcategory of free (symmetric/nonsymmetric)

multicategories on the arity trees. The nerve functor to the corresponding diagrams,

called dendroidal sets, is precisely the dendroidal nerve.

Weber showed that just like the classical nerve of categories, NT is always fully
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faithful and nerves are characterized among diagrams in Θ̂T by certain limit condi-

tions.

Definition 6.14. X : ΘT
op → Set satisfies the Segal condition if for all t in S,

Xt
∼= lim

x:y(c)→Et
Xc.

Theorem 6.15 ([35, 4.10]). NT is fully faithful, and a diagram in Θ̂T is isomorphic

to the nerve of a T -algebra precisely when it satisfies the Segal condition.

Theorem 6.15 can be seen as a generalization of the perspective of models for

Lawvere theories, by rephrasing the Segal condition in terms of limit preservation.

Lemma 6.16. For any operation t ∈ Sc and f : Et→ S, we have in ΘT

µ(t, f) ∼= colim(∫ Et ∫ f−→ ∫ S E−→ Θ0
TΘ−→ ΘT ).

Proof. By assumption Eµ(t, f) ∼= colim(E ◦ ∫ f) in Ĉ, and the left adjoint T : Ĉ →

alg(T ) preserves colimits. As Θ0 and ΘT are full subcategories the same colimits are

reflected in Θ0 and ΘT respectively and hence preserved by TΘ.

By Lemma 6.16, the Segal condition is equivalent to the functor X : ΘT
op → Set

preserving the limits in ΘT
op described in the lemma.

Definition 6.17. A ΘT -model is a functor X : ΘT
op → Set which satisfies the Segal

condition, and a morphism of ΘT -models is a natural transformation of functors.

The following is then an equivalent rephrasing of Theorem 6.15.
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Corollary 6.18. The category of T -algebras is equivalent via NT to the category of

ΘT -models.

Example 6.19. When T is the free monoid monad with e its unique cell shape (the

vertex), ΘT is the category of free monoids on the sets n, opposite the Lawvere theory

for monoids. The nerve of a monoid M is the corresponding functor M− sending Tn

to Mn, and the Segal condition is that X : ΘT → Set sends n to X(1)n, equivalent

to the product preservation condition for models.

Example 6.20. (See also [5, Remark 1.7] for related commentary.) In general,

any familial monad on Set with finite arities has ΘT given by the opposite of the

Lawvere theory, LT . ΘT -models are then the same as models for the Lawvere theory,

and the Segal condition is simply product preservation from LopT to Set. The fact that

Lawvere theories apply more broadly than to just familial monads on Set suggests

that theories and nerves can be defined for a broader class of monads than just the

familial ones, though this is not needed for our purposes (see [8]).

6.3 Active and Inert Subcategories

ΘT carries a factorization system, where morphisms factor as active maps followed

by inert maps (this is a reformulation of ideas primarily from [34], following the style

of [16, 2.2,2.3]).

Inert maps are those of Θ0, which we now prove is a subcategory of ΘT .

Lemma 6.21. TΘ : Θ0 → ΘT is faithful.
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Proof. For any g, h : Et→ Et′ with Tg = Th, the naturality square below commutes

for both g and h. As η is a natural monomorphism (either by cartesianness of T or

the explicit form of η as the inclusion of a component of a coproduct), this means

g = h.

Et TEt

Et′ TEt′

ηEt′

g h Tg

ηEt

Example 6.22. In ∆, the inert morphisms are the linear maps [m]→ [n] (which send

adjacent objects in [m] to adjacent objects in [n]), as these are the functors between

ordinal categories that arise from the underlying maps between their generating

graphs
m−→, n−→.

Similarly, inert morphisms in Θn are those which are “linear in each dimension”

(see for an alternative description of these inert maps). Inert morphisms in ∆ ×∆

are pairs of inert morphisms in ∆.

Example 6.23. In Ω (planar or otherwise), the inert morphisms are the “linear”

inclusions of planar trees, meaning the morphisms which send single multi-arrows

to single multi-arrows. Even in the case of symmetric multicategories, these do not

include any maps of the corresponding free multicategories which don’t respect the

planar order on the leaf objects, so the isomorphisms in Ω between trees with different

orders on the leaves are not considered inert.

By the adjunction between Ĉ and alg(T ), a morphism TEt→ TEt′ in alg(T ) is
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determined by a map Et→ TEt′ in Ĉ. Each x ∈ Etc′ is sent to an operation tx ∈ Sc′

and a map Etx → Et′. When t = η(c), tidc = t′, and Et′ → Et′ the identity, we write

at : c → t for the corresponding morphism in ΘT . These are the “cocomposition

maps” which exhibit t-composition At → Ac in a ΘT -model A : ΘT
op → Set. An

active map t→ t′ is a colimit of cocomposition maps, exhibiting t′ as a composite of

operations with t.

Definition 6.24. An active map in ΘT is of the form af : t → µ(t, f) for some

t ∈ Sc, f : Et→ S, and is given by

t ∼= colim
x:y(c′)→Et

c′
colim af(x)−−−−−−→ colim

x:y(c′)→Et
f(x) ∼= µ(t, f).

Example 6.25. The cocomposition maps in ∆ are the endpoint-preserving maps

[1] → [n], picking out the composite arrow of the n generating edges of the free

category [n]. The arity colimits in ∆ take ordinals [n1], ..., [nm] and adjoin them along

their endpoints to get [n1 + · · ·+ nm] as in [11, Section 2]. Hence on cocomposition

maps, the arity colimits assemble m different cocomposition maps [1] → [ni] into a

single endpoint-preserving map [m]→ [n1+ · · ·+ni]. In fact all endpoint-preserving

maps arise in this way, so the active maps in ∆ are precisely those that preserve

endpoints.

Just as with inert maps, the active maps in Θn and ∆ × ∆ arise from those in

∆, the former being maps which “preserve endpoints” in every dimension and the

latter being pairs of endpoint-preserving maps.

Example 6.26. In Ω, active maps are those which preserve both leaves and the

root, but need not preserve the order on leaves (isomorphisms permuting the leaves
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of a tree are active). As in ∆, these maps go from one tree with n leaves to another

tree with n leaves whose multi-arrows can be composed or permuted into the domain

tree.

Lemma 6.27. For any c in C, aη(c) = idc in ΘT , and for any t ∈ Sc and f : Et→ S,

af ◦ at = aµ(t,f) : c→ µ(t, f).

Proof. The first equation follows from the fact that a map TEt → TEt′ in alg(T )

corresponds to the map Et → TEt′ in Ĉ given by precomposing with ηEt : Et →

TEt. The second equation follows from the reverse correspondence: the map Et→

TEµ(t, f) corresponding to af sends x to the pair (f(x), Ef(x) → Eµ(t, f)), and

extends to a map TEt→ TEµ(t, f) sending (t′, g : Et′ → Et) in TEt to the pair

(µ(t′, fg), Eµ(t′, fg) ∼= colim
x′∈Et′

Efg(x′)→ Eµ(t, f))

in TEµ(t, f). When t′ is t and g = idEt (namely, the image of (η(c), idy(c)) under

at : Ty(c) → TEt) af then sends the pair to (µ(t, f), idEµ(t,f)), which shows the

composite Ty(c)→ TEt→ TEµ(t, f) is given by aµ(t,f) as desired.

Proposition 6.28. Active maps form a subcategory Θa of Tht.

Proof. Identities are active maps by choosing f to be Et→ ∗ η−→ S, so af is a colimit

of identities.

For composition, we start with active maps t → µ(t, f) → µ(µ(t, f), F ) and

use the associator to turn F : Eµ(t, f) → S into the conglomerate of morphisms
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Fx : Ef(x)→ Eµ(t, f)→ S. The composite is then the morphism

t→ µ(t, x 7→ µ(f(x), Fx)) = µ(µ(t, f), F ),

as for each component of the colimit the composite of af(x) with aFx is aµ(f(x),Fx) by

Lemma 6.27.

Note that this subcategory will have separate connected components for each

c in C, as all morphisms are between t, µ(t, f) which are both c-operations. We

will sometimes write Θc
a for the connected component of c-operations, so Θa can be

regarded as the coproduct of the categories Θc
a.

Example 6.29. In ∆, using our convention on the objects of ΘT , the unique iso-

morphism between the two copies of [0] is inert (as an isomorphism of the graph with

only one vertex) but not active. Therefore the active subcategory of ∆ as a theory

category is the disjoint union of Θ0
a which is the terminal category consisting of [0]

and Θ1
a which is the subcategory of endpoint preserving maps in ∆. This subcate-

gory of ∆ is known to be isomorphic to ∆op
+ , the opposite of the augmented simplex

category of all finite ordinals and monotone maps, where an endpoint preserving map

in one direction corresponds to a monotone map in the opposite direction on the sets

of generating edges (each edge in the codomain sent to the edge in the domain that

“covers” it). (This can be deduced from, for instance, [23, 1.1].)

Example 6.30. The active subcategory of ∆×∆ as a theory category for the free

double category monad consists of the terminal category Θ•
a, two copies of ∆op

+ as

Θ↣
a and Θ◦→

a , and ∆op
+ ×∆op

+ as Θ□
a .
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We now construct the active-inert factorization system on ΘT .

Theorem 6.31. Each morphism in ΘT factors uniquely as an active map followed

by an inert map.

In ∆ (and mostly analogously in our other examples) this factors a map g : [m]→

[n] as an endpoint preserving map, to the ordinal subcategory of [n] from g(0) to

g(m), followed by a linear map including this ordinal into [n].

Proof. Consider g : t → t′, and let fg : Et → S be the composite Et
g−→ TEt′

T !−→

T∗ ∼= S in Ĉ. T ! : TEt′ → T∗ ∼= S sends a pair (t′′ ∈ Sc′′, Et′′ → Et′) to the

underlying operation t′′ in S, so fg sends each x ∈ Etc′ to the operation its image in

TEt′ is the output of. The data of g amounts to the operations fg(x) and compatible

maps Efg(x)→ Et′.

g then factors as the active map t → µ(t, fg) followed by the inert map g0 :

µ(t, fg)→ t′ given by the map

Eµ(t, fg) ∼= colim
x:y(c′)→Et

Efg(x)→ Et′

induced by the maps Efg(x) → Et′, as each x ∈ Etc′ is sent by the active map to

the pair

(fg(x), Efg(x)→ Eµ(t, fg))

in TEµ(t, fg)c′ , which is sent by g0 to the pair

(fg(x), Efg(x)→ Et′)

in TEt′c′ , precisely the image of x under g.
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Example 6.32. When T is the free monoid monad ΘT is the category of free monoids

on the sets n and Θa is ∆op
+ . The active-inert factorization on ΘT factors the map

⟨x1, ..., xm⟩ → ⟨y1, ..., yn⟩ sending xi to yji,1 · · · yji,ℓi into the composite

⟨x1, ..., xm⟩ → ⟨z1,1, ..., z1,ℓ1 , ..., zm,1, ..., zm,ℓm⟩ → ⟨y1, ..., yn⟩

where the first map sends xi to zi,1 · · · zi,ℓi and the second map sends zi,k to yji,k . The

first map is active, with each generator in the codomain appearing in order exactly

once in the images of the xi, and the second map is inert, with each generator in the

domain sent to a generator in the codomain. As such, the active maps from the free

monoid on n to the free monoid on m correspond to ordered functions from m to n,

which exhibits Θa as ∆op
+ .

6.4 Degenerated Unit Operations

In many standard examples of higher categories, each cell shape c has “degeneracy”

or “unit” operations which output a c-cell for each lower-dimensional cell shape.

These operations are typically those providing “identity cells” in a higher category,

which arise from lower dimensional cells like the identity morphisms in a category.

When a monad T has suitably many such unit operations, its active subcategory Θa

can be regarded as a (more) connected subcategory of ΘT than its description above

as a disjoint union of the categories Θc
a.

Definition 6.33. A familial monad T on Ĉ has P -units if there is a poset P on the

objects of C and for each c′ ≤ c in P an element ηc(c
′) ∈ Sc and an isomorphism
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ηc,c′ : Eηc(c
′) ∼= y(c′) such that

� ηc(c) = η(c) and Eηc(c) = Eη(c)→ y(c) is given by the unit on T

� For c′′ ≤ c′ ≤ c in P , µ(ηc(c
′), ηc′(c

′′)) = ηc(c
′′) and the following diagram

commutes:

Eηc(c
′′) y(c′′)

colim
x:y(c′′′)→Eηc(c′)∼=y(c′)

E(Sηc,c′xηc′(c
′′)) Eηc′(c

′′)

ηc,c′′

∼=

∼=

ηc′,c′′

Note that there are no conditions on how the operations ηc(c
′) are acted on by

C in S, only that they are compatible with η, µ, though in practice they are often

related in both ways. The notation here is meant to portray the operations ηc(c
′) as

an extension of the unit operations η(c) ∈ Sc according to the poset P .

Example 6.34. For T the free category monad on graphs, let P be the poset 0 < 1

on Ob(G1). In this simple case it suffices to specify η1(0) = 0 ∈ S1 with η1,0 the

unique isomorphism Eη1(0) =
0−→∼= y(0).

In fact, whenever c′ ≤ c any operation outputting c′ has a corresponding operation

outputting c with the same arity by composition with ηc(c
′): for t ∈ Sc′ regarded

as a map Eηc(c
′) ∼= y(c′) → S, µ(ηc(c

′), t) ∈ Sc has arity isomorphic (via ηc,c′ on

the indexing category of the colimit) to Et. We will write ηc(t) = µ(ηc(c
′), t) and

ηc,t : Eηc(t) ∼= Et.

Example 6.35. Let T be the free n-category monad on n-globular sets, and P the

linear poset 0 < 1 < · · · < n on Ob(Gn), (n can be ω here). Setting ηm(ℓ) for
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ℓ ≤ m to be the m-dimensional pasting diagram with a single ℓ-cell with the unique

isomorphism Eηm(ℓ) ∼= y(ℓ), we get that for any ℓ-dimensional pasting diagram

t, ηm(t) is the corresponding m-dimensional pasting diagram with only cells up to

dimension ℓ. ηm,t is the unique isomorphism between the pasting diagrams Et and

Eηm(t).

Lemma 6.36. The functions ηc : Sc′ → Sc extend to fully faithful functors ηΘc :

Θc′
a → Θc

a.

Proof. ηΘc sends the morphism (f : Et → S) : t → µ(t, f) in Θc′
a to fηc,t : Eηc(t) ∼=

Et→ S. This assignment is clearly fully faithful, but it remains to show it preserves

codomains and is functorial:

� Preserving codomains means that µ(ηc(t), Eηc(t)
ηc,t−−→ Et

f−→ S) = ηc(µ(t, f)),

which follows from associativity of µ as ηc(t) = µ(ηc(c
′), t)

� Preserving identities is immediate as the identity on Et is given by Et→ ∗ η−→ S

� Preserving composition means that for f : Et→ S and F : Eµ(t, f)→ S,

Eηc(t)
ηc,t−−→ Et

x 7→µ(f(x),Fx)−−−−−−−−→ S agrees with Eηc(t)
x 7→µ(fηc,t(x),F ′

x)−−−−−−−−−−→ S.

This is clear from observation, noting that F ′
x is the map

E(fηc,t(x))→ Eµ(ηc(t), fηc,t) ∼= Eµ(t, f)
F−→ S.
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Example 6.37. In the previous example these functors are the evident inclusion

functors, but when T is the free double category monad they are (at least a little

bit) less canonical. G1×G1 has the product poset structure induced by that on G1,

as shown below. · ↣

◦→ □

<

∧ ∧
<

The corresponding inclusion functors

ηΘ↣, η
Θ
◦→ : Θ•

a
∼= ∗ → ∆op

+
∼= Θ↣/◦→

a

are both the inclusion of the single-vertex operation in S(↣) and S(◦→), which

corresponds to the empty set (of edges) in ∆op
+ . Similarly, the functors

ηΘ□ : Θ↣/◦→
a

∼= ∆op
+ → ∆op

+ ×∆op
+
∼= Θ□

a

are given by inserting the empty set (of vertical or horizontal edges, respectively)

into the second/first component of the product.

Lemma 6.38. In ΘT , the composite ηc(t) ∼= t → µ(t, f) has ηc(t) → ηc(µ(t, f)) ∼=

µ(t, f) as its active-inert factorization while t ∼= ηc(t) → µ(ηc(t), g) factors as t →

µ(t, gη−1
c,t )
∼= ηc(µ(t, gη

−1
c,t )).

Proof. As discussed above, ηc(µ(t, f)) = µ(ηc(t), fηc,t), and ηc(t)→ µ(ηc(t), fηc,t) is

precisely the active map associated to this composite by the construction in The-

orem 6.31. The maps which then induce the inert part are Efηc,t(x) → Eµ(t, f),

which assemble precisely into ηc,µ(t,f). The second claim follows similarly.
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Corollary 6.39. The functors ηΘc commute over ΘT up to natural isomorphism and

vary functorially with respect to P .

Proof. Functoriality of ηΘc over P follows from the facts that for c′′ ≤ c′ ≤ c in P and

t ∈ Sc′′, ηc(ηc′(t)) = ηc(t) (Definition 6.33 and associativity of µ) and ηc,ηc′ (t)ηc′,t = ηc,t

(consequence of Definition 6.33).

For c′ ≤ c in P , the natural isomorphism in ΘT has components given by ηc,t for

each t ∈ Sc′, which are natural over Θc′
a by Lemma 6.38. These are also functorial

with respect to P by the same reasoning as above.

This system of inclusions Θc
a → Θc′

a for c ≤ c′ in P allows Θa as a subcategory of

ΘT to be treated up to equivalence as either a single Θc
a or filtered colimit thereof,

rather than a disjoint union of such categories.

Definition 6.40. For T with P -units, define Θa as colim
c∈P

Θc
a, the colimit of the

functors ηΘc .

Proposition 6.41. When T has P -units, Θa is equivalent to the subcategory of ΘT

generated by Θa and the inert isomorphisms ηc,t : Eηc(t) ∼= Et, along with their

inverses.

Note that by Lemma 6.38, this subcategory consists of precisely the maps with

active-inert factorization

ηc(t)→ ηc(µ(t, f))
ηc,µ(t,f)−−−−→ µ(t, f) or t→ µ(t, f)

ηc,µ(t,f)−−−−→ ηc(µ(t, f)),
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since the composite

ηc(t)
ηc,t−−→ t→ µ(t, f)

has the above active-inert factorization and the composite

t
η−1
c,t−−→ ηc(t)→ µ(ηc(t), g) = ηc(µ(t, gη

−1
c,t ))

factors as

t→ µ(t, gη−1
c,t )

η
c,µ(t,gη−1

c,t )

−−−−−−→ ηc(µ(t, gη
−1
c,t )).

Proof. For each t ∈ Sc, we will write ηt for the corresponding object in Θa, and

more generally denote the functor Θc
a → Θa by η. To extend η to a functor from the

above subcategory to Θa, we define η on any isomorphism ηc,t : ηc(t) ∼= t in ΘT as

the identity on η(t) = η(ηc(t)) in Θa. This extended η is a functor by Corollary 6.39,

fully faithful as each ηΘc is, and essentially surjective as it is surjective on objects, so

it is an equivalence from this subcategory of ΘT to Θa.

When it does not cause confusion, we will sometimes write Θa for this equivalent

subcategory of ΘT .

Example 6.42. When P has a maximal element, as is the case for Gn and G1×G1,

Θa is precisely Θc
a for c the maximal cell shape. So for the free n-category monad

Θa is Θn
a and for the free double category monad Θa is Θ□

a
∼= ∆op

+ ×∆op
+ .

