Compositional Structure of Partial Evaluations

Carmen Constantin Tobias Fritz Paolo Perrone Brandon Shapiro

Categories and Companions 6/11/21

Compositional Structure of Partial Evaluations

- Algebra is all about evaluating formal expressions

Compositional Structure of Partial Evaluations

- Algebra is all about evaluating formal expressions

$$
1+2+3
$$

Compositional Structure of Partial Evaluations

- Algebra is all about evaluating formal expressions

$$
1+2+3 \longrightarrow 6
$$

Compositional Structure of Partial Evaluations

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated

$$
1+2+3 \longrightarrow 6
$$

Compositional Structure of Partial Evaluations

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated

Compositional Structure of Partial Evaluations

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated

Compositional Structure of Partial Evaluations

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a simplicial set of nested formal expressions

Compositional Structure of Partial Evaluations

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a simplicial set of nested formal expressions

Compositional Structure of Partial Evaluations

- Algebra is all about evaluating formal expressions
- Expressions can also be partially evaluated
- Partial evaluations form the paths in a simplicial set of nested formal expressions
- Do partial evaluations form the morphisms of a category?

Monads

For T a monad on Set and X a set:

Monads

For T a monad on Set and X a set:

$$
\begin{gathered}
X \\
\{a, b, c\}
\end{gathered}
$$

Monads

For T a monad on Set and X a set:

- Elements of $T X$ are formal expressions on X

$$
\begin{gathered}
X \\
\{a, b, c\}
\end{gathered}
$$

Monads

For T a monad on Set and X a set:

- Elements of $T X$ are formal expressions on X

Example: "Free (commutative) monoid" monad

$$
\begin{gathered}
X \\
\{a, b, c\}
\end{gathered}
$$

Monads

For T a monad on Set and X a set:

- Elements of $T X$ are formal expressions on X

Example: "Free (commutative) monoid" monad

$$
\begin{array}{cl}
X & T X \\
\{a, b, c\} & \text { } \sqrt{b}+\text { 电 } \\
& {[a+a+b]}
\end{array}
$$

Monads

For T a monad on Set and X a set：
－Elements of $T X$ are formal expressions on X
－Elements of $T^{n} X$ are nested formal expressions

Example：＂Free（commutative）monoid＂monad

$$
\begin{array}{cl}
X & T X \\
\{a, b, c\} & \text { } \sqrt{b}+\text { } \\
\text { +近+ }
\end{array}
$$

Monads

For T a monad on Set and X a set：
－Elements of $T X$ are formal expressions on X
－Elements of $T^{n} X$ are nested formal expressions

Example：＂Free（commutative）monoid＂monad

$$
\begin{array}{ccc}
X & T X & T^{2} X \\
\{a, b, c\} & \text { 回+回 } & \boxed{a}++ \text { 回+回 }
\end{array}
$$

Monads

For T a monad on Set and X a set:

- Elements of $T X$ are formal expressions on X
- Elements of $T^{n} X$ are nested formal expressions

Example: Distribution monad

$$
\begin{gathered}
X \\
\{a, b, c\}
\end{gathered}
$$

Monads

For T a monad on Set and X a set:

- Elements of $T X$ are formal expressions on X
- Elements of $T^{n} X$ are nested formal expressions

Example: Distribution monad

$$
\begin{array}{cc}
X & T X \\
\{a, b, c\} & \sqrt{a} \\
& \frac{1}{3}\left[a+\frac{2}{3}[6]\right. \\
\frac{3}{7}\left[a+\frac{1}{7}\left[b+\frac{2}{7}[\right.\right.
\end{array}
$$

Monads

For T a monad on Set and X a set:

- Elements of $T X$ are formal expressions on X
- Elements of $T^{n} X$ are nested formal expressions

Example: Distribution monad

a

Monads

For T a monad on Set and X a set:

