Compositional Structure of Partial Evaluations

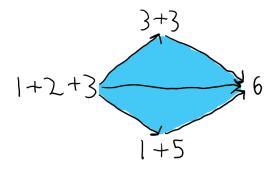
Carmen Constantin Tobias Fritz Paolo Perrone Brandon Shapiro

Categories and Companions 6/11/21

4 3 6 4 3

Compositional Structure of Partial Evaluations

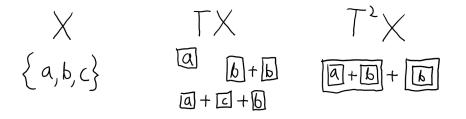
- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a simplicial set of nested formal expressions
- Do partial evaluations form the morphisms of a category?



For T a monad on Set and X a set:

- Elements of TX are formal expressions on X
- Elements of $T^n X$ are *nested* formal expressions

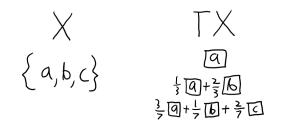
Example: "Free (commutative) monoid" monad



For T a monad on Set and X a set:

- Elements of TX are formal expressions on X
- Elements of $T^n X$ are *nested* formal expressions

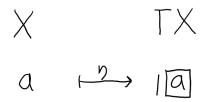
Example: Distribution monad



For T a monad on Set and X a set:

- Elements of TX are formal expressions on X
- Elements of $T^n X$ are *nested* formal expressions

Example: Distribution monad



ь « Эь « Эь

For T a monad on Set and X a set:

- Elements of TX are formal expressions on X
- Elements of $T^n X$ are *nested* formal expressions

Example: Distribution monad

F A B F A

For T a monad on Set and X a set:

- Elements of TX are formal expressions on X
- Elements of $T^n X$ are *nested* formal expressions
- An algebra A of T is equipped with an *evaluation map*

 $e: TA \rightarrow A$

Example: Free S-module monad (S a semiring)

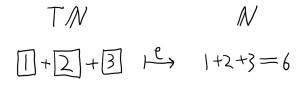


For T a monad on Set and X a set:

- Elements of TX are formal expressions on X
- Elements of $T^n X$ are *nested* formal expressions
- An algebra A of T is equipped with an *evaluation map*

 $e: TA \rightarrow A$

Example: (Commutative) monoid \mathbb{N}



• • = • • = •

For T a monad on Set and X a set:

- Elements of TX are formal expressions on X
- Elements of $T^n X$ are *nested* formal expressions
- An algebra A of T is equipped with an *evaluation map*

$$e: TA \rightarrow A$$

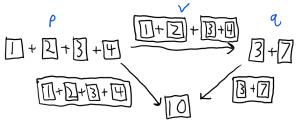
Example: Trivial S-module

• • = • • = •

Partial evaluations

- Consider a *T*-algebra (*A*, *e*)
- A partial evaluation is a doubly nested expression $v \in TTA$
- The source p of v is $\mu(v)$ (remove outer boxes)
- The target q of v is Te(v) (remove inner boxes)

Example: (Commutative) monoid \mathbb{N}



• Do partial evaluations compose?

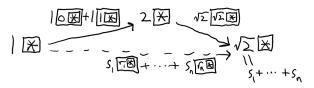
Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:

$$T_{\{*\}} \xrightarrow{\mu} T_{\{*\}} \xrightarrow{Te} T_{\{*\}}$$

$$S_1 [\Gamma_{\mathbb{B}} + \dots + S_n [r_n] \times (S_1 + \dots + S_n] \times (S_n] \times (S_n]$$

• Let $S = \mathbb{N}[\sqrt{2}] = \{n + m\sqrt{2}\}$



Do Partial Evaluations Compose?