The main result of this section uses this equivalence to describe an alternative

factorization system on ΘT replacing Θa with Θa.
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Theorem 6.43. Every morphism in ΘT factors as a morphism in Θa followed by a

morphism in Θ0, uniquely up to unique isomorphism.

Proof. g : t→ t′ has a unique active-inert factorization

t
fg−→ µ(t, fg)

g0−→ t′,

so it suffices to show that any two factorizations of an inert map g0 through an

isomorphism of the form ηc,t′′ or η
−1
c,t′′ are related by a unique isomorphism. But this

is immediate, as if h1, h2 are two such isomorphisms and g0 = g1h1 = g2h2 in Θ0, the

two factorizations are related uniquely by h1 = (h1h
−1
2 )h2 and g2 = g1(h1h

−1
2 ).

This particular type of factorization system differs from those most common in

the literature: Θ0 and Θa/Θa do not generally contain all isomorphisms in ΘT , so

this is not an orthogonal factorization system. However, this type of factorization

will nonetheless be suitable for our purposes, so we will from here onward use the

otherwise ambiguous term factorization system as follows.

Definition 6.44. A factorization system on a category A is a pair of wide subcate-

gories A1,A2 such that A1 ∩A2 is a groupoid and every morphism in A factors as a

morphism in A1 followed by a morphism in A2 uniquely up to unique isomorphism

in A1 ∩ A2.

Remark 6.45. As the active and inert subcategories of ΘT intersect only at the

identity morphisms, for the factorization system of Theorem 6.31 to be orthogonal

(as in, both categories contain all isomorphisms) both categories must contain no
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non-identity isomorphisms. For Θ0 this is the case precisely when the arity diagrams

Et are rigid, and for Θa this happens when for all cell shapes c there are no operations

in Sc with arity y(c) other than η(c).

For the factorization system in Theorem 6.43 to be orthogonal, there must still

be no active isomorphisms, but as Θa contains the maps ηc,t and their inverses it

suffices for these to be the only isomorphisms between the arity diagrams in Θ0.

Finally, we describe when a familial monad T has enough units for a collection

of operations with arbitrary outputs to be considered by means of the functors ηc as

all having the same output shape. Recall that for a cardinal κ, a poset has κ-small

upper bounds if any subset of P of cardinality less than κ has an upper bound.

Definition 6.46. T has κ-enough units for a regular cardinal κ if there exists a

poset P on Ob(C) with κ-small upper-bounds such that T has P -units.

Example 6.47. When P has a maximal element T has κ-enough units for any κ.

This includes the free n-category and free double category monads.

Example 6.48. When T is the free ω-category monad on globular sets and P is the

linear order on Ob(G), P has finite upper bounds but the set of all (ω-many) objects

of G has no upper bound, so T has only ω-enough units (or finitely enough units).

Example 6.49. The free multicategory monad T (symmetric or non-symmetric)

does not have enough units of any size, as the only poset P on Ob(M) for which

T has P -units has 0 < (1, 1) and no other non-reflexive comparisons. S(1, 1) has a

single operation with arity isomorphic to y(0), the height 0 tree with one leaf, but no
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other pair of objects in M have operations with isomorphic arities. This corresponds

to how multicategories only have identity 1-to-1 arrows, not identity n-to-1 arrows

nor canonical ways of constructing an n-to-1 arrow from a single m-to-1 arrow.

7 More Examples

Theorem 5.1 reduces the task of defining a familial monad to specifying its opera-

tions, their arities, how these relate to one another, the identity operations, and how

operations compose. We demonstrate the convenience of this characterization with

several less familiar examples exhibiting the three most common types of algebraic

structure: units, symmetries, and compositions.

7.1 Adding Degeneracies

In most cases of interest, the category C of cell shapes is made up only of morphisms

from “lower dimensional” to “higher dimensional” cell shapes, resembling inclusions

into each shape of its lower dimensional faces.

Definition 7.1. A category C is direct if it admits an identity-reflecting functor to

the linear order Ord of ordinals regarded as a category. Concretely, this amounts to

a “degree” function from Ob(C) to ordinals such that each morphism in C strictly

raises degree.
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When C is direct and all of the degrees are finite, the degree functor can always

be taken to send each object c to the length n of the longest string of nontrivial

composable morphisms c0 → c1 → · · · → cn−1 → cn = c in C.

Example 7.2. The semicube category, which we denote □∂, is the free monoidal

category generated by a single object □1 and two maps ∂0, ∂1 : □0 → □1 where □0

is the monoidal unit. We further denote □n := □1 ⊗ n· · · ⊗□1, and

∂ni,ε := id1⊗
i· · · ⊗ id1⊗∂ε ⊗ id1⊗

n−1−i· · · ⊗ id1 : □
n → □n+1

for i = 1, ..., n, ε = 0, 1. These maps are generators of □∂.

□n can be thought of as an n-dimensional cube with ∂ni,0, ∂
n
i,1 respectively its

front and back (n− 1)-dimensional faces in the ith direction, where the edges of the

cube are directed from front to back. We will also write □n for the semicubical set

represented by □n.

□∂ is direct, with degree functor sending □n to n and all of the morphisms

inclusions of faces from a lower dimensional cube to a higher dimensional one.

Direct categories are most often discussed in the context of Reedy categories (see

for instance [7, 2.2]).

Definition 7.3. A Reedy category is a categoryR equipped with wide subcategories

R+,R− such that R+ is direct, the morphisms in R− are strictly degree-lowering,

and every morphism factors uniquely as a morphism in R− followed by a morphism

in R+.
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Example 7.4. The cube category □∂σ can be defined as the free monoidal category

generated by objects □0,□1 (with □0 the monoidal unit), morphisms ∂0, ∂1 as above,

and σ : □1 → □0 with σ∂0 = σ∂1 = id□0 . □∂σ is generated by the maps ∂ni,ε as above

along with “degeneracy maps”

σni := id1⊗
i−1· · ·σ n−i−2· · · id1 : □

n → □n−1

satisfying appropriate relations, which can be found in [2, Equation 2.1].

□∂σ is a Reedy category with R+ the subcategory □∂ and R− the subcategory

generated by the maps σni . As any map between □0 and/or □1 factors uniquely as

a map in R− followed by a map in R+ (either potentially an identity), the same is

true for monoidal products of these maps, which can be factored the same way in

each component.

Our characterization of familial monads allows us to show the following by a

simple construction, showing in particular that there is a monad on semicubical sets

which freely adds in the degenerate cubes of a cubical set (presheaf on □∂σ), whose

algebras are cubical sets and whose theory category is □∂σ.

Proposition 7.5. For any Reedy category R, R̂ is equivalent to the category of

algebras for a familial monad on R̂+, which has R as its theory category.

Proof. Let R be a Reedy category. We define a familial representation (S,E) over

R+ as follows:

� Sc =
∐

b∈Ob(R)

HomR−(c, b) for c ∈ Ob(R)
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� For i : c′ → c in R+ and t : c→ b in Sc, ti factors uniquely as i′t′ : c′ → b′ → b

with i′ in R+ and t′ in R−. We then set (Si)(t) = t′

� For t : c→ b in Sc, Et = y(b)

� For t, i, t′, i′ as above, Eit is given by y(i′) : y(b′)→ y(b)

The induced familial endofunctor on R̂+ sends X to TX where

TXc =
∐

b∈Ob(R)

HomR−(c, b)×Xb,

adding a “degenerate” c-cell for each b-cell and degree-lowering map t : c → b. In

the example above, this amounts to adding for each n-cube a degenerate m-cube for

each projection from the m-cube to the n-cube.

As R+ has no nontrivial isomorphisms as a direct category, each presheaf y(b)

is rigid, so following Definition 5.2 we can specify a monoidal structure on (S,E) as

follows:

� e : S0 → S sends ∗c to id : c→ c for each c ∈ Ob(C)

� SSc ∼=
∐

t : c→b

Sb, and m : SS → S sends (t : c → b, t′ : b → a) ∈ SSc to

(t′t : c→ a) ∈ Sc

� Clearly Ee(∗c) ∼= y(c) and Em(t : c → b, t′ : b → a) = y(a) ∼=

colim
i : y(c′)→y(b)

E(Si(t′))

An algebra of T is a presheaf A in R̂+ along with a map TA→ A, which amounts

to functions At : Ab → Ac for each t : c→ b in R− such that:
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� Aid : Ac → Ac is the identity (unit law)

� At ◦ At′ = At′t (multiplication law)

� for i : c′ → c in R+ AiAt = At′Ai′ for i
′, t′ as described above (naturality of

algebra structure map)

This is precisely the data of a presheaf over R, and a map of algebras corresponds

similarly to a morphism in R̂.

The theory category ΘT is the full subcategory of R̂ consisting of the free algebras

on the representable presheaves y(d) of R̂+. Ty(d) is simply the cells of y(d) with a

c-cell added for each pair of a non-identity arrow c→ b in R− and an arrow i : b→ d

in R+, which correspond to the morphisms c → d in R that don’t come from R+.

Ty(d) is therefore the representable presheaf y(d) in R̂, so ΘT agrees with R as the

full subcategory of representables in R̂.

Example 7.6. Perhaps the most famous Reedy category is the simplex category ∆,

whose direct subcategory contains only the face maps between simplices. Presheaves

on this subcategory are called semisimplicial sets, and Proposition 7.5 shows that

there is a familial monad on semisimplicial sets which adds in the degeneracies needed

to form a simplicial set, with ∆ as its theory.

Example 7.7. A much simpler example comes from the Reedy category G1,r, with

G1 = 0
s

⇒
t
1 as its direct subcategory and a single map ϵ : 1 → 0 as R−, with

ϵ ◦ σ = ϵ ◦ τ = id0. Here Proposition 7.5 produces the monad on graphs adding a

new self-loop to every vertex, whose algebras are reflexive graphs.
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Remark 7.8. While presheaves on direct categories commonly form the data of higher

categorical structures, this construction in fact applies much more broadly. The

degree raising and lowering properties of the factorization system in a Reedy category

was never used in the construction, which therefore shows that for any category C

with wide subcategories C ′, C ′′ such that each morphism factors uniquely as a map

in C ′′ followed by a map in C ′, there is a familial monad on Ĉ ′ whose algebras are

presheaves over C and with C as its theory category.

In the reverse direction, starting with a familial monad T on Ĉ there is an “active-

inert” factorization system on ΘT such that the “inert” maps are precisely those

arising from maps between the arity presheaves in Ĉ. Writing Θ0 for this subcategory,

ΘT is then also the theory of a familial monad on Θ̂0, though this was previously

known (see [35, Lemma 4.5]).

7.2 Adding Symmetries

In types of higher categories with particularly symmetric cell shapes, cells are often

equipped with reflected or permuted versions of themselves.

Example 7.9. The cubical nerve of a category C is the cubical set with n-cubes

the commutative n-dimensional cube diagrams in C, faces given by restriction to

the appropriate lower dimensional subcubes, and degeneracies given by inserting

identities in the appropriate direction. For any square as below left in C, there is
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also a square as below right with the directions swapped.

· ·

· ·

f

g h

k

· ·

· ·

g

f k

h

This type of operation in a cubical set is called a symmetry : a single cell is sent to

another cell of the same shape with its faces permuted in some way. n-dimensional

cubes in a cubical nerve admit symmetries for any permutation of the n directions.

Symmetries can be added as automorphisms of the objects in any variety of cube

category: the semicube category, the cube category, even the category described

below which incorporates composites of cubical cells.

Symmetries of various sorts are also found in other types of higher categories. For

instance, in a symmetric multicategory any n-to-1 arrow is equipped with additional

n-to-1 arrows for every permutation of the inputs. Much like the familial monads

discussed above for adding degenerate cells, symmetries can be freely added to a

presheaf on C by a familial monad. The corresponding theory category is then

constructed by adding new automorphisms to the objects of C.

Definition 7.10 ([6, Definition 2.1, 2.3]). For C a small category, a crossed C-group

is a functor G : Cop → Set equipped with a group structure on each set Gc denoted

by (·, ec) and a left Gc-action on each set HomC(c
′, c) denoted by (−)∗, such that for

each g, h ∈ Gc and i : c′ → c, i′ : c′′ → c′ in C:

a) g∗(i ◦ i′) = g∗(i) ◦ (Gi(g))∗(i′)
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b) g∗(idc) = idc

c) Gi(g · h) = (Gh∗(i))(g) ·Gi(h)

d) Gi(ec) = ec′

The total category CG has the same objects as C, with morphisms c′ → c of the

form (i, g) where i : c′ → c in C and g ∈ Gc′. Identities are of the form (idc, ec) and

composition is given by (i, g) ◦ (i′, h) = (i ◦ g∗(i′), Gi′(g) · h).

Crossed C-groups are precisely the structure needed to describe a system of sym-

metries that can be freely added to a presheaf on C by a familial monad, and the

theory category for this monad is given by the total category.

Proposition 7.11. For G a crossed C-group, ĈG is equivalent to the category of

algebras for a familial monad on Ĉ, which has CG as its theory category.

Proof. CG has a unique factorization system given by the subcategory of morphisms

of the form (i : c′ → c, ec′), which is isomorphic to C, and the subcategory of mor-

phisms of the form (idc, g). In particular, any morphism (i : c′ → c, g) factors as

(i, ec′) ◦ (idc′ , g). The result then follows from Remark 7.8.

Concretely, the representation of the monad has S = G and E sends g ∈ Gc to

y(c) with its faces permuted by g∗. The unit and multiplication arise from the unit

and multiplication in the groups Gc.

Example 7.12. Symmetries in cubical sets are described by the crossed cubical

group G : □→ Set defined as follows:
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� G□n = Σn, the permutation group on n elements

� G∂i,ε : Σn → Σn−1 sends a permutation γ on {1, ..., n} to the permutation on

{1, ..., n − 1} given by removing i from the domain of γ and reordering (e.g.

G∂2,ε(231) = (21) by removing the 2 and reordering)

� Gσi : Σn → Σn+1 sends γ to the permutation on {1, ..., n+ 1} ∼= {1, ..., i, i′, i+

1, ..., n} treating i, i′ as a single element (e.g. Gσ2(321) = (322′1) = (4231) by

moving 2 and 2’ together and then relabeling)

� γ∗(∂i,ε) = ∂γ(i),ε and γ∗(σi) = σγ(i). This is how each symmetry permutes the

faces (and degeneracies) of a cube

� It is straightforward to check that these satisfy the axioms of a crossed cubical

group

This monad takes a cubical set X and adds in a new n-cube for each permutation

of the dimensions of each cube in Xn. An algebra A for this monad is equipped with

a choice of these symmetries: for each γ ∈ Σn and each n-cube a ∈ An, a choice

of cube γ(a) ∈ An whose faces and degeneracies are those of a permuted by γ.

This is precisely a symmetric cubical set (in the language of [9], a presheaf on the

symmetric cube category C(we,·)). Symmetries can be similarly added to any other

type of cubical sets that doesn’t already have them.

There is also a crossed cubical group with G□n = {1, τ}n, where each τ in the ith

position reverses the source and target faces of the n-cube in the ith direction (as in,

swaps ∂i,0, ∂i,1 and does the same for all maps that factor through them). Algebras
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for the associated familial monad are cubical sets with reversals (in [9], presheaves

on C(w,′)).

Example 7.13. Symmetries are also often considered for permuting the sources of

many-to-one arrows, such as in a multicategory. For the category M of the vertex

and n-to-1 arrows in Example 1.13, a crossed M-group can be defined with G0 the

trivial group, G(n, 1) = Σn, and each γ ∈ Σn permuting the n different source

maps 0 → (n, 1). Algebras for this monad are symmetric multigraphs: multigraphs

equipped with, for each n-to-1 edge and each permutation γ, a choice of n-to-1 edge

with its sources permuted by γ (a restriction of the symmetric polygraphs discussed

in [19, Section 2.4]).

Dendroidal sets [30] are presheaves over the tree category Ω, which is the theory

category for the free symmetric multicategory monad on multigraphs [35, Example

4.19]. There is similarly a planar tree category Ωplanar which is the theory category for

the free non-symmetric multicategory monad. The above crossed group structure for

permutations of sources in an n-to-1 arrow extends to a crossed Ωplanar-group sending

each tree of many-to-one arrows to its group of planar rearrangements, whose total

category is equivalent to Ω [6, Example 2.8]. Hence denrdoidal sets are algebras for

a familial monad on planar dendroidal sets.

Example 7.14. Crossed C-groups were originally defined for C = ∆ [14], and any

crossed simplicial group provides a monad for adding symmetries to simplicial sets.

For instance, the crossed simplicial group sending [n] to Z/(n + 1) has as its total

category Connes’ cycle category Λ, so cyclic sets are algebras for a familial monad

113



on simplicial sets.

7.3 Cubical ω-Categories

The examples above all have representable arity diagrams, but we can also define

familial monads on semicubical sets whose algebras have compositional structure

similar to n-tuple categories.

Definition 7.15 ([2, Definition 2.1]). A cubical ω-categories is a cubical set equipped

with n composition operations for n-cubes in the n different directions satisfying unit

(with respect to degeneracies), associativity, and interchange equations.

When restricted to cubes in dimensions up to n, cubical n-categories resemble

n-tuple categories [15, Definition 2.1], but without the n distinct types of arrows and

resulting
(
n
m

)
distinct types of m-cubes.

Example 7.16. For a category C, its cubical nerve is a cubical ω-category with

composition of two compatible cubes given by composition in C of the arrows in the

ith direction:

f 7→
· ·

· ·
f f

· · ·

· · ·

f

h

g

i j

k ℓ

7→
· ·

· ·

gf

h j

ℓk

Remark 7.17. Cubical ω-categories with connections, symmetries, etc. can be defined

similarly using equations such as those for connections in [2, Equation 2.6]. The

example above is in fact a cubical ω-category with both symmetries and connections.
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[2] shows that the category of cubical ω-categories with connections is equivalent to

the category of strict globular ω-categories.

Definition 7.18. The Day convolution product ⊗ : □̂∂ × □̂∂ → □̂∂ on semicubical

sets is defined by left Kan extension of the functor

□∂ ×□∂
⊗−→ □∂

y−→ □̂∂

and has the 0-cube □0 as a unit.

Example 7.19. Consider the string
k−→ of k composable 1-cubes (arrows) in □̂∂. The

Day product
k1−→ ⊗ · · ·⊗ kn−→ is the standard k1×· · ·×kn grid of n-cubes, where each

zero among the natural numbers ki reduces the top dimension of the cubes in the

grid by one. The inclusions s, t from □0 to
k−→ sending the 0-cube to the source or

target of the string of 1-cubes lets us define the source and target maps

si, ti :
(

k1−→ ⊗ · · · ⊗ k̂i−→⊗ · · ·⊗ kn−→
)
→

(
k1−→ ⊗ · · ·⊗ kn−→

)
of an n-dimensional grid in each of the n directions.

Proposition 7.20. Cubical ω-categories are algebras for a familial monad on

semicubical sets.

Cubical ω-categories are just as well algebras for a familial monad on cubical sets,

but we prefer to use semicubical sets and treat degeneracies as algebraic structure

rather than part of the underlying data. We show this in the simplest case of no

connections or symmetries, though the same is true in those settings as well by a

more complicated construction; a description of the monad for cubical ω-categories
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with connections can be found in [24, Section 2.7]. Presenting this monad as familial

provides an alternative proof of [24, Proposition 9], which shows that it is cartesian,

and a familial representation of the free cubical ω-category with connections monad

would similarly suffice to prove [24, Theorem 1].