- Elements of $T X$ are formal expressions on X
- Elements of $T^{n} X$ are nested formal expressions

Example: Distribution monad

$$
\begin{gathered}
T T X \\
\frac{1}{2} \frac{1}{3}[a]+\frac{2}{3}[b]+\frac{1}{2} \frac{2}{3}\left[a+\frac{1}{3}[c\right.
\end{gathered}
$$

Monads

For T a monad on Set and X a set:

- Elements of $T X$ are formal expressions on X
- Elements of $T^{n} X$ are nested formal expressions

Example: Distribution monad

$$
\begin{gathered}
T T X \\
\frac{1}{2}\left[\frac { 1 } { 3 } \left[a+\frac{2}{3}\left[a+\frac{1}{2}\left[\frac { 2 } { 3 } \left[a+\frac{1}{3} a \xrightarrow{\mu} \frac{1}{2}\left[a+\frac{1}{3}\left[b+\frac{1}{6}[c\right.\right.\right.\right.\right.\right.\right.
\end{gathered}
$$

Monads

For T a monad on Set and X a set:

- Elements of $T X$ are formal expressions on X
- Elements of $T^{n} X$ are nested formal expressions

Example: Free S-module monad (S a semiring)

$$
\begin{gathered}
T T X \\
\frac{1}{2}\left[\frac { 1 } { 3 } \left[a+\frac{2}{3}[b]+\frac{1}{2}\left[\frac { 2 } { 3 } \left[a+\frac{1}{3}[c]+\frac{1}{2}\left[a+\frac{1}{3}\left[b+\frac{1}{6}[c]\right.\right.\right.\right.\right.\right.
\end{gathered}
$$

Monads

For T a monad on Set and X a set:

- Elements of $T X$ are formal expressions on X
- Elements of $T^{n} X$ are nested formal expressions
- An algebra A of T is equipped with an evaluation map

$$
e: T A \rightarrow A
$$

Example: Free S-module monad (S a semiring)

$$
\begin{gathered}
T T X \\
\frac{1}{2}\left[\frac { 1 } { 3 } \left[a+\frac{2}{3}\left[b+\frac{1}{2}\left[\frac { 2 } { 3 } \left[a+\frac{1}{3}[c] \xrightarrow{\mu} \frac{1}{2}\left[a+\frac{1}{3}\left[b+\frac{1}{6}[c]\right.\right.\right.\right.\right.\right.\right.
\end{gathered}
$$

Monads

For T a monad on Set and X a set:

- Elements of $T X$ are formal expressions on X
- Elements of $T^{n} X$ are nested formal expressions
- An algebra A of T is equipped with an evaluation map

$$
e: T A \rightarrow A
$$

Example: (Commutative) monoid \mathbb{N}

$$
\begin{gathered}
T N \\
1+2+3
\end{gathered}
$$

Monads

For T a monad on Set and X a set:

- Elements of $T X$ are formal expressions on X
- Elements of $T^{n} X$ are nested formal expressions
- An algebra A of T is equipped with an evaluation map

$$
e: T A \rightarrow A
$$

Example: (Commutative) monoid \mathbb{N}

$$
\begin{array}{ccc}
T \mathbb{N} & & \mathbb{N} \\
1+2+3 & \stackrel{e}{\longrightarrow} & 1+2+3=6
\end{array}
$$

Monads

For T a monad on Set and X a set:

- Elements of $T X$ are formal expressions on X
- Elements of $T^{n} X$ are nested formal expressions
- An algebra A of T is equipped with an evaluation map

$$
e: T A \rightarrow A
$$

Example: Trivial S-module

$$
\begin{aligned}
& T\{*\} \\
& S *
\end{aligned}
$$

Monads

For T a monad on Set and X a set:

