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t

→

Ĝ1 = SetGop
1 is the category of graphs

→

Categories are algebras for a monad T on Ĝ1

→

TX0 = X0 = HomĜ1
(·, X )

TX1 = {paths in X} =
∐

n≥0
HomĜ1

(· → n· · · → ·, X )

Brandon Shapiro Familial Monads for Higher and Lower Category Theory



Familial Monads on Cell Diagrams

→ G1 is the category 0 1
s

t

→
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Ĝ1 = SetGop
1 is the category of graphs

→ Categories are algebras for a monad T on Ĝ1
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Ĝ1 = SetGop
1 is the category of graphs

→

Categories are algebras for a monad T on Ĝ1
→ TX0 = X0 = HomĜ1
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Ĝ2 is the category of 2-graphs
� 2-Categories are algebras for a monad T on Ĝ2

→

TX0 = X0 = HomĜ1
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Familial Monads on Cell Diagrams

The data of a familial functor F : D̂ → Ĉ consists of:

A functor S : Cop → Set (operations outputting a c-cell)
A functor E :

∫
S → D̂ (arities of the operations)

For c in C, X in D̂, FXc =
∐

t∈Sc
HomD̂(Et, X )

Example: Free category monad on Ĝ1

S0 = {0}, S1 = N

, En = · → n· · · → ·

TX0 = HomĜ1
(·, X ), TX1 =

∐
n≥0

HomĜ1
(· → n· · · → ·, X )

Unit and multiplication on edges given by length 1 paths and
path concatenation
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A monad (T , η, µ) on Ĉ is familial if T is familial and η, µ are
cartesian

For 0 the empty category, a familial functor 0̂ → D̂ is just a
presheaf S over D

Example: Free category monad on Ĝ1
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Familial Monads in Poly

The category Poly of polynomial endofunctors on Set is a rich
environment, including a monoidal structure (◁, y) given by
composition and identity
Categories are ◁ -comonoids in Poly (Ahman-Uustalu)
Bicomodules in Poly from Dop to Cop are familial functors
(aka prafunctors) F : D̂ → Ĉ (Garner)
Bicomodules from 0 to Dop are presheaves X over D, and the
composition F ◦ X of bicomodules is the presheaf FX over C
In the bicategory of categories and polynomial bicomodules,
bimodules from the identity monad on 0̂ to a familial monad
T on Ĉ are T -algebras
In this sense, algebraic higher categories “live in” Poly
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Commutativity Problems

Familial endofunctors on Set are polynomial functors, of the
form

FX =
∐
t∈S

HomSet(Et, X )

for some set S and functor E : S → Set

Monoids are algebras for a familial monad:
TX =

∐
n∈N

HomSet(n, X )

The category of commutative monoids is not one of algebras
for a familial monad:

TX =
∐
n∈N

HomSet(n, X )/Σn

Familial monads can’t model strict commutativity conditions
They can model commutativity up to a higher cell, like in
symmetric monoidal categories
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They can model commutativity up to a higher cell, like in
symmetric monoidal categories
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Free (Symmetric) Monoidal Categories on Graphs

G1 is the category 0 1,
s

t
whose presheaves are graphs

Define S : Gop
1 → Set as N

∐
n∈N

Nn

n← [(m1,...mn)

n← [(m1,...,mn)

E :
∫

S → Ĝ1 sends n to n and (m1, ..., mn) to (m⃗1, ..., m⃗n)
with the source and target inclusions as below
The monad T on Ĝ1 has strict monoidal cats as algebras:

TX0 =
∐
n∈N

HomĜ1
(n, X ) TX1 =

∐
n,m1,...,mn∈N

HomĜ1
((m⃗1, ..., m⃗n), X )
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((m⃗1, ..., m⃗n), X )

Brandon Shapiro Familial Monads for Higher and Lower Category Theory



Free (Symmetric) Monoidal Categories on Graphs

G1 is the category 0 1,
s

t
whose presheaves are graphs

Define S : Gop
1 → Set as N

∐
n∈N

Nn

n← [(m1,...mn)

n← [(m1,...,mn)

E :
∫
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((m⃗1, ..., m⃗n), X )

Brandon Shapiro Familial Monads for Higher and Lower Category Theory



Free (Symmetric) Monoidal Categories on Graphs

G1 is the category 0 1,
s

t
whose presheaves are graphs

� Define S : Gop
1 → Set as N

∐
n∈N

Nn × Σn
n←[(m1,...mn,σ)

n←[(m1,...,mn,σ)

E :
∫
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Free (Symmetric) Monoidal Categories on Graphs

T -algebras are now symmetric strict monoidal cats
TX0 =

∐
n∈N

HomĜ1
(n, X ) TX1 =

∐
n,m1,...,mn∈N,σ∈Σn

HomĜ1
((m⃗1, ..., m⃗n), X )

Write v1 ⊗ · · · ⊗ vn for the n-ary product of vertices v1, ..., vn
(aka v : n → X )
When m1 = · · · = mn = 0, T provides for σ ∈ Σn an edge

v1 ⊗ · · · ⊗ vn → vσ(1) ⊗ · · · ⊗ vσ(n)

The case m1 = · · · = mn = 1 encodes naturality of the
symmetries, and the monad structure ensures invertibility etc.

Brandon Shapiro Familial Monads for Higher and Lower Category Theory



Free (Symmetric) Monoidal Categories on Graphs

T -algebras are now symmetric strict monoidal cats
TX0 =

∐
n∈N

HomĜ1
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Commutativity Solution?

A discrete symmetric monoidal category is the same as a
commutative monoid
The category of commutative monoids is then the pullback of
the diagram below

SymMonCat

Ĝ1 1̂ = Setdiscrete

This diagram may be more easily described in Poly than the
category of commutative monoids

Brandon Shapiro Familial Monads for Higher and Lower Category Theory



Commutativity Solution?

A discrete symmetric monoidal category is the same as a
commutative monoid

The category of commutative monoids is then the pullback of
the diagram below

SymMonCat
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Ĝ1 1̂ = Setdiscrete

This diagram may be more easily described in Poly than the
category of commutative monoids

Brandon Shapiro Familial Monads for Higher and Lower Category Theory



Commutativity Solution?

A discrete symmetric monoidal category is the same as a
commutative monoid
The category of commutative monoids is then the pullback of
the diagram below

SymMonCat
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