Proof. The familial monad representation (S,E) is defined as follows:

� Sn = Nn and S∂ni,ϵ is the projection map Nn → Nn−1 omitting the ith compo-

nent

� E() = □0, E(k1, ..., kn) =
(

k1−→ ⊗ · · ·⊗ kn−→
)
, and E sends the generating

morphisms

∂ni,0, ∂
n
i,1 : (k1, ..., k̂i, ..., kn)→ (k1, ..., kn) to si, ti respectively

� The map e : S0 → S sends ∗n to (1, ..., 1) ∈ Sn, where □n ∼= E(1, ..., 1) as
1−→

is precisely □1 and □1 ⊗ n· · · ⊗□1 ∼= □n

� SSn ∼=
∐

(k1,...,kn)

Hom
(
E(k1, ..., kn), S

)
, where as S∂ni,0 = S∂ni,1 a map from

E(k1, ..., kn) to S is determined by its values in S1 = N on the 1-cubes

(0, ..., 0, j → j + 1, 0, ..., 0) in the k1 × · · · × kn grid. Therefore SSn ∼=∐
(k1,...,kn)

Nk1 × · · · × Nkn , and we define m : SS → S by

(
(k1, ..., kn), (ℓ1,1, ..., ℓ1,k1), ..., (ℓn,1, ..., ℓn,kn)

)
7→

( k1

Σ
i=1

ℓ1,i, ...,
kn

Σ
i=1

ℓn,i

)
.

For such (k, ℓ), colim
(
∫ E(k1, ..., kn)→ ∫ S

E−→ □̂∂

)
is the grid given by plug-

ging an ℓ1,j1 × · · · × ℓn,jn grid into the (j1, ..., jn)th cube in the grid E(k1, ..., kn),
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which is isomorphic to E
( k1

Σ
i=1

ℓ1,i, ...,
kn

Σ
i=1

ℓn,i

)
as desired. Pictured below is the

grid for the assignment(
(3, 2), (2, 1, 3), (1, 2)

)
7→ (2 + 1 + 3, 1 + 2) = (6, 3) :

• · • • · · •

• · • • · · •

· · · · · · ·

• · • • · · •

� The unitality and associativity equations follow from the analogous properties

of multi-valued sums, and rigidity of the arity diagrams

An algebra for T is a semicubical set A equipped with

� Degeneracy maps as in Example 7.4, where for each 1 ≤ i ≤ n,

(1, ..., 1, 0, 1, ..., 1) ∈ Sn provides a map si : An−1 → An satisfying the usual

cubical identities

� n binary composition operations for n-cubes, where for each 1 ≤ i ≤ n,

(1, ..., 1, 2, 1, ..., 1) ∈ Sn provides a map µi : An di,1×di,0 An → An

� As for each composable grid of cubes up to dimension n, there is a unique

element of Sn sent to that grid by E, the multiplication law for the monad

algebra A ensures that these compositions are unital (with respect to degen-

eracies), associative in each direction, and satisfy the interchange law between

compositions in different directions
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which makes the structure of A precisely that of a cubical ω-category.

Uniqueness of each operation with respect to its arity makes T shapely in the

sense of [19].

Remark 7.21. The theory associated to T has finite cubical grids as objects, with

morphisms the homomorphisms of the free cubical ω-categories TE(k1, ..., kn) gener-

ated by those grids. Concretely, these are the maps between the vertices of the grids

which send rows in each direction of the domain to rows in the codomain, such as

the map TE(2, 2)→ TE(3, 5) depicted below:

· · ·

· · ·

· · ·

7→

• • · · • ·

· · · · · ·

• • · · • ·

• • · · • ·

These grids are the cubical analogue of the pasting diagrams of Joyal’s category

Θ, the theory of the free strict ω-category monad on globular sets, and we call this

category cubical Θ, written . Concatenation of the lists (k1, ..., kn) defines a tensor

product⊗ on , and all morphisms in uniquely decompose under⊗ into morphisms

between the 1-dimensional grids (k1). The full subcategory of 1-dimensional grids

is isomorphic to ∆, so in this sense is the free monoidal category generated by ∆

with identity (0) (in , (0) is isomorphic to ()).

Remark 7.22. We can also consider the n-truncated semicube category, defined as the

full subcategory of □∂ spanned by □0, ...,□n, where □ω recovers □∂. The construc-
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tion above restricted to dimensions up to n gives a monad on n-truncated semicubical

sets whose algebras are the analogous notion of cubical n-categories, with theory cat-

egory n of grids up to dimension n.
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CHAPTER 3

SHAPE INDEPENDENT ENRICHMENT

8 Enrichment of Higher Categories

Here we define enrichment of T -algebras for a fixed familial monad T on Ĉ with a

distinguished set of endpoint objects e = {ek}.

8.1 (T, e)-Structured Categories

There are many formal descriptions of the relationship between categories and

monoids. A category with a single object carries the same information as a monoid,

its identity and composition providing the unit and multiplication for a monoid

structure on its set of morphisms. Alternatively, the active subcategory ∆1
a of

edge operations in ∆ (as the theory for the free category monad on graphs) is iso-

morphic to ∆op
+ , the opposite of the augmented simplex category (Example 6.29).

(∆1
a)
op ∼= ∆+ is the initial monoidal category with a monoid object, so a monoidal

functor M : (∆1
a)
op → A determines a monoid in a monoidal category A. A monoid

in Cat, in the weak sense, is a monoidal category, which is precisely the structure a

category is most easily enriched in.

The goal of this subsection is to generalize this picture from categories to algebras

for any familial monad T on Ĉ with the role of ∆ replaced by ΘT and the role of

120



morphisms in a one-object category replaced by e-cells for e = {ek} a set of endpoint

objects in C. The algebraic structure on those e-cells can be described using the

categories Θek
a .

Definition 8.1. We will denote by Θe
a the full subcategory of Θa containing Θek

a for

all k.

Functors M : (Θe
a)
op → A with monoidal-like properties will describe certain

algebraic structures on the collection of objectsM(ek), which whenA = Cat describe

a kind of structured category in which T -algebras can be enriched.

Definition 8.2. Let T be a familial monad on Ĉ represented by (S,E, η, µ). A

(weak) (T, e)-structured category is a (pseudo-)functor V : (Θe
a)
op → Cat such that

for each t ∈ Se,

V (t) ∼=Π
k
V (ek)

Etek ,

and for each (t ∈ Se, f : Et→ S), the functor V (af ) : V (µ(t, f))→ V (t) agrees with

Π
k

Π
x∈Etek

V (af(x)) : V (µ(t, f)) ∼=Π
k
Π
x
V (f(x))→Π

k
Π
x
V (ek) ∼= V (t).

We write Vk for V (ek) and ⊗t for V (at) : V (t) ∼= Πj V
Etej
j → Vk, for each t ∈ Sek.

Using this notation, the second condition reads as V (af ) = ΠkΠx∈Etek ⊗f(x).

The first condition resembles the “Segal conditions” associated to a finite product

sketch on Θe
a, where each V (t) is the product of the diagram Ete → (Θe

a)
op → Cat,

from the discrete category on Ete, sending each ek-cell in Et to V (ek). The second

condition extends this limit preservation to morphisms.
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By the equations aη(c) = idc and af ◦ at = aµ(t,f) in Θe
a (Lemma 6.27) and

Corollary 5.13, the data of a (T, e)-structured category amounts to the categories

Vk and functors ⊗t : Πj V
Etej
j → Vk for each ek-operation, subject to the equations

⊗η(ek) = idVk and for each t ∈ Se and f : Et→ S,

⊗µ(t,f) =
(
⊗t ◦ Π

j,x∈Etej
⊗f(x)

)
:Π

i
V
Eµ(t,f)ei
i

∼=Π
j
Π
x
Π
i
V
Ef(x)ei
i →Π

j
Π
x
Vj → Vk.

When V is weak, these equations are replaced by natural isomorphisms subject to

coherence equations similar to those for weak monoidal functors.

Remark 8.3. Weak (T, e)-structured categories could be equivalently defined as strict

functors with the Segal isomorphisms relaxed to equivalences. This follows a pattern

that can be found in for instance [27, Proposition 3.1] for weak monoidal categories,

where strict functors V : ∆+ → Cat which are monoidal only up to equivalence

(V (n + m) ≃ V (n) × V (m)) agree with pseudofunctors V : ∆+ → Cat which are

monoidal up to isomorphism (V (n + m) ∼= V (n) × V (m)). In short, the natural

isomorphisms that form the equivalences on one side correspond to the natural iso-

morphisms that provide for pseudofunctoriality. While the definition with the weaker

Segal condition is closer to how weak structures are often defined in the literature,

we prefer pseudofunctoriality as it directly provides the isomorphisms used to define

enrichment in Definition 8.16.

Example 8.4. When T is the free category monad, Θ1
a is ∆

op
+ as discussed above, e =

{1}, and (weak) (T, e)-structured categories are unbiased (weak) monoidal categories

as in [28, Definition 3.3.8].

Example 8.5. When T is the free monoid monad on sets, Θa is also ∆op
+ , as the
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active subcategory of the Lawvere theory LT (see Example 6.32).

Example 8.6. When T is the free double category monad on double graphs with

e = {□ = (1, 1)} in G1 × G1, Θ
e
a = Θ□

a
∼= ∆op

+ × ∆op
+ . A strict (T, e)-structured

category consists of a category V = V1,1, two strict monoidal structures on it, corre-

sponding to the horizontal and vertical composition operations in Θe
a, which satisfy

the interchange law. By the Eckmann-Hilton argument, this is precisely a strict sym-

metric monoidal category. By similar reasoning, a weak (T, e)-structured category is

a braided weak monoidal category.

Example 8.7. When T is the free 2-category monad on 2-globular sets with e = {2},

Θe
a is the subcategory of active maps in Θ2 and e = {2} in G2. Much like in the

previous example, the operations in S2 for horizontal and vertical composition of 2-

cells ensure that a strict/weak (T, e)-structured category has two monoidal structures

satisfying interchange, so by Eckmann-Hilton corresponds to a symmetric/braided

monoidal category.

The main difference between Θe
a for 2-categories and for double categories, aside

from the former including pasting diagrams with uneven numbers of 2-cells in each

column, is that for 2-categories Θe
a also includes active maps from vertical to hori-

zontal composites of 2-cells.

· · · · ·→
→ =

· · ·
· · ·

=
· · ·
· · ·

Writing V for V2 in a (T, e)-structured category, these two maps in Θe
a are sent

to isomorphisms σ, τ : V 2 → V 2 which differ by a swap. Also in Θe
a, with t the
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binary vertical composition operation and t′ the binary horizontal composition, both

of these maps composed with at give at′ . A contravariant pseudofunctor from Θe
a to

Cat then includes a natural isomorphism

⊗t ◦ σ ∼= ⊗t′ ∼= ⊗t ◦ τ : V 2 → V,

which provides a choice of braiding for the monoidal product ⊗t (after precomposing

with σ, this isomorphism relates ⊗t and its composite with the swap τ ◦σ). This ex-

plicit encoding of the swap and braiding isomorphisms makes this Θe
a more expressive

in some sense, even though here it encodes the same structure as ∆op
+ ×∆op

+ .

Example 8.8. When T is either the free n-category or free n-tuple category monad

(on diagrams over Gn and G×n
1 respectively with the unique choice of endpoint

object e), a (strict/weak) (T, e)-structured category amounts to a category V with

n different (strict/weak) monoidal structures all satisfying interchange laws in every

dimension. When n > 2, the higher dimensional Eckmann-Hilton argument enforces

that all of the different monoidal structures agree (up to equality/isomorphism) and

are (strict/weak) symmetric.

Remark 8.9. We could just as well define (T, e)-structured n-categories, where both

the variety of m-categories and the functor from Θe
a can be weak in a variety of

ways. When the m-categories are fully weak (such as bicategories or tricategories)

and the functor V : Θe
a → m−Cat is fully weak (with the same Segal condition via

isomorphisms), varying n recovers via Eckmann-Hilton the full range of symmetries

in monoidal weak m-categories ([3, Table 21]).

More specifically, when T is the free n-category or n-tuple category monad a
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fully weak (T, e)-structured m-category has the structure of a weak (n+m)-category

with just a single ℓ-cell for ℓ = 0, ..., n − 1. The n different monoidal operations

come from composition in the 1, ..., n-cell directions, and by higher Eckmann-Hilton

this structure is precisely a (mere/braided/sylleptic/.../symmetric, according to n)

monoidal m-category.

Example 8.10. When T is the free (nonsymmetric/symmetric) multicategory

monad on multigraphs and e = {(0, 1), (1, 1), (2, 1), ...}, Θe
a is the subcategory of

(Ω/ the planar variant) consisting of morphisms trees which preserve the root and

leaves. The morphisms in Θe
a are generated under composition and arity colimits by

the cocomposition maps at : (n, 1) → t for t a height-2 tree with n leaves, so the

operations of a (T, e)-structured category in the non-symmetric case are generated

by the functors

⊗t : Vn,1 × Vk1,1 × · · · × Vkn,1 → Vk1+···+kn,1.

In the symmetric case there are also generating structure maps ⊗t : Vn,1 → Vn,1 for

each height-1 tree, corresponding to each permutation of the n vertices. Equations

between these operations are the same as those for a (nonsymmetric/symmetric)

operad; accordingly, a (weak) (T, e)-structured category is a (weak) (nonsymmet-

ric/symmetric) operad object in Cat.

Remark 8.11. As the structure of a (T, e)-structured category is given by functors

Πj V
Etek
j → Vk satisfying certain equations (weakly or strictly), it is tempting to

define the structure more simply as an algebra in Cat of a symmetric multicategory

with object set e and multi-morphisms ((ex)x∈Ete ; ek) for each t ∈ Sek and ex = ej

when x ∈ Etej . However, composition in such a multicategory is not fully defined,
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as not every combination of operations in Se can be plugged into the cells of Ete to

form a new operation in Sek; they must be compatible in the sense of arising from

a map Et → S. This structure would also neglect the µ-composition of operations

with no e-cells, which is significant in the many examples where Θe
a contains multiple

different operations with no e-cells.

Example 8.12. For M a weak symmetric monoidal category, there is a weak (T, e)-

structured category with Vk = M for all k, and each ⊗t : MEte → M given by

the symmetric monoidal structure. All equations between the operations ⊗t are

guaranteed by the uniqueness-up-to-unique-isomorphism of all functors Mn → M

derived from the symmetric monoidal structure. We will be particularly interested

in the case when M is the cartesian monoidal category of T ′-algebras.

8.2 Enrichment

We now define T -algebras enriched in a (T, e)-structured category. Just like a

monoidal category has the structure needed to define composition maps between

generalized “Hom objects” in a category, a (T, e)-structured category V has the

structure needed to define compositions between V -objects describing the ek-cells

with fixed boundary in a T -algebra.

Recall from Definition 5.11 that a familial representation (S,E) is e-graded if Ete

is empty for all t ∈ Sc, c in C\e. This is the case for all common types of higher

categories, where a diagram typically composes to a cell of the same dimension, or
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yields a higher dimensional coherence cell rather than a lower dimensional cell. ∂eX

denotes the restriction of X in Ĉ to Ĉ\e, and ∂eT denotes the familial monad on Ĉ\e

which forgets the e-cell operations (Corollary 5.19).

Example 8.13. For the free category, 2-category, and double category monads and

their top-dimensional cells, this construction recovers the identity monad on sets,

the free category monad on graphs, and the monad on graphs with two types of

arrows whose algebras are pairs of categories with the same objects. For the free

multicategory monad with all n-to-1 arrow shapes as endpoints, this also yields the

identity monad on sets.

A T -algebra enriched in a (T, e)-structured category V is then a ∂eT -algebra

with a V -object for each “e-cell boundary” and composition maps in V satisfying

appropriate axioms. To state this definition, we use the following notation for a

∂eT -algebra A:

� For β : ∂eEt→ A and x ∈ Etek , αx is the map ∂ey(ek)
x−→ ∂eEt

β−→ A

� For β : ∂eEt → A with t ∈ Sek, αβ : ∂ey(ek) → A sends the cell i : c → ek in

∂ey(ek)c to the composite c-cell in A of E(Si(t))
Eit−−→ Et

β−→ A (A admits c-cell

composites of such diagrams as a ∂eT -algebra, sufficiently functorial to make

αβ natural)

� For γ : ∂eEµ(t, f)→ A and x ∈ Ete, βx is the map ∂eEf(x)→ ∂eEµ(t, f)
γ−→ A

� For γ : ∂eEµ(t, f) → A, βγ : ∂eEt → A sends x′ ∈ ∂eEtc to the composite

c-cell in A of Ef(x′)→ Eµ(t, f)
γ−→ A
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Example 8.14. When T is the free category monad, e the arrow cell shape, and A

a set (or rather, a ∂eT -algebra), a map α : ∂ey(1) → A is simply a pair of elements

in A as ∂ey(1) is the set with two elements. ∂e
n−→ is the set with n + 1 elements,

and a map β : (∂e
n−→)→ A amounts to elements a0, ..., an. For x the ith edge in

n−→,

αx : ∂y(1)→ A is the pair ai−1, ai, while αβ is the pair a0, an.

Similarly for a map γ : (∂e
n1+···+nm−−−−−−→) → A which picks out elements ai,j for

1 ≤ i ≤ n and 0 ≤ j ≤ ni with ai,ni
= ai+1,0, βx : (∂e

ni−→) → A picks out the

elements ai,0, ..., ai,ni
and βγ : (∂e

m−→)→ A picks out a1,0, a2,0, ..., am,0, am,ni
.

Example 8.15. This notation works similarly for the other examples. For instance

let T be the free double category monad, t is a grid in S□, and β : ∂eEt → A

is a “functor” from the “1-skeleton” of the grid into a ∂eT -algebra (here a pair of

categories with the same objects). The maps αx : ∂ey(□) → A pick out each of the

squares inside the grid β in A, and αβ is the square in A given by composing the

four strings of arrows on the boundary of the grid in A.

Definition 8.16. Let T be an e-graded familial monad on Ĉ represented by (S,E),

and V : (Θe
a)
op → Cat a weak (T, e)-structured category. A V -enriched T -algebra

consists of the following:

� A ∂eT -algebra A

� For each α : ∂ey(ek)→ A in Ĉ\e, an object Hom(α) of Vk

� For each t ∈ Sek, β : ∂eEt→ A in Ĉ\e, a morphism in Vk

compβ : ⊗t(Hom(αx))x∈Ete → Hom(αβ)
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� For α : ∂ey(e) → A, compα : ⊗η(e)(Hom(α)) → Hom(α) agrees with the

identitor isomorphism ⊗η(e)(Hom(α)) ∼= Hom(α) of V

� For each t ∈ Se, f : Et → S, γ : ∂eEµ(t, f) → A, the following diagram

commutes:

⊗t(⊗f(x)(Hom(αx′))x′∈Ef(x)e)x∈Ete ⊗t(Hom(αβx))x∈Ete

⊗µ(t,f)(Hom(αx′))x′∈Eµ(t,f)e Hom(αγ)

⊗t(compβx )

≀|| compβγ

compγ

Example 8.17. When T is the free category monad on graphs and V is a monoidal

category, a V -enriched T -algebra is precisely a V -enriched category. For a set A and

elements x, y, z in A, let β0 : (∂e
0−→)→ A pick out a ∈ A, and β2 : (∂e

2−→)→ A pick

out a0, a1, a2. The maps compβ0 , compβ2 in V then look like

compβ0 : I → Hom(a, a) compβ2 : Hom(a0, a1)⊗Hom(a1, a2)→ Hom(a0, a2),

just as in the classical definition of a V -enriched category. The equations in the

definition above specialize to the same equations satisfied by a category enriched in

V , but presented in an “unbiased” way: rather than only defining nullary and binary

composition on the Hom objects, there are n-ary composition maps of the form

Hom(a0, a1)× · · · × Hom(an−1, an)→ Hom(a0, an).