- Elements of $T X$ are formal expressions on X
- Elements of $T^{n} X$ are nested formal expressions
- An algebra A of T is equipped with an evaluation map

$$
e: T A \rightarrow A
$$

Example: Trivial S-module

$$
\begin{array}{lll}
T\{*\} & & \{*\} \\
S_{>} S * & \stackrel{e}{\longrightarrow} & *
\end{array}
$$

Partial evaluations

- Consider a T-algebra (A, e)

Partial evaluations

- Consider a T-algebra (A, e)

Example: (Commutative) monoid \mathbb{N}

$$
\begin{array}{cc}
p & q \\
1+2+3+4 & {[3+7]}
\end{array}
$$

Partial evaluations

- Consider a T-algebra (A, e)
- A partial evaluation is a doubly nested expression $v \in T T A$

Example: (Commutative) monoid \mathbb{N}

$$
\begin{gathered}
\rho \\
\square+2]+3
\end{gathered}
$$

$$
\begin{gathered}
q \\
{[3+7}
\end{gathered}
$$

Partial evaluations

- Consider a T-algebra (A, e)
- A partial evaluation is a doubly nested expression $v \in T T A$

Example: (Commutative) monoid \mathbb{N}

- Consider a T-algebra (A, e)
- A partial evaluation is a doubly nested expression $v \in T T A$
- The source p of v is $\mu(v)$ (remove outer boxes)

Example: (Commutative) monoid \mathbb{N}

$$
\stackrel{p}{1+2+3+4} \xrightarrow{\frac{v}{1+2}+\sqrt{3}+4} \begin{gathered}
q \\
3+7
\end{gathered}
$$

- Consider a T-algebra (A, e)
- A partial evaluation is a doubly nested expression $v \in T T A$
- The source p of v is $\mu(v)$ (remove outer boxes)
- The target q of v is $T e(v)$ (remove inner boxes)

Example: (Commutative) monoid \mathbb{N}

$$
\stackrel{p}{1+2+3+4} \xrightarrow{\frac{v}{1+2}+(3+4)} \begin{gathered}
q \\
3+7
\end{gathered}
$$

- Consider a T-algebra (A, e)
- A partial evaluation is a doubly nested expression $v \in T T A$
- The source p of v is $\mu(v)$ (remove outer boxes)
- The target q of v is $T e(v)$ (remove inner boxes)

Example: (Commutative) monoid \mathbb{N}

- Consider a T-algebra (A, e)
- A partial evaluation is a doubly nested expression $v \in T T A$
- The source p of v is $\mu(v)$ (remove outer boxes)
- The target q of v is $T e(v)$ (remove inner boxes)

Example: (Commutative) monoid \mathbb{N}

- Do partial evaluations compose?

Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$

Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- Consider the trivial S-module:

Do Partial Evaluations Compose？

－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\left(s_{1} r_{1}+\cdots+s_{n} r_{n}\right) \xrightarrow{T\{*\} \stackrel{\mu}{s_{1} r_{1} ⿴ 囗 十 ⿴ 囗 十 ⿴}+\cdots+s_{n} r_{n} \text { 図 }} T\{*\}
$$

Do Partial Evaluations Compose？

－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{gathered}
T\{*\} \stackrel{\mu}{\leftarrow} T T\{*\} \stackrel{T e}{\longleftrightarrow} T\{*\} \\
\left(s_{1} r_{1}+\cdots+s_{n} r_{n}\right) \text { 図 } \xrightarrow{s_{1} \text { r团 }+\cdots+s_{n} r_{n} \text { 团 }}\left(s_{1}+\cdots+s_{n}\right) \text { 目 }
\end{gathered}
$$

Do Partial Evaluations Compose？

－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{aligned}
& T\{*\} \stackrel{\mu}{\longleftrightarrow} T T\{*\} \xrightarrow{T e} T\{*\} \\
& s_{1} r_{1} \text { 团 }+\cdots+s_{n} r_{n} \text { 园 } \\
& \left(S_{1} r_{1}+\cdots+S_{n} r_{n}\right) \text { 図 }\left(S_{1}+\cdots+S_{n}\right) \text { 図 }
\end{aligned}
$$

－Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose？

－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{aligned}
& T\{*\} \stackrel{\mu}{\longleftrightarrow} T T\{*\} \xrightarrow{T e} T\{*\} \\
& s_{1} r_{1} \text { 团 }+\cdots+s_{n} r_{n} \text { 园 } \\
& \left(S_{1} r_{1}+\cdots+S_{n} r_{n}\right) \text { 図 }\left(S_{1}+\cdots+S_{n}\right) \text { 図 }
\end{aligned}
$$

－Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

図

Do Partial Evaluations Compose？

－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{aligned}
& T\{*\} \stackrel{\mu}{\longleftrightarrow} T T\{*\} \xrightarrow{T e} T\{*\} \\
& s_{1} r_{1} \text { 团 }+\cdots+s_{n} r_{n} \text { 园 } \\
& \left(S_{1} r_{1}+\cdots+S_{n} r_{n}\right) \text { 図 }\left(S_{1}+\cdots+S_{n}\right) \text { 図 }
\end{aligned}
$$

－Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose？

－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{aligned}
& T\{*\} \stackrel{\mu}{\longleftrightarrow} T T\{*\} \xrightarrow{T e} T\{*\} \\
& s_{1} r_{1} \text { 团 }+\cdots+s_{n} r_{n} \text { 园 } \\
& \left(S_{1} r_{1}+\cdots+S_{n} r_{n}\right) \text { 図 }\left(s_{1}+\cdots+S_{n}\right) \text { 図 }
\end{aligned}
$$

－Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose？

－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{aligned}
& T\{*\} \stackrel{\mu}{\longleftrightarrow} T T\{*\} \xrightarrow{T e} T\{*\} \\
& s_{1} r_{1} \text { 团 }+\cdots+s_{n} r_{n} \text { 园 } \\
& \left(S_{1} r_{1}+\cdots+S_{n} r_{n}\right) \text { 図 }\left(s_{1}+\cdots+S_{n}\right) \text { 図 }
\end{aligned}
$$

－Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose？
－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{aligned}
& T\{*\} \stackrel{\mu}{\leftarrow} T T\{*\} \xrightarrow{T e} T\{*\} \\
& \left(s_{1} r_{1}+\cdots+s_{n} r_{n}\right) \text { 図 } \xrightarrow{s_{1} r_{1} \text { 团 }+\cdots+s_{n} r_{n} \text { 园 }}\left(s_{1}+\cdots+s_{n}\right) \text { 园 }
\end{aligned}
$$

－Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose？
－A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
－Consider the trivial S－module：

$$
\begin{aligned}
& T\{*\} \stackrel{\mu}{\rightleftarrows} T T\{*\} \xrightarrow{T e} T\{*\} \\
& \left(s_{1} r_{1}+\cdots+s_{n} r_{n}\right) \text { 因 } \xrightarrow{s_{1} r_{1} \text { 目 }+\cdots+s_{n} r_{n} \text { 园 }}\left(s_{1}+\cdots+s_{n}\right) \text { 目 } \\
& \text { - Let } S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\} \\
& 1 \text { 图 }
\end{aligned}
$$

Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- Consider the trivial S-module:

- Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- Consider the trivial S-module:

- Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- Consider the trivial S-module:

- Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

Do Partial Evaluations Compose?