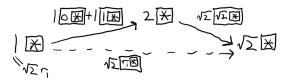
- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:

$$T \{ * \} \xrightarrow{\mu} T T \{ * \} \xrightarrow{Te} T \{ * \}$$

$$S_{1} [\Gamma, \textcircled{B} + \dots + S_{n} [r_{n} \fbox{K}]$$

$$(S_{1} (\Gamma_{1} + \dots + S_{n} \Gamma_{n}) \fbox{K} \xrightarrow{(S_{1} + \dots + S_{n}) \r{K}}$$

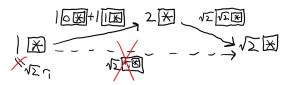
• Let $S = \mathbb{N}[\sqrt{2}] = \{n + m\sqrt{2}\}$



Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression v ∈ TTA with µ(v) = p and Te(v) = q
- Consider the trivial *S*-module:

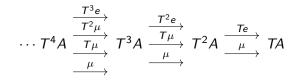
• Let $S = \mathbb{N}[\sqrt{2}] = \{n + m\sqrt{2}\}$

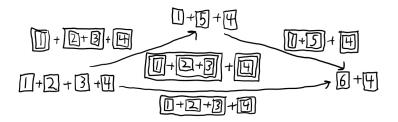


• (CFPS) Partial evaluations don't always compose

Bar Construction

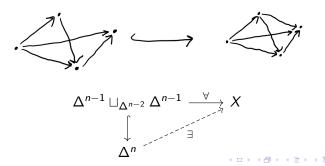
- Partial evaluations form a simplicial set, called the *Bar Construction* of a *T*-algebra *A*
- *n*-simplices of $Bar_T(A)$ are (n + 1)-nested formal expressions





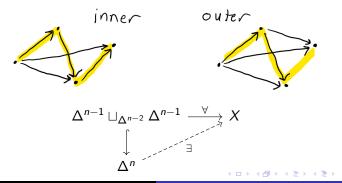
Compositional Structure

- If T arises from a nonsymmetric operad (i.e. monoids, semigroups, M-sets), Bar_T(A) is the nerve of a category
- If T arises from a symmetric operad (i.e. commutative monoids), Bar_T(A) is generally not a category
- $Bar_{CommMon}(\mathbb{N})$ is not even a quasicategory (CFPS)
- In this case, $Bar_T(A)$ is inner span complete (CFPS)



Compositional Structure

- If T arises from a nonsymmetric operad (i.e. monoids, semigroups, M-sets), Bar_T(A) is the nerve of a category
- If T arises from a symmetric operad (i.e. commutative monoids), Bar_T(A) is generally not a category
- $Bar_{CommMon}(\mathbb{N})$ is not even a quasicategory (CFPS)
- In this case, $Bar_T(A)$ is inner span complete (CFPS)



Filler Conditions

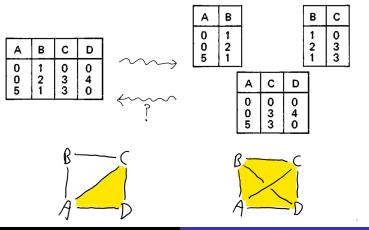
- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^n$:
 - S contains the spine of Δ^n (directedness)
 - The 1-skeleton of S is chordal
 - Any k-simplex boundary $\partial \Delta^k$ in S is filled by a k-simplex Δ^k
- Horns are not acyclic

Filler Conditions

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^n$:
 - S contains the spine of Δ^n (directedness)
 - The 1-skeleton of S is chordal
 - Any k-simplex boundary $\partial \Delta^k$ in S is filled by a k-simplex Δ^k
- Horns are not acyclic
- Spine inclusions are acyclic

Databases

- A data table can be split into subtables on fewer attributes
- Here (0,1,3,4) fits into the subtables, but not the entire table
- A table can only be reliably recovered from an (undirected) acyclic configuration of subtables



Constantin, Fritz, Perrone, Shapiro Comp

Compositional Structure of Partial Evaluations

Thank you!

- Carmen Constantin, Tobias Fritz, Paolo Perrone, and Brandon Shapiro. Partial evaluations and the compositional structure of the bar construction. arXiv:2009.07302.
- Carmen Constantin, Tobias Fritz, Paolo Perrone, and Brandon Shapiro. Weak cartesian properties of simplicial sets. arXiv:2105.04775.
- Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the Desirability of Acyclic Database Schemes. *Journal of the ACM*, 30, 479-513, 1983.

何 ト イ ヨ ト イ ヨ ト