The associativity and unit equations of a V -enriched category are all subsumed by

the last equation in Definition 8.16, which shows that any way of associating n-

ary composition using binary and nullary composites agrees with the given n-ary

composite maps above up to the unitors and/or associators in V .
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Example 8.18. When T is the free monoid monad, C\e is the empty category and

∂eT is the identity monad on the one-object category Ĉ\e. In the above definition

of a V -enriched monoid for a monoidal category V , A is the empty presheaf on the

empty category and so is ∂ey(e), so there is a unique map α : ∂y(e)→ A. A monoid

enriched in V therefore contains a single object Hom(α). The maps β : ∂eEt → A

are also unique (being maps from the empty presheaf to itself), so for each n ∈ S0

there is a map Hom(α)⊗n → Hom(α) in V . The equations in Definition 8.16 ensure

that these maps endow Hom(α) with the structure of a monoid object in V , and any

monoid object in V has this structure, so a V -enriched monoid is precisely a monoid

object in V .

This has interesting philosophical implications for category theory, as it shows

that a strict monoidal category is merely a Cat-enriched monoid, which broad-

ens the scope of categorical structures which can be defined using enrichment. In

Example 11.17, we use this definition to give a concise construction of the free

strict monoidal category monad on graphs. Were we to consider weak enrichment

in a (T, e)-structured bicategory (or even just 2-category), we would recover weak

monoidal categories as monoids weakly enriched in Cat.

Example 8.19. A double category enriched in a braided monoidal category V con-

sists of a pair of categories A1, A2 with the same objects, for each square α in A1, A2

an object Hom(α) in V , and composition maps ⊗i,jαi,j → αβ for β a grid in A1, A2

made up of squares indexed by i, j, satisfying the usual unit, associativity, and in-

terchange laws.
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In [1], Aguiar defines double categories enriched in a duoidal category V , which

is essentially a category with a pair of monoidal structures which only satisfy lax

interchange, as in for objects a1, a2, a3, a4 there is a morphism

(a1 ⊗1 a2)⊗2 (a3 ⊗1 a4)→ (a1 ⊗2 a3)⊗1 (a2 ⊗2 a4),

among other relaxations of the compatibility conditions conferred by a (T, e)-

structured category when T is the free double category monad. In particular, when

these lax interchange morphisms are invertible V is precisely a braided monoidal

category by the usual Eckmann-Hilton argument. This notion of enrichment for

double categories is therefore more general than ours, which suggests the question of

whether or not this theory of enrichment can encompass it.

There are several potential extensions of this theory that could reproduce duoidal

enrichment, though they are beyond the current scope of this work. The basic idea

is that a duoidal category is a highly specialized relaxation of a functor ∆+×∆+ →

Cat, which results in a diagram in Cat as below left, where d1 : [2] → [1] and

s0 : [0] → [1] are the unique such maps in ∆+. Using the Segal condition this

diagram is equivalent to that below right, where the duoidal category V denotes

V ([1], [1]), the two monoidal products ⋄, ⋆ denote the maps V (id, d1), V (d1, id), and

131



the two monoidal units I, J denote the maps V (id, s0), V (s0, id).

V ([2], [2]) V ([2], [1]) V ([2], [0])

V ([1], [2]) V ([1], [1]) V ([1], [0])

V ([0], [2]) V ([0], [1]) V ([0], [0])

V (id,d1)

V (d1,id) V (d1,id)

V (id,s0)

V (d1,id)

V (id,d1) V (id,s0)

V (id,d1)

V (s0,id) V (s0,id)

V (id,s0)

V (s0,id)

V 4 V 2 ∗

V 2 V ∗

∗ ∗ ∗

⋄×⋄

⋆×⋆ ⋆

I×I

⋄ I

J×J J

We do not currently have the tools to canonically extract the appropriate definition

of duoidal category from merely the free double category monad, but it is possible

that reconstructing this monad as an “internalization” of the free category monad

with itself would provide such a toolset.

Example 8.20. When T si the free n-category monad and V is a symmetric

monoidal category (or merely braided when n = 2), a V -enriched n-category consists

of an (n−1)-category A along with an object Hom(α) of V for α any pair of parallel

(n − 1)-cells. There are then n-different units and binary composition operations

for each of the usual n directions in which n-cells can be composed, satisfying unit,

associativity, and interchange equations in all dimensions. It is straightforward to

check that when V is the symmetric monoidal category of m-categories, a V -enriched

n-category is precisely an (n+m)-category. This is further discussed in Section 11,

where we show that this fact generalizes to a wide variety of pairs of familial monads:

enriching one type of higher category in the symmetric monoidal category of another

type of higher category produces a new type of higher category.

Example 8.21. When V is symmetric monoidal, this definition of enriched multi-

categories agrees with existing notions in the literature, such as [13, Section 2]. It
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also specializes the notion of enriched multicategory in [26]. A V -enriched multi-

category consists of an object set A and for each tuple (a1, ..., an; a) in A an object

Hom(a1, ..., an; a) of V equipped with composition maps for each tree in S(n, 1) la-

beled with elements of A, satisfying equations in V corresponding to the usual equa-

tions for composition in a multicategory (and symmetries in the case of symmetric

multicategories).

However, for T the free (nonsymmetric/symmetric) multicategory monad a (T, e)-

structured category can be any (nonsymmetric/symmetric) operad object in Cat

(which is, incidentally, a 1-object Cat-enriched multicategory in the previous sense),

which significantly broadens the examples.

If each Vn is a set (aka discrete category), a V -enriched multicategory con-

sists on a set of objects A and, for each tuple (a1, ..., an; a), an n-ary operation

Hom(a1, ..., an; a) ∈ Vn. The composition maps are all identities, which means that

for any height-2 tree labeled with elements of A with leaves a1, ..., an and root a,

the choices of operations in V for each multi-edge in the tree must compose in V to

Hom(a1, ..., an; a). For A to be symmetric, permutation of the domains in A must

agree with the corresponding symmetries in V .

When A has a single object, this amounts to a choice of a single operation in

Vn for all n such that these operations are closed under composition in Vn. This

is precisely a morphism of operads from the terminal (nonsymmetric/symmetric)

operad to V , which picks out a (ordinary/commutative) monoid structure on any V -

algebra. When V is any operad inCat, a 1-object V -enriched multicategory amounts
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to a lax-operadic functor from the terminal (nonsymmetric/symmetric) operad to V .

Remark 8.22. A (T, e)-structured n-category would allow for “weak” enrichment of

T -algebras completely analogously to the notion of weak enrichment in a bicategory

in [18, Above Definition 11].

We now define morphisms of enriched T -algebras primarily for the sake of Theo-

rem 11.14, which shows that for V the symmetric monoidal category of T ′-algebras,

under quite general circumstances the category of V -enriched T -algebras is equivalent

to the category of algebras for another familial monad.

Definition 8.23. A morphism of V -enriched T -algebras A,A′ consists of a morphism

ϕ0 : A → A′ of the underlying ∂eT -algebras along with, for all α : ∂y(ek) → A, a

morphism ϕα : HomA(α)→ HomA′(ϕ0◦α) in V such that the morphisms ϕα commute

with the composition maps in A,A′.

9 Generalized Wreath Products

Classically, when the objects of a category A are equipped with a finite number of

“slots” and the morphisms “send” these slots of the domain to disjoint subsets of

the slots of the codomain, we can form the wreath product category A ≀ B for any

category B, whose objects consist of an object in A with each of its slots occupied

by an object of B, and morphisms those of A equipped with a collection of maps

between the adorning objects of B.
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Definition 9.1. The category Γ has objects the finite sets n := {1, ..., n} (n ≥ 0) and

morphisms n → m functions n → P(m) such that the images of distinct elements

of n are disjoint subsets of m. Identity morphisms send i ∈ n to {i} ∈ P(n) and

the composite of f : n→ m and g : m→ ℓ sends i ∈ n to
∐

j∈f(i)
g(j).

Definition 9.2. Given a functor γ : A → Γ and a category B, the wreath product

A ≀ B is the category with objects tuples

(a ∈ Ob(A); (bi ∈ Ob(B))i∈γ(a))

and morphisms tuples

(p : a→ a′; (pi,j : bi → b′j)i∈γ(a),j∈γ(p)(i)).

Identities are given by the morphisms (ida; (idbi)) and the composite of morphisms

(p; (pi,j)) and (q; (qi′,j′) is given by (qp; (qj,j′pi,j)i,j′) where j is the unique element of

γ(p)(i) with j′ ∈ γ(q)(j) for all j′ in γ(qp)(i) =
∐

j∈γ(p)(i)
γ(q)(j).

This wreath product forms the technical basis for nearly every step in our con-

struction of familial monads for enriched structures. Before using it to construct

new cell shapes and operations on cell diagrams, we describe a generalization of the

wreath product dropping the finiteness assumption from the sets in the definition of

γ, dropping the disjointness condition from its morphisms, and replacing the subsets

ofm with multisets. The result is a wreath product construction in which morphisms

can consist of any arrangement of arrows between the sets of objects from B.
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9.1 The Category Span

The morphisms in Γ between sets n and m admit several equivalent descriptions:

� Functions n→P(m) landing in disjoint subsets

� Isomorphism classes of injective relations between n and m, which is to say,

subsets R ⊆ n×m such that if (i, j) ∈ R for i ∈ n and j ∈ m, (i′, j) is not in

R for any i′ ̸= i

� Isomorphism classes of spans n← R ↪→ m whose second leg is an injection.

To see that these are equivalent, an injective relation R uniquely determines both

the function

n→P(m) i 7→ {j ∈ m|(i, j) ∈ R}

and the span n ← R ↪→ m, where the disjointness and injectivity conditions are

equivalent, and composition in Γ described above agrees with the usual compositions

of relations and spans.

Our desired generalization replaces the objects of Γ with arbitrary sets, and

extends the morphisms in a manner expressible in terms of any of the three above

descriptions of the morphisms in Γ, though we will use the description in terms of

spans which is easy to work with and more present in the literature. For sets N and

M , our morphisms from N to M will be, equivalently:
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� Functions from N to the set of multisets consisting of (potentially many copies

of) elements of M

� Isomorphism classes of “proof-relevant” relations between N and M , meaning

(isomorphism classes of) functions R → N × M . Intuitively, this is like a

relation except instead of elements i ∈ N and j ∈M being merely related or not

related, there is now a (potentially empty) set Ri,j of “proofs” or “witnesses”

to the relation of i and j, given by the preimage in R of the pair (i, j)

� Isomorphism classes of spans N ← R → M , where we again write Ri,j for the

subset of R mapped both to i ∈ N and j ∈M .

We abuse notation by using R to denote both the set R as above and the entire

span. An isomorphism between two spans R,R′ is an isomorphism of sets R ∼= R′

which commutes with the functions to N and M .

Definition 9.3. Span is the category whose objects are sets and whose morphisms

are isomorphism classes of spans between them. Identity spans are given by pairs

of identity functions, and composition is given by pullback, which is unital and

associative on isomorphism classes of spans.

Note that Span is not even locally small, though it could be made so by restricting

the cardinalities of the object sets and spans. However, we will primarily use only

certain locally small subcategories of Span, through which we can factor the functors

to Span we are interested in.
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Example 9.4. An isomorphism class of spans R from N to M such that the sets

Ri,j have cardinality 1 or 0 is precisely a relation between N and M . In the second

description above of the morphisms of Span as proof-relevant relations, these are

the relations R in which there is only one “proof” of (i, j) in R, if any. However, this

property is not preserved by composition in Span, as composing a relation from N

to M which is not co-injective (each element in N relates to at most one element in

M) with a relation from M to L which is not injective (each element in L relates to

at most one element in M) often results in a relation from N to L where a pair of

elements is related via more than one element in M , and these multiple witnesses

are recorded by the composition in Span.

Example 9.5. While Rel is not a subcategory of Span, both Γ and Set are sub-

categories of Rel which are closed under composition in Span, as Γ consists only

of injective relations (between finite sets) and Set consists only of co-injective rela-

tions (functions between sets are precisely the relations which are co-injective and

co-surjective). In other words, Γ is the subcategory consisting of finite sets and spans

of the form N ← R ↪→ M , while Set is the subcategory consisting of spans of the

form N = N → M . Setop is also a subcategory of Span consisting of the spans of

the form N ←M =M .

Example 9.6. If we restrict to spans those whose sets Ri,j are finite sets, their

isomorphism classes are determined by the natural numbers |Ri,j| and composition

corresponds to matrix multiplication of these arrays of numbers. If we further restrict

to spans such that R itself is finite (even if the source and target sets N,M are not),

this subcategory is equivalent to the category Lcmon of free abelian monoids and
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monoid homomorphisms between them.

For any such span N ← R→M , we get a homomorphism of free abelian monoids

⟨N⟩ → ⟨M⟩ defined on generators by

i 7→ Π
j∈M

j|Ri,j |,

where the product is guaranteed to be finite by assumption. Conversely, given a

monoid homomorphism ⟨N⟩ → ⟨M⟩ we can recover |Ri,j| as the multiplicity of j in

the image of the generator i, and composition and identities in the two categories

agree.

Finally, recall (from, for instance, [31]) that Span extends to a double category

with sets as objects, isomorphism classes of spans as horizontal morphisms, functions

as vertical morphisms, and squares given by pairs of commuting squares as in the

figure below.

X Z Y

X ′ Z ′ Y ′

This will allow us to consider vertical natural transformations between functors

into Span whose components are functions rather than spans and whose naturality

squares contain the additional data of the function Z → Z ′ above.
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9.2 Wreath Products

A functor γ : A → Span can be interpreted as assigning to each object a of A a

set of available “slots” and to each morphism p : a→ a′ in A a collection of arrows

between those slots where γ(p)i,j describes the set of arrows from the ith slot in

γ(a) to the jth slot in γ(a′). When γ factors through Γ, for instance, each object

has finitely many slots and each morphism is sent to a finite arrangement of arrows

between the slots with the property that no slot of the codomain has more than one

incoming arrow.

Given such a functor, the wreath product of A and a category B has as objects

the tuple of an object a of A with each of its slots filled with an object of B, and

a morphism between such tuples amounts to a morphism p : a → a′ in A and a

morphism in B for each of the corresponding arrows between the slots indexed by

the span γ(p). This recovers the classical wreath product when γ factors through Γ.

Definition 9.7. Given a functor γ : A → Span and a category B, the wreath

product A ≀γ B (or simply A ≀ B) is the category with:

� Objects of the form (a ∈ Ob(A); (bi ∈ Ob(B))i∈γ(a))

� Morphisms of the form (p : a→ a′; (pi,j,k : bi → b′j)i∈γ(a),j∈γ(a′),k∈γ(p)i,j)

� Identities of the form (ida; (idbi)i∈γ(a))

� The composite of morphisms

(p; (pi,j,k)) : (a; (bi))→ (a′; (b′j)) and (q; (qi′,j′,k′)) : (a
′; (b′i′))→ (a′′; (b′′j′))
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is given by

(qp; (qj,j′,k′ ◦ pi,j,k)i∈γ(a),j′∈γ(a′′),(j,(k,k′))∈γ(qp)i,j′ ).

noting that

γ(qp)i,j′ ∼= (γ(q)γ(p))i,j′ ∼=
∐

j∈γ(a′)

γ(q)j,j′ × γ(p)i,j.

Associativity and unit laws follow from the same for A, B, and Span. Intuitively,

composition in A≀B should be regarded as sending an arrangement of arrows between

the slots of a and a′, and one between the slots of a′ and a′′, to the arrangement

consisting of all possible composites of those arrows.

Remark 9.8. This is why it is necessary to have γ land in Span rather than simply

Rel: composing a one-to-many arrangement of arrows with a many-to-one arrange-

ment of arrows can result in multiple different composite arrows between a fixed pair

of slots, and Span keeps track of not just which pairs of slots have a composite arrow

between them but also how many such composites should be expected. Classically,

using Γ avoids this issue by allowing only one-to-many arrangements.

This generalization allows for the description of many new types of wreath prod-

ucts, though we also recall the most famous example of wreath products of the

simplex category ∆.

Example 9.9. In the prototypical example of a classical wreath product, there is a

functor ∆→ Γ ↪→ Span sending the n-simplex [n] to the set of its n “spinal” edges

of the form {i, i+ 1} ⊆ [n]. A morphism f in ∆ sends each spinal edge {i, i+ 1} to
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the (possibly empty) set of spinal edges edges contained within {f(i), ..., f(i + 1)},

a one-to-many relation on the edges of the domain and codomain simplices.

The wreath product ∆ ≀ B then has as objects simplices with each spinal edge

decorated with an object of B, and as morphisms those of ∆ equipped with a map

bi → bj in B for each j such that the ith spinal edge of the domain simplex covers

the jth spinal edge of the codomain simplex.

Example 9.10. For a fixed set of objects e = {ek} ⊆ Ob(C), there is a functor

γ̂e : Ĉ → Set ↪→ Span sending a cell diagram X to its set of “e-cells” ⊔kXek . The

wreath product Ĉ ≀ B has as objects cell diagrams over C with each e-cell equipped

with an object of B, and as morphisms those of Ĉ equipped with a morphism in B

from the decorating object of each e-cell to the decorating object of its image. All of

the wreath products in the next section on cell shapes and cell diagrams are of this

form, though more complicated functors to Span arise when taking wreath products

of familial theories, such as the examples above and below.

Example 9.11. The discrete category N has a functor to Span sending n to the

n-element set. For a category A, N ≀ A has objects of the form (n, (a1, ..., an)) and

morphisms of the form (idn, (f1 : a1 → a′1, ..., fn : an → a′n)), making it precisely the

free strict monoidal category on A.

In a similar fashion, replacing N with iso(FinSet) with the functor

iso(FinSet) → Set → Span produces the free weakly symmetric strict monoidal

category on A, replacing N with the disjoint union over n ∈ N of the contractible

groupoid on nullary/binary or unbiased parenthesizations of n letters (projecting
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to N for its functor to Span) produces the free biased or unbiased weak monoidal

category on A, and replacing N with the disjoint union over n ∈ N of the braid

group on n letters (as a 1-object groupoid, with the functor to Span coming from

the projection to iso(FinSet)) gives the free braided monoidal category on A.

These are all in fact classical wreath products as iso(FinSet) → Span factors

through Γ, but in the following examples we use the generalized wreath product to

produce more complicated free constructions on a category A.

Example 9.12. For the functor FinSet → Set → Span, FinSet ≀ D has objects

given by finite sets of objects in D and morphisms (d1, ..., dn) → (d′1, ..., d
′
m) given

by a function f : n→ m and morphisms di → d′f(i). This is easily checked to be the

free finite coproduct completion of D, as

Hom((d1, ..., dn), (d
′
1, ..., d

′
m))
∼= Π

i∈n
Hom((di), (d

′
1, ..., d

′
m)).

Simlarly, Set ≀ D is the free coproduct completion of D. By completely dual

reasoning, FinSetop ≀D and Setop ≀D, defined using the subcategory inclusion of Setop

into Span, give the free finite product completion and free product completion of D,

respectively. This is also a consequence of the observation that (A ≀B)op ∼= Aop ≀ Bop.

Example 9.13. Consider (the opposite of) the Lawvere theory for monoids, namely

the category Lmon of finitely generated free monoids. There is a functor Lmon →

Span factoring through the subcategory Lcmon (Example 9.6), given by abelianiza-

tion. The abelianization of the free monoid on a finite set A is the free abelian monoid

on A, and the abelianization of a monoid homomorphism sending each generator i
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to some finite word on the elements j of B forgets the order of the generators in each

word and sees only the multiplicity of each j.