- A partial evaluation from p to q is a doubly nested expression $v \in T T A$ with $\mu(v)=p$ and $T e(v)=q$
- Consider the trivial S-module:

- Let $S=\mathbb{N}[\sqrt{2}]=\{n+m \sqrt{2}\}$

- (CFPS) Partial evaluations don't always compose

Bar Construction

- Partial evaluations form a simplicial set, called the Bar Construction of a T-algebra A

Bar Construction

- Partial evaluations form a simplicial set, called the Bar Construction of a T-algebra A
- n-simplices of $\operatorname{Bar}_{T}(A)$ are $(n+1)$-nested formal expressions
- Partial evaluations form a simplicial set, called the Bar Construction of a T-algebra A
- n-simplices of $\operatorname{Bar}_{T}(A)$ are $(n+1)$-nested formal expressions

$$
\cdots T^{4} A \xrightarrow[{\xrightarrow{\frac{T^{3} e}{T^{2} \mu}}}]{\xrightarrow{\text { Tر }}} T^{3} A \xrightarrow{\xrightarrow{T \mu}} T^{2} A \xrightarrow{T^{2} e} \xrightarrow{T e} T A
$$

- Partial evaluations form a simplicial set, called the Bar Construction of a T-algebra A
- n-simplices of $\operatorname{Bar}_{T}(A)$ are $(n+1)$-nested formal expressions

$$
\cdots T^{4} A \xrightarrow[{\xrightarrow{T \mu}}]{\substack{T^{3} e \\ T^{2} \mu}} T^{3} A \xrightarrow{\xrightarrow{T \mu}} T^{2} A \xrightarrow{\stackrel{T^{2} e}{\longrightarrow}} T A
$$

Compositional Structure

Compositional Structure

- If T arises from a nonsymmetric operad (i.e. monoids, semigroups, M-sets), $\operatorname{Bar}_{T}(A)$ is the nerve of a category

Compositional Structure

- If T arises from a nonsymmetric operad (i.e. monoids, semigroups, M-sets), $\operatorname{Bar}_{T}(A)$ is the nerve of a category
- If T arises from a symmetric operad (i.e. commutative monoids), $\operatorname{Bar}_{T}(A)$ is generally not a category

Compositional Structure

- If T arises from a nonsymmetric operad (i.e. monoids, semigroups, M-sets), $\operatorname{Bar}_{T}(A)$ is the nerve of a category
- If T arises from a symmetric operad (i.e. commutative monoids), $\operatorname{Bar}_{T}(A)$ is generally not a category
- $\operatorname{Bar}_{\text {CommMon }}(\mathbb{N})$ is not even a quasicategory (CFPS)

Compositional Structure

- If T arises from a nonsymmetric operad (i.e. monoids, semigroups, M-sets), $\operatorname{Bar}_{T}(A)$ is the nerve of a category
- If T arises from a symmetric operad (i.e. commutative monoids), $\operatorname{Bar}_{T}(A)$ is generally not a category
- $\operatorname{Bar}_{\text {CommMon }}(\mathbb{N})$ is not even a quasicategory (CFPS)
- In this case, $\operatorname{Bar}_{T}(A)$ is inner span complete (CFPS)

Compositional Structure

- If T arises from a nonsymmetric operad (i.e. monoids, semigroups, M-sets), $\operatorname{Bar}_{T}(A)$ is the nerve of a category
- If T arises from a symmetric operad (i.e. commutative monoids), $\operatorname{Bar}_{T}(A)$ is generally not a category
- $\operatorname{Bar}_{\text {CommMon }}(\mathbb{N})$ is not even a quasicategory (CFPS)
- In this case, $\operatorname{Bar}_{T}(A)$ is inner span complete (CFPS)

Compositional Structure

- If T arises from a nonsymmetric operad (i.e. monoids, semigroups, M-sets), $\operatorname{Bar}_{T}(A)$ is the nerve of a category
- If T arises from a symmetric operad (i.e. commutative monoids), $\operatorname{Bar}_{T}(A)$ is generally not a category
- $\operatorname{Bar}_{\text {CommMon }}(\mathbb{N})$ is not even a quasicategory (CFPS)
- In this case, $\operatorname{Bar}_{T}(A)$ is inner span complete (CFPS)

Compositional Structure

- If T arises from a nonsymmetric operad (i.e. monoids, semigroups, M-sets), $\operatorname{Bar}_{T}(A)$ is the nerve of a category
- If T arises from a symmetric operad (i.e. commutative monoids), $\operatorname{Bar}_{T}(A)$ is generally not a category
- $\operatorname{Bar}_{\text {CommMon }}(\mathbb{N})$ is not even a quasicategory (CFPS)
- In this case, $\operatorname{Bar}_{T}(A)$ is inner span complete (CFPS)

Filler Conditions

- What other fillers do inner span complete simplicial sets have?