The wreath product Lmon ≀ D then has as objects finitely generated free monoids

with each generator i decorated by an object di of D, and as morphisms monoid

homomorphisms f equipped with fi,j-many morphisms di → d′j in D, where fi,j is

the multiplicity of j in f(i). The objects of Lmon ≀ D amount to finite lists of objects

in D, and so Ob(Lmon ≀ D) is the free monoid on Ob(D). From this perspective, the

morphisms (d1, ..., dn) → (d′1, ..., d
′
m) consist of for each i from 1 to n a finite list of

morphisms

(fi,1 : di → d′j1 , ..., fi,ki : di → d′jki
).

This is certainly a monoidal category, though the large number of morphisms makes

it much larger than the free monoidal category on A. We plan to further investigate

monoidal categories of this sort in future work, as they appear to encode a vast

amount of additional structure.

Example 9.14. Similar to the above, Lcmon ≀D has objects given by the free monoid

on Ob(D) and morphisms (d1, ..., dn) → (d′1, ..., d
′
m) given by, for each i from 1 to n

and j from 1 to m, maps

(fi,j,1, ..., fi,j,ki,j : di → d′j)

in D for some natural number ki,j. Compared to the morphisms in the previous

example, these do not keep track of the order of the codomains but only the number

of maps from each di to each d′j.
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This is also a monoidal category with a lot of additional structure. By the

inclusions of both FinSet and FinSetop into the category of finite spans Lcmon,

the objects (d1, d2) can be checked to be both the product and coproduct of (d1) and

(d2). There is a unique morphism from any object to or from the empty list (). For

any pair of morphisms f, g : d→ d′, there is a morphism (f, g) : (d)→ (d′) in Lcmon≀D

as well as a canonical morphism () : (d) → (d′). From this, it is straightforward to

check that Lcmon ≀ D is the free finite biproduct completion of D.

We now proceed to describe how wreath products interact with various constructs

of category theory, including colimits of categories, monoidal structures, factorization

systems, and colimits in a category.

9.3 Functoriality and Wreath Products of Colimits

We now describe how A ≀γ B is functorial with respect to A, γ,B, and prove that

this functor preserves coproducts in the A, γ position and filtered colimits in the B

position.

Definition 9.15. Let CAT//Span denote1 the category with objects of the form

γ : A → Span for a category A and morphisms (A1, γ1) → (A2, γ2) given by

functors F : A1 → A2 which are “vertically colax over Span” in the sense of the

diagram below left. In other words, for f : a → a′ in A1, there is a square in the

1This is a slight abuse of the notation for lax overcategories in Section 2 as the natural trans-
formations are double categorical rather than those in CAT.
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double category Span as below right and composition of morphisms in A1 goes to

horizontal composition of such squares.

A1 A2

Span

F

γ1 γ2

γ2(Fa) γ2(Ff) γ2(Fa
′)

γ1(a) γ1(f) γ1(a
′)

ϕa ϕf ϕa′

Proposition 9.16. The wreath product ≀ forms a functor CAT//Span ×CAT →

CAT.

Proof. Given a functor G : B → B′, for fixed γ : A → Span we define the functor

A≀γB → A≀γB′ sending (a, (bi)) to (a, (Gbi)) and similarly applying G to morphisms

(functoriality follows from functoriality of G).

For F : A1 → A2 vertically lax over Span and fixed category B, we define the

functor A1 ≀γ1 B → A2 ≀γ2 B sending (a, (bi)) to (Fa, (bϕa(i′))i′∈γ2(Fa)) and (f : a →

a′, (fk : bi → b′j)k∈γ1(f)i,j) to

(Ff : Fa→ Fa′, (fϕf (k′) : bϕa(i′) → b′ϕa′ (j′))k′∈γ2(f)ϕa(i′),ϕa′ (j
′)
).

These two types of functors are easily checked to commute for a pair of such F and

G.

Remark 9.17. Indeed, like the classical wreath product (see for instance [10, 4.1])

this functor lifts to one of the form

CAT//Span×CAT//Span→ CAT//Span

which forms a monoidal product.
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Proposition 9.18. For a category B, the functor − ≀− B : CAT//Span → CAT

preserves coproducts.

Proof. This is immediate by definition of the wreath product, as for γ1 : A1 → Span

and γ2 : A2 → Span the category (A1

∐
A2) ≀γ1,γ2 B contains isomorphic copies of

A1 ≀γ1 B and A2 ≀γ2 B and no morphisms between them.

Proposition 9.19. For γ : A → Span which factors through the subcategory of

κ-small sets and κ-small spans for a regular cardinal κ (see Example 9.6 for the case

of κ = ω), the functor A ≀γ − : CAT→ CAT preserves κ-filtered colimits.

Proof. For a κ-filtered diagram B : I → CAT, an object in colim
I∈I

(A ≀γ BI) is an

equivalence class of tuples (a, (bi)i∈γ(a)), where all of the objects bi live in the same

BI for some I in I, while an object in A ≀γ (colim
I∈I
BI) is an equivalence class of

tuples (a, (bi)i∈γ(a)) where each bi has a representative in some category BI in the

diagram, though these choices of I need not be the same. However, as I is filtered

this κ-small set of objects I has a cocone I ′ in I and this object in A ≀γ (colim
I∈I
BI)

has a representative in which all of the objects bi belong to BI′ . This, along with a

completely analogous argument for morphisms, shows that these two categories are

equivalent.
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9.4 Wreath Products of Monoidal Categories

WhenA and B are monoidal categories, to put a monoidal structure onA≀γB requires

additional structure involving γ. This requires a choice of monoidal structure on

Span, which we take to be the cartesian product to accommodate the example in

Section 11.1 but could just as well be given by disjoint union. It would suffice to ask

that γ be a monoidal functor, but again for the sake of Section 11.1 we describe a

weaker condition on γ which is also sufficient.

Definition 9.20. For a monoidal category A, a functor γ : A → Span is colax-

monoidal in the double categorical sense if the tensor product ⊗ : A × A → A is

vertically colax over Span in the sense of the following diagram:

A×A A

Span

⊗

γ×γ γ

In other words, there is a vertical natural transformation ϕa,a′ : γ(a⊗ a′) → γ(a)×

γ(a′) in the double category Span satisfying unit and associativity equations to

ensure that these compose to unique maps γ(a1⊗· · ·⊗ an)→ γ(a1)×· · ·× γ(an) for

all n ≥ 0. Concretely, the naturality amounts to, for f : a1 → a2 and f ′ : a′1 → a′2 in

A, a commuting diagram as below

γ(a1 ⊗ a′1) γ(f ⊗ f ′) γ(a2 ⊗ a′2)

γ(a1)× γ(a′1) γ(f)× γ(f ′) γ(a2)× γ(a′2)

ϕa1,a′1
ϕf,f ′ ϕa2,a′2

such that ϕ sends composite morphisms inA×A to horizontal composition of squares

in the double category Span.

148



The definition of a colax-monoidal functor would typically also include a vertical

morphism γ(I) → ∗, but this is redundant for the cartesian monoidal structure on

Span. In the case when γ factors through Set, the action of ϕ on morphisms f is

determined by the ϕa,a′

Proposition 9.21. Given monoidal categories A,B and a functor γ : A → Span

which is colax-monoidal in the double categorical sense, A≀γ B has a monoidal struc-

ture with identity (I, (I)i∈γ(I)), product on objects given by

(a, (bi)i∈γ(a))⊗ (a′, (b′i′)i′∈γ(a′)) = (a⊗ a′, (bi ⊗ b′i′)k∈γ(a⊗a′),ϕa,a′ (k)=(i,i′)),

and on morphisms given by

(f : a1 → a2, (fk : b1,i → b2,j)k∈γ(f))⊗ (f ′ : a′1 → a′2, (f
′
k′ : b

′
1,i′ → b′2,j′)k′∈γ(f ′))

= (f ⊗ f ′, (fk ⊗ fk′)ℓ∈γ(f⊗f ′),ϕf,f ′ (ℓ)=(k,k′)).

Proof. This is tedious but straightforward to check, where functoriality of ⊗ follows

from naturality of ϕ. Unitality and associativity (weak or strict corresponding to

those of A,B) follow from the same or A,B and the analogous properties of ϕ.

9.5 Factorization Systems on Wreath Products

Similarly, factorization systems (in the sense of Definition 6.44) on A and B, pre-

served by γ, extend to a unique factorization system on A≀γB. We fix a factorization

system on Span, chosen to accommodate Section 11.5, in which any isomorphism
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class of spans X ← Z → Y factors uniquely up to isomorphism as X ← Z = Z

followed by Z = Z → Y . For factorization in A of a morphism f : A→ A′ we write

A
f1−→ Af

f2−→ A′.

Proposition 9.22. Given factorization systems on categories A and B, and a

factorization-preserving functor γ : A → Span, A ≀γ B has a factorization system in

which any morphism (f : A→ A′, (fk : Bi → B′
j)k∈γ(f)i,j) factors as

(A, (Bi)i∈γ(A))
(f1,(f1k :Bi→Bfk

)k∈γ(f)i
)

−−−−−−−−−−−−−−→ (Af , (Bfk)k∈γ(Af ))
(f2,(f2k :Bfk

→Bj)k∈γ(f)j
)

−−−−−−−−−−−−−−→ (A′, (B′
j)j∈γ(B)),

noting that γ(Af ) ∼= γ(f) as sets.

Proof. All that remains to show is uniqueness of the factorizations, which follows

from the same for A,B,Span.

Remark 9.23. It is worth noting that a similar result can be proven for classical

wreath products, where the same factorization system restricted to Γ ⊆ Span re-

places the class of forward-pointing functions with forward-pointing injections. For

wreath products with A = ∆ for instance, the active-inert factorization system of

Theorem 6.31 (or in other words, endpoint preserving maps followed by linear inclu-

sions of finite nonempty ordinals) is preserved by the standard functor into Γ.
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9.6 Diagram Decomposition and Colimits in a Wreath Prod-

uct

Functors of the form C → A ≀γ B can be decomposed into functors landing in A and

B respectively. In order to describe this decomposition, we first define an analogue

of the Grothendieck construction for functors A → Span.

Definition 9.24. Given a functor γ : C → Span, let
∮
γ be the category with

objects pairs (c ∈ Ob(C), i ∈ γ(c)) and morphisms (c, i) → (c′, j) given by pairs

(f : c → c′, k ∈ γ(f)i,j). Identities and composites are determined by those of

C,Span respectively.

There is a canonical forgetful functor
∮
γ → C. While this Grothendieck con-

struction can be extended to an equivalence between a certain category of functors

C → Span (using lax vertical transformations rather than the usual natural trans-

formations) and a category of certain functors into C with discrete fibers, we will

instead by interested in natural transformations between functors C → Span and

categories constructed from them.

Definition 9.25. Given a natural transformation π : γ → γ′ : C → Span, let
∮
π

denote the category over C × 2 given by applying
∮
to π : C × 2→ Span.

This category has objects the disjoint union of
∮
γ and

∮
γ′ and morphisms gen-

erated by those of
∮
γ,

∮
γ′ along with maps (c, i ∈ γ(c)) → (c, j ∈ γ′(c)) for every
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k ∈ γ(πc)i,j. Hence there are disjoint inclusions of both
∮
γ and

∮
γ′ into

∮
π. We call

the morphisms between those maps transition morphisms.

Given a functor F : C → A ≀γ B, we will write F1 for the composite functor

C → A ≀γ B → A, where the second functor is the canonical forgetful functor λ :

A ≀γ B → A. Furthermore we write γ1 : C → Span for the composite γ ◦ F1.

Lemma 9.26. A functor F : C → A ≀γ B determines a functor F2 :
∮
γ1 → B.

Proof. F2 sends (c, i ∈ γ(F (c))) to F (c)i where F (c) = (F1(c), (F (c)i)i∈γ(F1(c))), and

sends

(f : c→ c′, k ∈ γ(F (f))i,j)

to F (f)k, where

F (f) = (F1(f) : F1(c)→ F1(c
′), (F (f)k : F (c)i → F (c′)j)k∈γ(F1(f))i,j).

Functoriality of this assignment follows from that of F .

We are now ready to state the main result of this section characterizing functors

C → A ≀γ B.

Proposition 9.27. A pair of functors F1 : C → A and F2 :
∮
γ1 → B determine a

functor F : C → A ≀γ B, forming an equivalence of categories between Fun(C,A ≀γ B)

and the category with objects pairs (F1, F2) and morphisms pairs (π1 : F1 → F ′
1, π2 :∮

π1 → B) with π2 restricting to F2, F
′
2 on

∮
γ1,

∮
γ′1 respectively.
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In this latter category, identities are defined by id : F1 → F1 and the map∮
id ∼=

∮
γ1×2→ B sending all of the transition morphisms to identities. Composition

is given by observing that for transformations π1 : F1 → F ′
1 and π′

1 : F ′
1 → F ′′

1 ,∮
(π′

1 ◦ π1) is isomorphic to the pushout of the inclusions of
∮
γ′1 into

∮
π1 and

∮
π′
1

respectively, with the objects from
∮
γ′1 removed. So functors π2 :

∮
π1 → B and

π′
2 :

∮
π′
1 → B assemble into a functor

∮
(π′

1 ◦ π1) → B in a unital and associative

manner with transition morphisms sent to the compositions of those from π2, π
′
2.

Proof. Given such a pair F1, F2, for c in C and f : c→ c′, define

F (c) = (F1(c), (F2(c, i))i∈γ(F1(c))) F (f) = (F1(f), (F2(f, k))k∈γ(F1(f))).

To see that this correspondence between F and (F1, F2) extends to an equivalence

of categories, we observe that a natural transformation π : F ⇒ F ′ : C → A ≀γ B

consists of morphisms

π1,c : F1(c)→ F ′
1(c), πc,k : F2(c, i)→ F ′

2(c, j)

for c in C and k ∈ γ(π1)i,j satisfying a naturality condition for morphisms in C. This

amounts to precisely the data of a natural transformation π1 : F1 → F ′
1 and a functor

π2 :
∮
π → B, and composition can be easily checked to agree with that described

above in the category of pairs (F1, F2).

We now turn to how colimits in A,B interact with colimits in A ≀γ B.

Definition 9.28. Given a functor γ1 : C → Span equipped with a cocone (X, ιc),

let (
∮
γ1)j for j ∈ X denote the category with objects of the form (c, i, k) for (c, i) in

153



∮
γ1 and for the span ιc : γ1(c)→ X, k ∈ γ(ιc)i,j. Morphisms (c, i, k)→ (c′, i′, k′) are

given by those in
∮
γ that commute with k, k′ in

∮
γ.

Note that for all such j there is a forgetful functor (
∮
γ1)j →

∮
γ1.

Proposition 9.29. If F1 : C → A has a colimit in A and F2 :
∮
γ1 → B is such that

F2,j : (
∮
γ1)j →

∮
γ1 → B has a colimit for all j ∈ γ(colimF1), then the corresponding

F : C → A ≀γ B has a colimit given by

(colimF1, (colimF2,j)j∈γ(colimF1)).

Proof. We first define the cocone maps in A ≀γ B

(F1(c), (F2(c, i))i∈γ1(c))→ (colimF1, (colimF2,j)j∈γ(colimF1))

as

(ιc, (ιF2,j(c,i,k) : F2,j(c, i, k)→ colimF2,j)k∈γ(ιc)i,j),

which commute with the maps in C as ιc and ιF2,j(c,i,j) commute with the maps in C

and (
∮
γ1)j respectively.

Next, observe that a morphism

f : (colimF1, (colimF2,j)j∈γ(colimF1))→ (a, (bi′)i′∈γ(a))

amounts to maps

f0 : colimF1 → a fk′ : colimF2,j → bi′
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for all j ∈ γ(colimF1), i
′ ∈ γ(a), and k′ ∈ γ(f0)j,i′ , which in turn amount to maps

fc : F1(c)→ a, fj,k,k′ : F2,j(c, i, k)→ bi′

for all c in C, j ∈ γ(colimF1), i
′ ∈ γ(a), (c, i, k) in (

∮
γ1)j, k

′ ∈ γ(f0)j,i′ commuting

with the maps in C and each (
∮
γ1)j. These assemble into, for each c in C, morphisms

(fc, (fj,k,k′ : F2,j(c, i, k)→ bi′)j∈γ(colimF1),k∈γ(ιc)i,j ,k′∈γ(f0)j,i′ ) : (F1(c), (F2(c, i))i∈γ1(c))→ (a, (bi′)),

which is well defined as fc = f0 ◦ ιc and so

γ(fc)i,i′ =
∐

j∈γ(colimF1)

γ(f0)j,i′ × γ(ιc)i,j.

Therefore, as the corresponding commutativity conditions between these mor-

phisms agree, cocones under F correspond to morphisms out of (colimF1, (colimF2,j)j∈γ(colimF1))

in A ≀γ B, exhibiting this as the colimit of F .

10 Wreath Products of Cell Shapes and Diagrams

We now describe how to use the generalized wreath product to describe operations

on cell shapes and cell diagrams. The motivating idea is to generalize the process

by which categories enriched in categories, combining objects built primarily from

arrows, form 2-categories which are built primarily from a new higher dimensional

cell shape, globular 2-cells.

· · ≀
·

·
= · ·
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Globular 2-cells, or more precisely the category G2 describing their shape, can

be built out of two arrows (which is to say, copies of G1) through a process we call

stuffing. Intuitively, a globular 2-cell is obtained by “stuffing” one arrow into another

via a construction given in terms of wreath products, and this construction will allow

us to model the cell shapes which make up much more general enriched structures.

The key idea, evident from the picture above, is that while the body of the arrow is

replaced by an inner arrow of arrows, the source and target vertices remain fixed. In

this sense the inner arrow is “stuffed” into the outer one.

We then extend this construction to cell diagrams, define an external wreath prod-

uct functor from the wreath product of two cell diagram categories to the category of

cell diagrams over the corresponding stuffed cell shapes, and prove several convenient

properties of this functor. This will facilitate in the following section a construction

of familial monads on these stuffed cell diagrams out of familial monads on the inner

and outer cell diagrams.

10.1 Stuffed Cell Shapes

In the picture above, stuffing the inner arrow into the outer one only affected the

top dimensional cell shape, the arrow, leaving unaffected the lower dimensional cells

in its boundary. We model this proceduce using a wreath product, where the top

dimensional cell shapes in C are treated as having a single slot to be filled by a cell

shape from D.
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Definition 10.1. For e an endpoint of C, we write γe for the functor C → Span

sending e to the singleton set, all other objects to the emptyset, and each morphism

into e to the unique span from ∅ to {∗}.

γc can be interpreted as assigning a single slot to the object e and no slots to any

other objects.

Definition 10.2. For C a category with endpoint e and D any category, the stuffing

of D into C is the wreath product category C ≀γe D, which we will write as simply

C ≀e D.

We can unwind this definition to give an explicit description of C ≀e D. Its objects

are either of the form (c; ()) for c ̸= e in C, which we abbreviate as simply c, or

(e; (d)) for d in D which we abbreviate as simply d. The morphisms are as follows,

for c, c′ ∈ Ob(C)\{e} and d, d′ ∈ Ob(D):

� HomC≀eD(c, c
′) = HomC(c, c

′)

� HomC≀eD(d, d
′) = HomD(d, d

′)

� HomC≀eD(d, c) = ∅

� HomC≀eD(c, d) = HomC(c, e), and for p : c → e in C we write pd for the corre-

sponding morphism c→ d in C ≀e D (unless d is clear from context)

Composition is defined as in C,D everywhere appropriate, and for p : c → e in C

and q : d→ d′ in D we have q ◦ pd = pd′ . In more geometric terms, the faces from C
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of the cell shape (e; (d)) are the same for all d, unaffected by composition with the

morphisms from D. This is the precise sense in which the shapes of D are “stuffed”

inside C, without affecting the boundary of the cell shape e, and is reminiscient of

the relations in the categories Gn.

Example 10.3. The example motivating this definition is when C = Gn and D =

Gm, with e the unique endpoint object n of Gn. Gn ≀n Gm is precisely the category

Gn+m, encoding that an n-cell stuffed with anm-cell is an (n+m)-cell. The equations

s ◦ s = t ◦ s and s ◦ t = t ◦ t for all s and t morphisms in Gn and Gm follow from the

description of composition above. These equations express that the composition of

an “outer” morphism in the wreath product followed by an “inner” morphism simply

ignores the content of the inner morphism. Geometrically, it encodes that the outer

faces of a cell shape are unaffected by the inner faces, just as the source and target

vertices of a 2-cell are also the source and target vertices of both its 1-cell faces.

Example 10.4. G1 ≀ (G1 ×G1) describes a square stuffed inside an arrow, which

resembles a more square-ish version of a lemon with 4 arrows, 4 globular faces con-

necting them in a square formation with fixes source and target vertices, and a

3-dimensional cell filling in those faces. In other words, the unreduced suspension of

a square.

Example 10.5. (G1×G1)≀G1 describes an arrow stuffed inside a square, as depicted

below.
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Such a cell consists of two squares with shared boundary (as in the pinched boundary

above) and a 3-dimensional “arrow” stuffed between them, which can be interpreted

as various sorts of fillings.

In some cases of interest (see Example 10.7 below) the category C has multiple

endpoint objects (e1, e2, ...). After stuffing C with D at e1, the objects e2, e3, ... remain

endpoints and so C ≀e1 D can be stuffed again with D or any other category at e2,

and so on and so forth. However for convenience, we extend our notation to allow

for stuffing an entire set of endpoint objects with the same category D all at once.

Definition 10.6. Let e = {ek} be a set of endpoint objects in a category C. We

define the functor γe : C → Span as sending each ek to the singleton set and all other

objects to the empty set (the action on morphisms is then uniquely determined). In

this case C ≀e D denotes the wreath product of C and D with respect to this γe.

In this case, we again write c for the object (c; ()) of C ≀e D when c ∈ Ob(C) is

not in e, and we write dk for the objects (ek; (d)) when d ∈ Ob(D).

Example 10.7. For the category M with endpoint objects {(n, 1)} for all n, the

wreath product M ≀e G1 has objects 0, 0(n,1), 1(n,1) for all n. The cell shape 0 is as

before just a point, 0(n,1) is a point stuffed into an n-to-1 arrow, which is just an

n-to-1 arrow, and 1(n,1) is an arrow stuffed into an n-to-1 arrow, which resembles a

globular 2-cell with n source vertices rather than 1.
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10.2 Diagrams of Stuffed Cells

We now turn to studying cell diagrams over the stuffed cell shapes C ≀e D, for e a set

of endpoints. C ≀e D is related to C and D via the functors

D ρk−→ C ≀e D
λ−→ C,

where ρk is fully faithful sending d to dk, and λ sends c to c and dk to ek.

Given a diagram X over C ≀e D, we can extract from it diagrams over C and D.

First, each ρk : D → C ≀e D gives rise to the restriction functor ρ∗k : Ĉ ≀e D → D̂, which

sends a diagram X to the cell diagram over D with d-cells given by the dk-cells of

X (and the corresponding structure maps). On the other hand, λ : C ≀e D → C left

Kan extends to λ! : Ĉ ≀e D → Ĉ.

Example 10.8. For M ≀e G1 described above, λ : M ≀e G1 → M sends 0 to 0 and

both 0(n,1), 1(n,1) to (n, 1), while ρn,1 : G1 → M ≀e G1 sends 0 and 1 to 0(n,1), 1(n,1)

respectively. Given a cell diagram X over M ≀eG1, ρn,1X is the graph whose vertices

are the n-to-1 arrows of X and whose edges are the stuffed arrows between them,

while λ!X is the diagram over M with the same vertices and whose n-to-1 arrows are

the connected components of n-to-1 arrows in X with respect to the stuffed n-to-1

arrows between them. When X only has 1-to-1 arrows it resembles a 2-globular

set, and λ!X is the truncation of X to the graph whose set of edges is that of X

quotiented out by the 2-cells connecting them.

Recall that a diagram in D̂ is connected if any pair of cells is related by a zigzag

of structure maps.
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Lemma 10.9. For X a diagram over C ≀e D, λ!(X) has c-cells given by those of X

and ek-cells given by the set of connected components of ρk(X).

Proof. For each c in C\e, as λ∗, λ! both preserve colimits which are computed com-

ponentwise, we have

Xc
∼= colim

y(a)→X
y(a)c → colim

y(a)→X
λ∗λ!(y(a))c ∼= λ∗λ!(X)c = λ!(X)c

where the map

y(a)c → λ∗λ!(y(a))c = λ∗(y(λ(a)))c = y(λ(a))c

is given by HomC≀eD(c, a)→ HomC(c, λ(a)). But this map is always an isomorphism,

as Hom(c, a) is defined to agree with Hom(c, λ(a)) for all a, so Xc → λ!(X)c is also

an isomorphism.

The ek-cells of λ!(X) are given by

λ!(X)ek
∼= colim

y(a)→X
y(λ(a))ek .

As ek is an endpoint object, y(λ(a))ek is empty if a ̸= dk and singleton if a = dk for

some d in D. This colimit is therefore given by the set of connected components in

the fiber over ek of ∫ X → C ≀e D → C, which are precisely the connected components

of ρk(X).

We now proceed to show how a diagram X over C ≀e D is determined by λ!(X)

and each ρk(X).
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10.3 External Wreath Product

The definition of C ≀e D describes the cell shapes in D isolated inside the boundary of

the cell shape ek in C. This isolation allows diagrams over C ≀e D to be characterized

by the outer diagram over C with separate diagrams over D inserted into each e-cell

(that is, each ek-cell for all k). This characterization is mediated by an external

wreath product functor

□≀ : Ĉ ≀γ̂e D̂ → Ĉ ≀e D,

where γ̂e : Ĉ → Set→ Span sends X to ⊔kXek , which we will sometimes abbreviate

as Xe. An object of Ĉ ≀γ̂e D̂ then consists of a diagram X in Ĉ and for each x ∈ Xe

a diagram Yx in D̂.

Definition 10.10. Define X □≀ (Yx) in Ĉ ≀e D as the diagram Z with Zc = Xc for

c in C\e, and Zdk =
∐

x∈Xek
(Yx)d. On morphisms, Z restricts to X over C\e, and

restricts to
∐

x∈Xek
Yx on the objects dk. For p : c → ek, write pd : c → dk for

the corresponding morphism to dk in C ≀e D. Then Zpd sends (x, y) ∈ Zdk to Xp(x).

Functoriality of Z follows from functoriality of X and each Yx, using the definition

of C ≀e D.

On maps, a morphism (X, (Yx))→ (X ′, (Y ′
x′)) in Ĉ ≀γ̂e D̂ amounts to the tuple of

ϕ0 : X → X ′ with ϕx : Yx → Y ′
ϕ0(x)

for all ek and x in Xek , which suffices to define

the map ϕ0 □≀ (ϕx) : X □≀ (Yx)→ X ′ □≀ (Y ′
x′).

Example 10.11. When C and D are both G1, Ĉ ≀γ̂e D̂ is the category whose objects

are graphs X with each edge x labelled by another graph Yx. X □≀ (Yx) is then the
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2-globular set with the same vertices as X and for each edge x in X, a Yx-shaped

graph of edges and 2-cells between the source and target vertices of x.

Lemma 10.12. When X in Ĉ has no e-cells, X □≀ () ∼= λ∗(X) naturally in X.

Proof. Both have, by definition, c-cells Xc and no dk-cells, with the same structure

maps as X.

Proposition 10.13. The action of □≀ on morphisms

□≀ : HomĈ≀γ̂e D̂
((X, (Yx)), (X

′, Y ′
x′))→ HomĈ≀eD(X □≀ (Yx), X

′ □≀ (Y ′
x′)

is always injective, and is surjective if either Yx is connected for all x ∈ Xek , or no

distinct x′0, x
′
1 ∈ X ′

ek
share a boundary.

Proof. Injectivity follows immediately, as if parallel maps ϕ0, ϕ
′
0 disagree away from

Xek then ϕ0 □≀ (ϕx), ϕ′
0 □≀ (ϕ

′
x) disagree on the same component, if ϕ0, ϕ

′
0 disagree on

Xek then ϕ0 □≀ (ϕx), ϕ′
0 □≀ (ϕ

′
x) disagree on some Yx, and if any ϕx, ϕ

′
x disagree, then

ϕ0 □≀ (ϕx), ϕ′
0 □≀ (ϕ

′
x) disagree on Yx in X □≀ (Yx).

For surjectivity, we consider a map ψ : X □≀ (Yx)→ X ′ □≀ (Y ′
x′ in Ĉ ≀e D and con-

struct (ϕ0, (ϕx)) in Ĉ ≀ρe D̂ such that ψ = ϕ0 □≀ (ϕx). The maps ψdk :
∐

x∈Xek
(Yx)d →∐

x′∈X′
ek

(Y ′
x′)d assemble into a map ψk :

∐
x∈Xek

Yx →
∐

x′∈X′
ek

Y ′
x′ .

By naturality ϕk sends any two cells in Yx related by a structure map to the same

Y ′
x′ , so if Yx is connected, ψk restricts to a map ϕx : Yx → Y ′

x′ for some x′. Similarly

any two cells in Yx share a boundary in X and must be sent to cells in X ′ □≀ (Y ′
x′) that
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share a boundary in X ′, so if any two such x′ ∈ X ′
ek

agree, then again ψk restricts

to a map ϕx : Yx → Y ′
x′ for some x′. In either case then, we can define (ϕ0)ek(x) as

this particular x′. We then set (ϕ0)c = ψc for all other c in C, which is natural in all

maps c → ek in C by naturality of ψ, so the tuple (ϕ0, (ϕx)) forms a map in Ĉ ≀γ̂e D̂

with ϕ0 □≀ (ϕx) = ψ.

Definition 10.14. Write D̂con for the full subcategory of connected diagrams in D̂.

Corollary 10.15. The restriction of □≀ to Ĉ ≀γ̂e D̂con → Ĉ ≀e D is an equivalence.

Proof. By the above proposition, this restriction of □≀ is fully faithful. For essential

surjectivity, consider a diagram Z in Ĉ ≀e D. Let X = λ!(Z) in Ĉ and for each x ∈ Xe,

let Yx in D̂con be the corresponding connected component of ρ∗k(Z), as described in

Lemma 10.9. Then by definition of □≀ , X □≀ (Yx) is isomorphic to Z.

Example 10.16. When C and D are bothG1, this equivalence shows that 2-globular

sets X are uniquely determined by their 1-truncated graph λ!X, with the same

vertices and edges given by the connected components of edges between each fixed

pair of vertices, along with the connected graphs Yx which form those connected

components, whose vertices and edges are edges and 2-cells in X (these are the

connected components of ρ∗X).

Similarly □≀ restricts to an equivalence on the full subcategory of Ĉ on diagrams

whose ek-cells are determined by their boundaries. However, for an alternative char-

acterization of Ĉ ≀e D that does not require any restrictions on the diagrams, we
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can use a different wreath product where diagrams over D are assigned to “e-cell

positions” in a diagram over C\e rather than e-cells in a diagram over C.

Let γ̂∂e : Ĉ\e→ Set→ Span send X to∐
k

HomĈ\e(∂y(ek), X).

Each element of γ̂∂e (X) is a potential boundary of an ek-cell in a diagram over C

restricting to X, or of a dk-cell in a diagram over C ≀e D restricting to X. We can

similarly define an external wreath product

□≀ : Ĉ\e ≀γ̂∂e D̂ → Ĉ ≀e D

sending (X, (Yα)α:∂y(ek)→X) to the diagram over C ≀e D restricting to X on C\e and∐
α:∂y(ek)→X

Yα

on D along ρk with the C\e-boundary of all Yα given by α.

Proposition 10.17. □≀ : Ĉ\e ≀γ̂∂e D̂ → Ĉ ≀e D is an equivalence of categories.

Proof. This external wreath product factors as

Ĉ\e ≀γ̂∂e D̂ → Ĉ ≀γ̂e D̂con
□≀−−→ Ĉ ≀e D,

where the first functor sends (X, (Yα)) to (X
′, (Yα,x)), with X

′ restricting to X on C\e

and having for each α : ∂y(ek)→ X an ek-cell x with boundary α for each connected

component Yα,x of Yα. The second functor is an equivalence by Corollary 10.15, and

the first is an equivalence with inverse functor sending (X ′, (Yx)) to

(∂eX
′, (

∐
x∈Xek

,∂x=α

Yx)α:∂y(ek)→X′),
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hence the composite is an equivalence.

Example 10.18. This equivalent characterization of 2-globular sets shows that a 2-

globular set is determined by its set of vertices (which is in Ĉ\e) and for each ordered

pair of vertices α, a graph Yα of the edges between those two vertices and the 2-cells

between them.

10.4 Properties of the External Wreath Product

The following lemmas show that □≀ preserves terminal objects, representables, and

colimits in the appropriate senses.

Lemma 10.19. ∗ □≀ (∗)k ∼= ∗, where each terminal object ∗ is in the appropriate

diagram category and (∗)k indicates the constant tuple of the terminal diagram in D̂

for each chosen endpoint ek in C.

Proof. By definition, ∗ □≀ (∗)k ∼= ∗ has a single a-cell for each a in C ≀e D.

Lemma 10.20. y(c) □≀ () ∼= y(c) in Ĉ ≀e D, naturally with respect to c in C\e.

Proof. First note that γ̂e sends y(c) to the empty set, so y(c) □≀ () is well defined.

By definition the two naturally agree on c′-cells for all c′ in C\e, and as each ek is an

endpoint neither diagram has any dk-cells.

Lemma 10.21. y(ek) □≀ (y(d)) ∼= y(dk) in Ĉ ≀e D, naturally in d.
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Proof. As ek is an endpoint object, y(ek) has only a single ei-cell, so γ̂e sends y(ek)

to a singleton set and y(ek) □≀ (y(d)) is well defined. For c in C\e,

(y(ek) □≀ (y(d)))c = y(ek)c = HomC(c, ek) = HomC≀eD(c, d
k) = y(dk)c

and for d′ in D,

(y(ek) □≀ (y(d)))(d′)k = y(d)d′ = HomD(d
′, d) = HomC≀eD((d

′)k, dk) = y(dk)(d′)k

Naturality in d follows from the same naturality of y and the definition of com-

position in C ≀e D.

We now describe how □≀ interacts with certain colimits using Proposition 9.27

and Proposition 9.29. While □≀ is an equivalence on Ĉ ≀γ̂e D̂con and therefore preserves

colimits, it will be useful to be able to decompose functors into Ĉ≀γ̂eD̂con using functors

into Ĉ and D̂con respectively in a colimit-preserving way.

Lemma 10.22. Consider diagrams X in Ĉ and Yx in D̂ for each x ∈ Xe. Given

functors F0 : ∫ X → Ĉ and Fx,x′ : ∫ Yx → D̂con for all x ∈ Xe, x
′ ∈ F0(x)e such

that F0(z)e is empty for all z ∈ Xc, c in C\e, there is a functor F0 □≀ (Fx,x′) :

∫(X □≀ (Yx)) → Ĉ ≀e D, which we write as simply F , where for z ∈ Xc, F (z) =

F0(z) □≀ () and for y ∈ (Yx)d,

F (x, y) = F0(x) □≀ (Fx,x′(y)).

Proof. Let F1 : ∫(X □≀ (Yx))→ Ĉ send z ∈ Xc to F0(z) and (x, y) ∈ (X □≀ (Yx))dk to

F0(x), with all morphisms sent according to F0 or identities on F0(x) as appropriate.
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γ1 : ∫(X □≀ (Yx))→ Set→ Span sends z to ∅ and (x, y) to γ̂e(F0(x)) = F0(x)e, from

which it can be deduced that
∮
γ1 is the category

∐
x∈Xe,x′∈F0(x)e

∫ Yx.

Therefore a functor F2 :
∮
γ1 → D̂ is determined by the hypothesized functors Fx,x′ ,

and by Proposition 9.27 this data determines a functor ∫(X □≀ (Yx)) → Ĉ ≀γ̂e D̂con.

Composing this functor with □≀ : Ĉ ≀γ̂e D̂con → Ĉ ≀e D completes the construction

of the functor F , and it is easily checked that the resulting functor agrees with the

definition of F on objects given above.

Proposition 10.23. Given diagrams X in Ĉ and Yx in D̂ for each x ∈ Xe and

functors F0 : ∫ X → Ĉ, Fx,x′ : ∫ Yx → D̂con as above,

colim(F0 □≀ (Fx,x′)) ∼= colim(F0) □≀ (colim(Fx,x′)).

The right hand side of this isomorphism is well defined as, under the assumption

that F0(z)e is empty, γ̂e(colim(F0)) =
∐
x∈Xe

F0(x)e.

Proof. With γ1 : ∫(X □≀ (Yx)) → Set → Span sending z to ∅ and (x, y) to

γ̂e(F0(x)) = F0(x)e, observe that for each (x, x′) ∈ colim(F0)e ∼= γ̂e(colim(F0)),

(
∮
γ1)x,x′ ∼= ∫ Yx, so by Proposition 9.29 the colimit of the functor ∫(X □≀ (Yx)) →

Ĉ ≀γ̂e D̂con defined above from F0, (Fx,x′) is precisely (colim(F0), (colim(Fx,x′))). This

completes the proof, as □≀ is an equivalence and therefore preserves colimits.
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11 Familial Monads for Enriched Algebras

We now define an external wreath product functor on categories of familial repre-

sentations. We then show that a slight restriction of this functor is lax monoidal,

which implies that suitable familial monads T on Ĉ and T ′ on D̂ induce a familial

monad on Ĉ ≀e D. We then show that algebras for this monad agree with T -algebras

enriched in the symmetric monoidal category of T ′-algebras, and under quite general

conditions its theory category is the wreath product of ΘT and ΘT ′ .

11.1 Monoids in RepC ≀RepD

For e a collection of endpoints in C, we have a functor2

σe : RepC → Set→ Span

(S,E) 7→
∐
t∈Se

Ete.

This lets us define the wreath product category RepC ≀σeRepD. This category carries

a monoidal structure induced by the monoidal structures on RepC and RepD using

Proposition 9.21 as follows. σe : RepC → Span is colax-monoidal in the double

categorical sense via the functions

σe(SS
′, EE ′) = {t ∈ Se, f : Et→ S ′, x ∈ Ete, x′ ∈ E ′f(x)e} → σ(S,E)× σ(S ′, E ′)

(t, f, x, x′) 7→ ((t, x), (f(x), x′))

2Note that if the morphisms of representations were not cartesian, this functor would not factor
through Set.
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which determine the colax structure on morphisms as σe factors through Set.

The unit is ((S0, E0), ((S0, E0))k) made up of the units of RepC and RepD.

S0ek and E0(∗ek)e are all singleton, so σe sends (S0, E0) to the set e and thus

((S0, E0), ((S0, E0))k) is well defined in RepC ≀σe RepD.

The product is given by

((S,E), ((Sx, Ex))t∈Se,x∈Ete)((S
′, E ′), ((S ′

x′ , E
′
x′))t′∈S′e,x′∈E′t′e) :=

((SS ′, EE ′), ((SxS
′
x′ , ExE

′
x′))t∈Se,f :Et→S′,x∈Ete,x′∈E′f(x)e)

noting that

EE ′(t, f)e = (colimx∈EtE
′f(x))e ∼=

∐
x∈Ete

E ′f(x)e

by Corollary 5.13.