Filler Conditions

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n} (directedness)
- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n} (directedness)

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n} (directedness)
- The 1 -skeleton of S is chordal

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n} (directedness)
- The 1 -skeleton of S is chordal

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n} (directedness)
- The 1 -skeleton of S is chordal
- Any k-simplex boundary $\partial \Delta^{k}$ in S is filled by a k-simplex Δ^{k}

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n} (directedness)
- The 1 -skeleton of S is chordal
- Any k-simplex boundary $\partial \Delta^{k}$ in S is filled by a k-simplex Δ^{k}

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n} (directedness)
- The 1 -skeleton of S is chordal
- Any k-simplex boundary $\partial \Delta^{k}$ in S is filled by a k-simplex Δ^{k}
- Horns are not acyclic

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n} (directedness)
- The 1 -skeleton of S is chordal
- Any k-simplex boundary $\partial \Delta^{k}$ in S is filled by a k-simplex Δ^{k}
- Horns are not acyclic
- Spine inclusions are acyclic

- What other fillers do inner span complete simplicial sets have?
- (CFPS) All directed acyclic configurations $S \subset \Delta^{n}$:
- S contains the spine of Δ^{n} (directedness)
- The 1 -skeleton of S is chordal
- Any k-simplex boundary $\partial \Delta^{k}$ in S is filled by a k-simplex Δ^{k}
- Horns are not acyclic
- Spine inclusions are acyclic

Databases

Databases

- A data table
- A data table

A	B	C	D
0	1	0	0
0	2	3	4
5	1	3	0

- A data table can be split into subtables on fewer attributes

A	B	C	D
0	1	0	0
0	2	3	4
5	1	3	0

- A data table can be split into subtables on fewer attributes

A	B	C	D
0	1	0	0
0	2	3	4
5	1	3	0

- A data table can be split into subtables on fewer attributes

A	B	C	D
0	1	0	0
0	2	3	4
5	1	3	0

A	B
0	1
0	2
5	1

A	C	D	C
1	0		
2	3		
1	3		
0	0	0	
0	3	4	
5	3	0	

- A data table can be split into subtables on fewer attributes
- Here $(0,1,3,4)$ fits into the subtables, but not the entire table

- A data table can be split into subtables on fewer attributes
- Here $(0,1,3,4)$ fits into the subtables, but not the entire table

A	B	C	D
0	1	0	0
0	2	3	4
5	1	3	0

A	B
0	1
0	2
5	1

B	C
1	0
2	3
1	3

A	C	D
0	0	0
0	3	4
5	3	0

- A data table can be split into subtables on fewer attributes
- Here $(0,1,3,4)$ fits into the subtables, but not the entire table
- A table can only be reliably recovered from an (undirected) acyclic configuration of subtables

A	B	C	D
0	1	0	0
0	2	3	4
5	1	3	0

A	B
0	1
0	2
5	1

B	C
1	0
2	3
1	3

Thank you!

- Carmen Constantin, Tobias Fritz, Paolo Perrone, and Brandon Shapiro. Partial evaluations and the compositional structure of the bar construction. arXiv:2009.07302.
- Carmen Constantin, Tobias Fritz, Paolo Perrone, and Brandon Shapiro. Weak cartesian properties of simplicial sets. arXiv:2105.04775.
- Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the Desirability of Acyclic Database Schemes. Journal of the ACM, 30, 479-513, 1983.