A monoid in this monoidal category amounts to a monoid structure (η, µ) on the

representation (S,E) over C, unit maps (S0, E0) → (Sx, Ex) on the representations

over D, and suitably compatible structure maps of the form

(SxSx′ , ExEx′)→ (SµE(t,f)(x,x′), EµE(t,f)(x,x′)).

Such a system of structured familial representations is generally complicated to

specify, but we will only consider the case in which all of the representations (Sx, Ex)

over D are the same, and this representation carries a monoid structure in RepD

which provides for all of the necessary structure maps. In other words, given familial

monads represented by (S,E) over C and (S ′, E ′) over D, ((S,E), ((S ′, E ′))x) is a

monoid in RepC ≀σe RepD.
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Example 11.1. Let C = G1 ×G1 and D = G1. Letting (S,E) represent the free

double category monad and (Sx, Ex) = (S ′, E ′) represent the free category monad,

((S,E), ((S ′, E ′))x) is a monoid in RepC ≀σe RepD. The monoidal structure maps

described above arise as follows. Let:

� t ∈ S□ be a grid

� f : Et→ S describe a compatible choice of grids f(x) to plug into each square

x in Et

� tx ∈ Sx1 be a string of arrows for each x

� fx,x′ : Etx → Sx′ describe a string of arrows fx,x′(x
′′) for each arrow x′′ in Etx

µ(t, f) is the grid with Ef(x) plugged into each square x of Et, and µE(t, f)(x, x′) is

the square in Eµ(t, f) corresponding to the square x′ in the subgrid f(x). The idea is

that when the grid t has each square x stuffed with the string of arrows tx, the squares

x have new grids f(x) plugged in, the string Etx must have strings fx,x′(x
′′) plugged

in separately at each square x′ in Ef(x) in order to imitate plugging operations

over (G1 × G1) ≀ G1 into the stuffed square cells of Et □≀ (Extx). The morphism

of representations from (SxSx′ , ExEx′) to (SµE(t,f)(x,x′), EµE(t,f)(x,x′)) then describes

how to compose these strings of arrows (here by the usual concatenation) to get the

appropriate string to plug into the square µE(t, f)(x, x′) of Eµ(t, f) when describing

the composite of this total arrangement.

This compatibility of the structure maps described here with composition of op-

erations over (G1 ×G1) ≀G1 is made precise in Proposition 11.3.

171



11.2 External Wreath Product of Familial Representations

We can now extend the external wreath product □≀ to familial representations:

□≀ : RepC ≀σe RepD → RepC≀γD

(S,E) □≀ ((Sx, Ex))t∈Se,x∈Ete) = (S ≀ (Sx), E ≀ (Ex)), where

S ≀ (Sx) := S □≀ ( Π
x∈Ete

Sx)t∈Se and

E ≀ (Ex) : (t, (tx)x∈Ete) 7→ Et □≀ (Extx)x∈Ete

We will assume throughout that all representations on C are e-graded (Defini-

tion 5.11) and all representations on D have connected arities.

Example 11.2. In the example of (S,E) the free double category monad and Sx

the free category monad for all x, S ≀ (Sx) has the same operations as S for the ·, ↣,

and ◦→ cell shapes. As Sx0 has only the unit operation on vertices, (S ≀ (Sx))0 has

operations given by grids (as in, the same as S□). The operations in (S ≀ (Sx))1 are

given by grids t as in S□ with a string of arrows from Sx1 for each square x in the

grid Et. The arities of these are given by Et □≀ (Extx)x which stuffs the string Extx

into the square x of Et.
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We now proceed to exhibit □≀ as a lax monoidal functor, which shows that

when applied to a monad representation it yields a monad representation. □≀ can

therefore construct familial monads denoted T ≀e T ′ on Ĉ ≀e D from familial monads

T on Ĉ and T ′ on D̂, and we show in Section 11.4 that algebras for this monad agree

with T -algebras enriched in T ′-algebras.

Proposition 11.3. □≀ : RepC ≀σe RepD → RepC≀γD is a lax monoidal functor when

restricted to e-graded representations on C (Definition 5.11) and representations on

D with connected arities.

□≀ therefore preserves monoids when the C-part is e-graded and the D-parts have

connected arities.

Proof. We first show that □≀ preserves units, as in (S0, E0) □≀ ((S0, E0)) ∼=

(S0, E0), each identity representation considered over the appropriate category. By

Lemma 10.19, Lemma 10.20, and Lemma 10.21, S0 □≀ (S0) ∼= S0 as terminal dia-

grams, E0(∗ek) □≀ (E0(∗d))) ∼= E0(∗dk) as representables, E0(∗c) □≀ () ∼= E0(∗c) for c

in C\e, and these isomorphisms are appropriately natural.

Next we construct the lax structure maps

((S,E) □≀ ((Sx, Etx))t∈Se,x∈Ete)((S
′, E ′) □≀ ((S ′

x′ , E
′t′x′))t′∈S′e,x′∈E′t′e)

→ ((SS ′, EE ′) □≀ ((SxS
′
x′ , ExE

′
x′))t∈Se,f :Et→S′,x∈Ete,x′∈E′f(x)e).

On the c-operations, c in C\e, this map is the identity, as the c-operations on

both sides are those of SS ′c, and the isomorphism on arities for (t, f) ∈ SS ′c are
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given by

EE ′(t, f) □≀ () = ( colim
x:y(c′)→Et

E ′f(x)) □≀ () ∼= colim
x:y(c′)→Et

(E ′f(x) □≀ ()) ∼= colim
x:y(a)→Et □≀ ()

(E ′f(x) □≀ ()),

where by Lemma 10.12 (−) □≀ () ∼= λ∗ : Ĉ → Ĉ ≀e D and λ∗ preserves colimits and all

maps y(a)→ Et □≀ () have a = c′ for c′ in C\e as (S,E) is e-graded.

The map (S ≀ (Sx))(S ′ ≀ (S ′
x′))→ (SS ′ ≀ (SxS ′

x′)) is defined as follows, with the first

isomorphism given by Corollary 10.15 and the second by the definition of morphisms

in a wreath product:

(S ≀ (Sx))(S ′ ≀ (S ′
x′))d

k =∐
t∈Sek,(tx∈Sxd)x∈Ete

HomĈ≀eD(Et □
≀ (Extx), S

′ □≀ ( Π
x′∈E′t′e

S ′
x′)t′∈S′e)

∼=
∐

t∈Sek,(tx∈Sxd)x∈Ete

HomĈ≀γ̂e D̂
((Et, (Extx)), (S

′, ( Π
x′∈E′t′e

S ′
x′)t′∈S′e))

∼=
∐

t∈Sek,f :Et→S′

∐
(tx∈Sxd)x∈Ete

Π
x∈Ete

HomD̂(Extx, Π
x′∈E′f(x)e

S ′
x′)

∼=
∐

t∈Sek,f :Et→S′

∐
(tx∈Sxd)x∈Ete

Π
x∈Ete

Π
x′∈E′f(x)e

HomD̂(Extx, S
′
x′)

∼=
∐

t∈Sek,f :Et→S′

Π
x∈Ete

∐
tx∈Sxd

Π
x′∈E′f(x)e

HomD̂(Extx, S
′
x′)

→
∐

t∈Sek,f :Et→S′

Π
x∈Ete

Π
x′∈E′f(x)e

∐
tx∈Sxd

HomD̂(Extx, S
′
x′)

∼=
∐

t∈Sek,f :Et→S′

Π
x∈Ete

Π
x′∈E′f(x)e

SxS
′
x′d

∼= (SS ′ □≀ (Π
x,x′

SxS
′
x′)t,f )d

k

The essence of this map is contained in the single non-invertible component above.

Given an operation t ∈ Sek, a map f : Et → S ′, and a cell x ∈ Ete, the domain
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requires a choice of operation tx ∈ Sxd and for each x′ ∈ E ′f(x)e, a map Extx → S ′
x′

picking out which operations from S ′
x′ will be stuffed into the cells of Extx before

being plugged into the cell (x, x′) of

( colim
x:y(c)→Et

E ′f(x))e ∼=
∐
x∈Ete

E ′f(x)e.

The codomain allows each x′ ∈ E ′f(x)e to be equipped with a distinct choice of

operation tx ∈ Sxd rather than each such operation applying over all x′ ∈ E ′f(x)e

as in the domain. This is a quirk of the interaction between □≀ and composition of

representations in RepC ≀σe RepD and not representative of how operations compose

in wreath product representations, but this does not cause a problem as the lax

structure map can simply pick out the elements in the codomain for which all x′ ∈

E ′f(x)e are equipped with the same operation tx ∈ Sxd. The fact that this satisfies

the conditions of a lax structure map follows from the abstract properties of this

map described in Lemma 11.4 below.

Finally, we need for each tuple

(t ∈ Sek, (tx ∈ Sx)x∈Ete , f : Et→ S ′, (fx,x′ : Extx → S ′
x′)x∈Ete,x′∈E′f(x)e)

an isomorphism

( colim
x:y(c′)→Et

E ′f(x)) □≀ ( colim
y:y(d′)→Extx

E ′
x′fx,x′(y))x∈Ete,x′∈E′f(x)e

∼= colim
z:y(a)→Et □≀ (Extx)

(E ′f(x) □≀ (E ′
x′fx,x′(y))x′∈E′f(x)e),

where when a = dk z is taken to be the pair (x ∈ Ete, y ∈ (Extx)d). This isomorphism

is precisely that of Proposition 10.23, with

X = Et, Yx = Extx, F0 : ∫ Et
∫ f−→ ∫ S ′ E′

−→ Ĉ, Fx,x′ : Extx
fx,x′−−→ S ′

x′
E′

x′−−→ D̂,
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and it is tedious but straightforward to check that these isomorphisms on arities

satisfy the appropriate unit and associativity conditions by the universal property of

colimits.

Lemma 11.4. Given sets A,B and for each a ∈ A, b ∈ B a set Xa,b, there is an

inclusion ∐
a∈A

Π
b∈B

Xa,b → Π
b∈B

∐
a∈A

Xa,b

sending (a, (xa,b)b∈B) to ((a, xa,b))b∈B. Furthermore, for sets

A,B,C,D, (Xa,b,c,d)a∈A,b∈B,c∈C,d∈D

the following diagram of the functions above commutes:∐
a∈AΠb∈B

∐
c∈CΠd∈DXa,b,c,d Πb∈B

∐
a∈A

∐
c∈CΠd∈DXa,b,c,d

∐
a∈AΠb∈BΠd∈D

∐
c∈C Xa,b,c,d Πb∈B

∐
a∈AΠd∈D

∐
c∈C Xa,b,c,d

Proof. On both sides of the diagram, an element (a, ((cb, (xa,b,c,d)d∈D))b∈B) is sent by

the composite to ((a, (cb, xa,b,c,d)d∈D))b∈B.

We can finally state the main result of this section, which follows immediately

from Proposition 11.3.

Theorem 11.5. If T is an e-graded familial monad on Ĉ represented by (S,E, ηC, µC)

and T ′ is a familial monad on D̂ with connected arities represented by (S ′, E ′, ηD, µD),

then T ≀e T ′ inherits the structure of a familial monad on Ĉ ≀e D with structure maps

η, µ where η, µ agree with ηC on c-operations for c in C\e,

η(dk) = (ηC(ek), (η
D(d))) ∈ (S ≀ S ′)dk,

176



and for (t ∈ Sek, (tx ∈ S ′d)x∈Ete) ∈ (S ≀ S ′)dk and (f : Et → S, (fx,x′ : E ′tx →

S ′)x∈Ete,x′∈Ef(x)e),

µ((t, (tx)), (f, (fx,x′))) = (µC(t, f), (µD(tx, fx,x′)(x,x′)∈Eµ(t,f)e)) ∈ (S ≀ S ′)dk.

Example 11.6. From the previous example when T is the free double category

monad and T ′ is the free category monad, we get a monad on ̂(G1 ×G1) ≀G1

which takes a double-graph-with-fillings and adds in all composites of grids of stuffed

squares into a new wide one, as well as all composites of stacked stuffed squares into

an extra-stuffed one.

These composites satisfy the interchange law that the grid-composite of a grid

of stacked-composites of equal-height stacks agrees with the corresponding stack-

composite of a stack of grid-composites. This interchange property is discussed

further below, after which we show that an algebra for this monad is precisely a

double category enriched in Cat.

Example 11.7. When T is the free n-category monad and T ′ is the free m-category

monad, T ≀e T ′ is easily checked to be the free (n + m)-category monad. Indeed,

an n-dimensional pasting diagram with an m-dimensional pasting diagram stuffed

into each n-cell is almost precisely the definition of an (n+m)-dimensional pasting

diagram, so these two monads have the same operations and arities.
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11.3 Algebras and Interchange

As the most notable example of a higher category theory defined via enrichment,

the theory of 2-categories offers several convenient properties that generalize to any

enriched structures. For instance, in a 2-category the composite of any free glob-

ular pasting diagram can be decomposed into a horizontal composition of vertical

composites.

For this section we fix an e-graded familial monad T on Ĉ represented by (S,E)

and a familial monad T ′ on D̂ with connected arities represented by (S ′, E ′).

Lemma 11.8. The following equation holds in (S ≀e S ′, E ≀e E ′) for t ∈ Sek and

tx ∈ S ′d for all x ∈ Ete:

(t, (t′)x∈Ete) = µ((t, (η(d))x∈Ete), η □≀ (tx))

Proof. This follows immediately from Theorem 11.5 and unitality of η, µ.

This equation warrants some explanation: on the right hand side, the outer

operation looks like t with the unit operation on d-cells plugged into each e-cell of

Et, and the composite applies this to the unit operation on each e-cell x of Et with

tx plugged into the single e-cell. Hence the map Et □≀ y(d) → S ≀ S ′ denoted η □≀ t′

is given by Et→ ∗ η−→ S and repeated maps y(d)→ S ′ picking out tx.

When T, T ′ are both the free category monad, this composite corresponds to a

horizontal composition of vertical compositions in a 2-category. Furthermore, when
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each of the vertical composites are of the same number of 2-cells, the interchange

property holds, which can be generalized as follows.

Lemma 11.9. The following equation holds in (S ≀e S ′, E ≀e E ′) for t ∈ Sek and

t′ ∈ S ′d:

(t, (t′)x∈Ete) = µ((t, (η(d))x∈Ete), η □≀ t′) = µ((η(ek), (t
′)), t □≀ η)

Proof. This is a straightforward consequence of Lemma 11.8 and Theorem 11.5, using

unitality of η and µ.

The first composite in this equation is the special case of the previous lemma with

tx = t′ for all x. For the second composite, the outer operation is the unit on ek-cells

with t′ plugged into the single ek-cell of its arity y(ek), and the composite applies this

to t and the unit operation on each cell from D. Hence the map y(ek) □≀ E ′t′ → S ≀S ′

denoted t □≀ η is given by y(ek)→ S picking out t and E ′t′ → ∗ η−→ S ′.

When both familial monads are the free category monad, the first composite

describes a horizontal composition of vertical compositions in a 2-category, while the

second describes a vertical composition of horizontal composites. The interchange

law for 2-categories, and now (T ≀e T ′)-algebras, states that these two must agree.

The leftmost operation in the statement of the proposition, (t, (t′)), describes the

unbiased version of this operation, which does not need to specify whether it is

obtained as a horizontal composition of vertical composites or vice versa.

One of the ways in which the interchange law is useful in the theory of 2-categories
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is that in order to show that a choice of compositions for pasting diagrams of globular

2-cells assemble into a 2-category, it suffices to check that these compositions satisfy

the unitality and associativity equations for both vertical and horizontal composition,

along with the interchange equation. This will prove useful for comparing (T ≀e T ′)-

algebras with T -algebras enriched in T ′-algebras.

Proposition 11.10. Consider a presheaf A in Ĉ ≀e D equipped with composition maps

� Hom(Et □≀ (), A)→ Ac for t ∈ Sc, c in C\e

� Hom(Et □≀ (y(d)), A)→ Adk for t ∈ Sek

� Hom(y(ek) □≀ (t′), A)→ Adk for t′ ∈ S ′d

such that the following conditions hold:

� the first set of composition maps endow λ∗A with the structure of a ∂eT -algebra

� the second set of composition maps satisfy the unit and multiplication equations

corresponding to e-operations of T

� the third set of composition maps satisfy the unit and multiplication equations

corresponding to the operations of T ′

� these compositions satisfy the interchange law, namely that for any map

Et □≀ (E ′t′) → A, applying the composition maps of the second and third type

above in either order, both of which are possible by Lemma 11.9, yield the same

result
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Then this data suffices to define a (T ≀e T ′)-algebra structure on A.

Note that the “unit and multiplication” equations here in the statement of the

theorem refer to the unit and multiplication maps of the monad, where the multpli-

cation encodes both the unitality and associativity properties of classical structures

such as those in 2-categories mentioned above.

Proof. It suffices to define composition maps Hom(Et □≀ (E ′tx)x∈Ete , A)→ Adk for all

operations (t, (tx)) in (S ≀ S ′)dk which satisfy the unit and multiplication equations.

By Lemma 11.9,

Et □≀ (E ′tx)x∈Ete
∼= colim

x′:y(a)→Et □≀ (y(d))
y(a) □≀ (E ′tx′),

where by an abuse of notation (E ′tx′) denotes the singleton list (E ′S ′i(tx)) when

x′ : y(d′k) → Et □≀ (y(d)) corresponds to x ∈ Etek and i : d′ → d in y(d)d′ , and

denotes the empty list of presheaves over D when x′ : y(c) → Et □≀ (y(d)) for c in

C\e.

Therefore, between this isomorphism and the hypothesized composition maps,

we have

Hom(Et □≀ (E ′tx)x∈Ete , A)
∼= lim

x′:y(a)→Et □≀ (y(d))
Hom(y(a) □≀ (E ′tx′), A)

→ lim
x′:y(a)→Et □≀ (y(d))

Aa ∼= Hom(Et □≀ (y(d)), A)→ Adk .

Intuitively, these general composition maps first compose the E ′tx-diagrams into d-

cells within each e-cell of the Et-diagram, then compose the Et-diagram of those

d-cells.
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As the unit equation for these compositions follows from the hypotheses (both

of the maps making up the compositions above being identities up to Yoneda iso-

morphisms), it remains only to show that they satisfy the multiplication equation.

For this we make use of the µ-factorization of operations from Lemma 11.8: any

operation (t, (tx) factors uniquely as (t, (η(d)) applied to the operations (η(ek′), (tx))

for each x ∈ Etek′ . For this reason, to check that the composition maps constructed

above respect composition of operations in T ≀e T ′ via µ, is suffices to check this in

the casesof µ(t̄, f̄), where t̄ ∈ (S ≀S ′)d and f̄ : (E ≀E ′)t̄→ S ≀S ′ are each concentrated

in either C or D.

But when both are concentrated in C, or both in D, this is covered by the first

three conditions in the proposition, and when t̄ is concentrated in C and f̄ concen-

trated in D this is implicit in the definition of the general composition operations.

Hence it remains only to check that these compositions respect µ in the case when t̄

is concentrated in D and f̄ is concentrated in C.

Consider t̄ = (η(ek), (t
′)) ∈ (S ≀ S ′)dk and f̄ : y(ek) □≀ (E ′t′)→ S ≀ S ′ made up of

y(ek) → S picking out t ∈ Sek and E ′t′ → ∗ η−→ S ′. Then µ(t̄, f̄) = (t, (t′)) and the

composition maps respecting µ in this case is precisely the interchange law in the

final condition of the proposition.

182



11.4 Wreath Product Monads Produce Enriched Algebras

We can now show that for familial monads T e-graded over Ĉ and T ′ with connected

arities, the wreath product T ≀e T ′ has algebras which agree with T -algebras enriched

in T ′-algebras. T ′-algebras form a cartesian (hence symmetric) monoidal category,

and so give rise to a (T, e)-structured category. Throughout this section, we fix such

monads T, T ′ represented by (S,E) and (S ′, E ′) respectively.

Lemma 11.11. The restriction functor Ĉ ≀e D → Ĉ\e extends to a functor from

(T ≀e T ′)-algebras to ∂eT -algebras.

We will abuse notation somewhat and denote this functor by ∂.

Proof. This follows immediately from Proposition 5.20 and the observation that (T ≀e

T ′) restricts to ∂eT on Ĉ\e by the definition of its operations and arities.

Lemma 11.12. Given a (T ≀eT ′)-algebra A and a map α : ∂y(ek)→ ∂A, the diagram

Aα in D̂ corresponding to α via Proposition 10.17 has the structure of a T ′-algebra.

Proof. By Corollary 5.19, T ≀e T ′ restricts along ρk to a familial monad Tk on D̂

represented by (Sk, Ek) with

Sk =
∐
t∈Sek

(S ′)Ete E(t, (tx)) =
∐
x∈Ete

E ′tx,

and by Proposition 5.20

ρ∗kA =
∐

α:∂y(ek)→∂A

Aα

183



is an algebra for this monad (it is a coproduct only of presheaves, not algebras; Aα

is not generally a Tk-algebra).

In RepD, there is a morphism of monoids (S ′, E ′) → (Sk, Ek) sending t′ ∈ S ′d

to (η(ek), (t
′)) ∈ Skd, where as Eη(ek)e is a singleton the corresponding arities are

isomorphic. This induces a functor from Tk-algebras to T ′-algebras which is the

identity on the underlying objects of D̂.

For t′ ∈ S ′d, a map (E ≀ (E ′))(η(ek)(t
′)) = y(ek) □≀ (E ′t′) → A amounts to (by

Proposition 10.17) a pair of maps α : ∂y(ek)→ ∂A in Ĉ\e and E ′t′ → Aα in D̂, and

its composite dk-cell in A restricts to a d-cell in Aα. This is because the operation

(η(ek), (t
′)) restricts to all unit operations on the cells in C\e, so its composition in

A preserves the boundary ∂ey(ek)-diagram.

Therefore, ρ∗kA regarded as a T ′-algebra is a coproduct of T ′-algebras Aα.

Lemma 11.13. For A as above, each operation t ∈ Sek and β : ∂Et→ ∂A induces

a T ′-algebra morphism

compβ : Π
x∈Ete

Aαx → Aαβ
.

Recall the maps αx : ∂y(ek′) → ∂Et → ∂A for x ∈ Etek′ and αβ : ∂y(ek) →

∂A from Definition 8.16, where αβ is given by taking the composites in ∂A of the

boundary diagrams of ∂Et.

Proof. For tx ∈ S ′d for all x ∈ Ete, a map (E ≀ (E ′))(t, (tx)) ∼= Et □≀ (E ′tx) → A

amounts to, by Proposition 10.17, a map ∂Et→ ∂A in Ĉ\e and maps E ′tx → Aαx in
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D̂. The composite in A is a dk-cell, which restricts to αβ in Ĉ\e and a d-cell in Aαβ
.

The desired T ′-algebra morphism is defined by setting tx = η(d) for all x: the

maps E ′η(d)→ Aαx are merely elements of (Aαx)d, which are sent to an element of

(Aαβ
)d. It is a morphism of presheaves over D by naturality of η, and commuted

with the T ′-algebra structure by Lemma 11.9: indeed, for t′ ∈ S ′d the two sides of

the interchange equation describe respectively compβ applied to t′-composites in each

Aαx , and the t′-composite in Aαβ
of compβ applied cell-wise to maps E ′t′ → Aαx for

all x ∈ Ete. Both are, by the interchange law, equal to the composite cell described

above in the case when tx = t′ for all x.

We are finally ready to prove the main theorem.

Theorem 11.14. (T ≀eT ′)-algebras are equivalent to T -algebras enriched in the carte-

sian (T, e)-structured category of T ′-algebras.

We describe the correspondence at the level of objects, constructing a T -algebra

enriched in T ′-algebras from a (T ≀e T ′)-algebra and vice versa in a mutually in-

verse manner, and leave the tedious but straightforward proof that they extend to

equivalences of categories to the reader. All of the constructions making up this

correspondence have a corresponding functoriality statement that we have omitted

for the sake of space and clarity, which assemble into the desired equivalence in an

unsurprising manner.

Proof. Let A be a (T ≀e T ′)-algebra. We construct an alg(T ′)-enriched T -algebra as
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follows:

� ∂A is a ∂eT -algebra by Lemma 11.11

� For each α : ∂y(ek)→ ∂A, Aα is a T ′-algebra by Lemma 11.12

� For each β : ∂Et → ∂A, compβ : Πx∈Ete Aαx → Aαβ
is a morphism of T ′-

algebras by Lemma 11.13

� The equations of an enriched T -algebra follow immediately from the definition

of compβ and the fact that the algebra structure on A, from which these maps

derive, respects unit and composite operations from T in the appropriate sense

Conversely, consider a T -algebra enriched in alg(T ′) given by (Ā,Hom(α), compβ).

We construct a (T ≀e T ′)-algebra as follows:

� A = Ā □≀ (Hom(α)), the presheaf in Ĉ ≀e D given by plugging the presheaf

Hom(α) over D into the position α in Ā for each α : ∂y(ek)→ Ā

� Given t ∈ (S ≀ S ′)c = Sc, c��∈e in C, t-composition in A is given by that in Ā

� Given (t, (tx)x∈Ete) ∈ (S ≀ S ′)dk and a map Et □≀ (Etx)→ A made up of maps

β : ∂Et → Ā and βx : Etx → Hom(αx) for each x ∈ Ete, define its composite

in A to be compβ applied to the tx-composites of βx in Hom(αx)

� This choice of compositions endows A with the structure of a (T ≀e T ′)-algebra

by Proposition 11.10, as the c-cell compositions form a ∂eT -algebra Ā, the

equations for enriched T -algebras ensure that the ek-operations satisfy the al-

gebra equations from T , the T ′-algebra structure on Hom(α) ensures that the
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d-operations satisfy the algebra equations from T ′, and the fact that the maps

compβ are T ′-algebra morphisms ensures that the interchange equation holds.

Composition defined above then agrees with that in Proposition 11.10.

Example 11.15. When T is the free category monad and T ′ is the free double

category monad, algebras for the monad T ≀e T ′ on “double-graph-enriched graphs”

( ̂G1 ≀ (G1 ×G1)) are precisely categories enriched in the symmetric monoidal cat-

egory of double categories. The same is true when T ′ is replaced with any other

familial monad with connected arities.

Example 11.16. When T is the free multicategory monad and T ′ is the free category

monad, algebras for the monad T ≀eT ′ on M̂ ≀e G1 have multicategorical compositions,

both of trees and stuffed trees, as well as stacking-composition of stuffed n-to-1 trees.

By the results above, these two types of composition satisfy an interchange law and

these algebras are in fact the same as Cat-enriched multicategories.

Example 11.17. When T is the free monoid monad and T ′ is any familial monad

with connected arities, algebras for the familial monad T ≀e T ′ are then monoids

enriched in alg(T ′), which by Example 8.18 are precisely the monoids in the monoidal

category alg(T ′). This includes the free strict monoidal category monad on graphs,

the free strict monoidal double category monad on double graphs, and so on for any

T ′ with connected arities.

In particular, the construction of T ≀e T ′ shows that the free strict monoidal cat-

egory monad on graphs has a single operation outputting a vertex for each finite
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set of vertices as the arity, and an operation outputting an edge for each finite set

of disjoint string graphs as the arity. This agrees with the structure of a monoidal

category, where any finite list of objects has a product, each string of arrows has a

composite, and each finite list of arrows has a product which respects arrow com-

position. Functoriality of the tensor product follows from the fact that two disjoint

strings of two arrows have a unique composite which by shapeliness of this monad

agrees with both the product of the two arrow composites and the composite of the

two arrow products.

Example 11.18. As an example of why T ′ should have connected arities, consider

when both T and T ′ are the free monoid monad on sets. If T ≀e T were a familial

monad on sets, its algebras would be monoids in the monoidal category of monoids.

But these are by the Eckmann-Hilton argument precisely the commutative monoids,

which are not (as a category) algebras for a familial monad.

11.5 Wreath Product of Theories

In this section we describe the theory category of a wreath product familial monad,

generalizing the classical result that the theory category Θn+1 for (n+1)-categories,

which arise as categories enriched in n-categories, is the wreath product of Θ1
∼= ∆

and Θn.

First, we define the indexing functor for ΘT , where T is an e-graded famil-

ial monad on Ĉ. Recall that morphisms g : t → t′ in ΘT have an active-
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inert factorization t → µ(t, fg) → t′ (Theorem 6.31) where fg : Et → S, and

Eµ(t, fg)e ∼=
∐

x∈Ete Efg(x)e (Corollary 5.13).

Definition 11.19. τe : ΘT → Span sends t to the set Ete, and g : t → t′ to the

span

Ete ← Eµ(t, fg)e → Et′e,

where the first map sends (x ∈ Ete, x′ ∈ Ef(x)e) to x and the second map is simply

the action of the inert part of g on e-cells.

Intuitively, τe labels each arity with its number of e-cells, where an active map

sends each e-cell to the set of e-cells in the operation it covers and an inert map

sends each e-cell to its image under the map in Ĉ.

Example 11.20. When T is the free category monad, τe recovers the classical functor

∆ → Γ → Span. τe sends [n] to the n-element set n of its spinal edges between

the vertices i − 1 and i for 1 ≤ i ≤ n, and given a map [n] → [m] in ∆ with

active-inert factorization [n]
f−→ [ℓ]

g−→ [m], the span n ← ℓ → m sends the spinal

edge between vertices j − 1, j in [ℓ] to the unique edge from i − 1 to i in [n] with

f(i− 1) ≤ j − 1 < j ≤ f(i), and to the spinal edge from g(j − 1) to g(j) in [m].

As the forward map in the span is injective, this span is in the subcategory Γ

and can equivalently be regarded as sending the edge from i− 1 to i in [n] to the set

of spinal edges from gf(i− 1) to gf(i) in [m], as in the classical functor ∆→ Γ (see

[5, Section 3]).
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We now fix familial monads T on Ĉ which is e-graded and T ′ on D̂ with connected

arities.

Proposition 11.21. For such T, T ′, ΘT ≀eT ′,0
∼= ΘT,0 ≀ΘT ′,0.

Proof. This follows from Corollary 10.15, as τe agrees with γ̂e when restricted to

ΘT,0 and the arities of T ≀T ′ are defined as external wreath products of the arities of

T, T ′.

Example 11.22. When T, T ′ are both the free category monad on graphs and

ΘT,0,ΘT ′,0 are both the full subcategory of graphs on the string graphs
n−→, this shows

that the ΘT ≀eT ′,0, the full subcategory of 2-globular sets on the 2-dimensional pasting

diagrams, agrees with ΘT,0 ≀ΘT ′,0. In particular, this says that a 2-dimensional past-

ing diagram is precisely a string of arrows
n−→ with each edge stuffed with a string

mi−→, resulting in mi vertically stacked 2-cells in the ith horizontal position in the

pasting diagram.

Moreover, the inert subcategory of Θn is the n-fold wreath product of ΘT,0 for T

the free category monad.

Lemma 11.23. For T, T ′ as above, Θdk

T ≀eT ′,a
∼= Θek

T,a ≀Θd
T ′,a.

Proof. The objects are exactly the same, both written as (t ∈ Sek, (tx ∈ S ′d)x∈Ete),

so it suffices to check that the morphisms agree. Morphisms in Θdk

T ≀eT ′,a are given by

maps

Et □≀ (E ′tx)x∈Ete → S □≀ (S ′Et′e)t′∈Se,
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which by Proposition 10.13 (as the arities E ′tx are connected) correspond bijectively

with pairs

f : Et→ S (E ′tx → S ′)x∈Ete,x′∈Ef(x)e .

These pairs, however, are precisely the data of morphisms in Θek
T,a ≀Θd

T ′,a, as τe sends

f in Θek
T,a to the span

Ete ←
∐
x∈Ete

Ef(x)e ∼= Eµ(t, f)e.

We now want to prove that ΘT ≀eT ′ ≃ ΘT ≀ ΘT ′ , but Lemma 11.23 is not quite

strong enough; in general, it does not show that ΘT ≀eT ′,a ≃ ΘT,a ≀ΘT ′,a, as an object

in ΘT,a≀ΘT ′,a could be of the form (t, (tx)x∈Et) where the operations tx output different

cell shapes from D, which is not allowed in ΘT ≀eT ′,a. However, when T ′ has enough

units (Definition 6.46), as is the case in many common examples, this is not an issue

as any such collection of operations outputting different cell shapes from D can be

“equivalently” regarded as operations outputting a single cell shape from D.

When T ′ has P -units, let P ′ be the poset on Ob(C ≀e D) with c ≤ c for all c in

C\e and dk ≤ (d′)k whenever d ≤ d′ in P . T ≀e T ′ is easily seen to have P ′-units with

ηdk((d
′)k) = (η(ek), (ηd(d

′))) and ηdk,(d′)k = idη(ek) □≀ (ηd,d′). ΘT ≀eT ′,a then denotes the

subcategory of ΘT ≀eT ′ generated by ΘT ≀eT ′,a and the inert isomorphisms

E(t, (tx)x∈Ete)
∼= Et □≀ (E ′tx)

Et □≀ (ηd,tx )−−−−−−−→ Et □≀ (E ′ηd(tx)) ∼= E(t, (ηd(tx))),

along with their inverses, for tx ∈ S ′d′ and d′ ≤ d in P (as in Proposition 6.41).
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Definition 11.24. T is (e, κ)-ary for a regular cardinal κ if it is e-graded and for all

t ∈ Se, Ete is κ-small.

Proposition 11.25. For T, T ′ as above, if T is (e, κ)-ary and T ′ has κ-enough units,

we have

ΘT ≀eT ′,a ≃ ΘT,a ≀ΘT ′,a.

The essence of this result is that ΘT ≀eT ′,a agrees with ΘT,a ≀ΘT ′,a when both sides

account for the fact that any collection of operations of T ′ can be treated as if they

all output a single cell shape, which is typically top-dimensional or of “arbitrarily

high dimension” as in Example 6.48.

Proof. By definition of P and the coproduct decomposition of active subcategories,

ΘT ≀eT ′,a is equivalent to the coproduct of the categories Θc
T ≀eT ′,a for c in C\e and

for each k the category colim
d∈P

Θdk

T ≀eT ′,a, where the inclusion functors for d′ ≤ d arise

analogously to those in Lemma 6.36.

ΘT,a ≀ ΘT ′,a is (by Proposition 9.18 and the coproduct decomposition of ΘT,a)

the coproduct of the categories Θc
T,a ≀ ΘT ′,a

∼= Θc
T,a for c in C\e (as τe sends Θc

T,a

to the emptyset) and for each k the category Θek
T,a ≀ ΘT ′,a = Θek

T,a ≀ (colim
d∈P

Θd
T ′,a). By

Lemma 11.23 and Proposition 9.19, as P is by assumption a κ-filtered category, this

component is equivalent to

colim
d∈P

(Θek
T,a ≀Θ

d
T ′,a)

∼= colim
d∈P

Θdk

T ≀eT ′,a.

Therefore as Θc
T,a
∼= Θc

T ≀eT ′,a, all of the components agree and so we have the desired

equivalence ΘT ≀eT ′,a ≃ ΘT,a ≀ΘT ′,a.
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Example 11.26. When T is the free n-category monad and T ′ is the freem-category

monad, this shows that the active subcategory of Θn+m is the wreath product of the

active subcategories of Θn and Θm. This shows that for any n the active subcategory

of Θn is ∆op
+ ≀τ

n· · · ≀τ ∆op
+ . This lets the active subcategory of Θn = ∆ ≀ n· · · ≀ ∆

be constructed out of the active subcategory of ∆ analogously to how the active

subcategory of ∆× n· · · ×∆ is constructed as ∆op
+ ×

n· · · ×∆op
+ .

Finally, we show that, in an appropriate sense, factorization systems (as in Defi-

nition 6.44) preserve equivalences.

Proposition 11.27. If A,B are categories with factorization systems (A1,A2) and

(B1,B2), and F : A → B is a factorization-preserving functor which restricts to

equivalences F1 : A1 → B1 and F2 : A2 → B2, then F is an equivalence.

Proof. It suffices to show that F is fully faithful and essentially surjective. Fullness

and faithfullness of F follow from the same for F1 and F2 (which imply that the

restriction of F to a functor A1 ∩ A2 → B1 ∩ B2 is fully faithful as well), and F

is essentially surjective as F1 and F2 are as functors between wide subcategories of

A,B.

Theorem 11.28. For T an (e, κ)-ary familial monad on Ĉ and T ′ a familial monad

on D̂ with κ-enough units and connected arities, we have

ΘT ≀eT ′ ≃ ΘT ≀τe ΘT ′ .

Proof. As τe satisfies the conditions of Proposition 9.22, ΘT ≀τe ΘT ′ has a weak factor-
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ization system induced by the strict active-inert factorization system on ΘT (Theo-

rem 6.31) and the weak active-inert factorization system on ΘT ′ accounting for units

(Theorem 6.43). The equivalences

ΘT ≀eT ′,0
∼= ΘT,0 ≀ΘT ′,0 ΘT ≀eT ′,a

∼= ΘT,a ≀ΘT ′,a

from Proposition 11.21 and Proposition 11.25 assemble into a factorization-preserving

functor ΘT ≀eT ′ ∼= ΘT ≀τe ΘT ′ , where the factorization system on ΘT ≀eT ′ is given by

ΘT ≀eT ′,a and ΘT ≀eT ′,0 (this is entirely analogous to Theorem 6.43 even though T ≀e

T ′ need not have enough units). By Proposition 11.27, this is an equivalence of

categories.

Example 11.29. This recovers the previously known fact that Θn ≀ Θm ≃ Θn+m,

which we now know corresponds to the fact that n-categories enriched in m −Cat

are (n+m)-categories.

Example 11.30. When T ′ is the free ω-category monad on globular sets, as T ′ has

only ω-enough units, for this result to apply T must be e-graded with arities having

only finitely many e-cells. However this is the case in all of the examples we have

considered, so Theorem 11.28 describes what kind of cell shapes appear in the nerve

of an ω − Cat enriched multicategory (Ω ≀ Θ) or double category (∆×2 ≀ Θ). Of

course, an ω −Cat enriched n-category is simply an ω-category, which agrees with

the theories as Θn ≀Θ ≃ Θ.

Example 11.31. When T is the free monoid monad and T ′ has connected arities

and ω-enough units, monoidal T ′-algebras (the algebras of T ≀E T ′) have a fully

faithful nerve functor to ̂Lmon ≀ΘT ′ , diagrams over the category with objects finite
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lists of objects in ΘT ′ and morphisms certain arrangements of morphisms in ΘT ′ (see

Example 9.13).

The Segal condition for such a diagram X says that the restriction to the sub-

category (isomorphic to ΘT ′) of single objects (t) and single morphisms (g : t → t′)

between them satisfies the Segal condition for nerves of T ′-algebras, and the restric-

tion to the subcategory isomorphic to Lmon, of objects (η(d), ..., η(d)) for each fixed

d in D and morphisms made up only of identities, satisfies the Segal condition for

monoids. This breakdown of the Segal condition for ΘT ≀eT ′ into those for ΘT and ΘT ′

is an example of a more general phenomenon that we will explore in future work.
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