3.5.1 The Dehn-Nielsen Theorem for the Torus

We fix a base point \underline{t} on the torus. Let $\zeta: T \to T$ be a homeomorphism, and let $p: \mathbb{I}$ be a path from \underline{t} to $\zeta(\underline{t})$. Then, we have two group homomorphisms:

$$\begin{aligned} \zeta_* : \pi_1(T, \underline{\mathbf{t}}) &\to & \pi_1(T, \zeta(\underline{\mathbf{t}})) \\ [\gamma] &\mapsto & [\zeta \circ \gamma] \end{aligned}$$

and

$$\begin{array}{rcl} p_*:\pi_1(T,\zeta(\underline{\mathbf{t}})) & \to & \pi_1(T,\underline{\mathbf{t}}) \\ & & [\gamma] & \mapsto & [p \to \zeta \circ \gamma \to p^{\mathrm{rev}}] \end{array}$$

Observation 3.5.4. If q is another path from \underline{t} to $\zeta(\underline{t})$, the two homomorphisms p_* and q_* differ by an inner automorphism of $\pi_1(T, \underline{t})$ given by the loop $p \rightarrow q^{\text{rev}}$. q.e.d.

Observation 3.5.5. If $\xi: T \to T$ is a homeomorphism homotopic to ζ via a homotopy $\Phi: T \times \mathbb{I} \to T$, then

$$p_* \circ \zeta_* = (p \to q)_* \circ \xi_*$$

where q is the path from $\zeta \underline{t}$ to $\xi(\underline{t})$ given by $\Phi(\underline{t}, -)$. q.e.d.

Thus, we obtain a well defined map

• $\nu : \mathcal{M}(T) \to \operatorname{Out}(\pi_1(T, \underline{t})).$

Theorem 3.5.6 (Dehn-Nielsen). The map ν is an isomorphism of groups.

Proof. First, let us check that ν is a homomorphism of groups. So let ζ and ξ be two homeomorphism of the torus T. We choose paths p and q from \underline{t} to $\zeta(\underline{t})$ and $\xi(\underline{t})$, respectively. Then

$$\nu(\zeta) \nu(\xi) = [p_* \circ \zeta_*] [q_* \circ \xi_*]$$

= $[(p \rightarrow \zeta \circ q)_* (\zeta \circ \xi)_*]$
= $\nu(\zeta \circ \xi).$

Now, we show that ν is injective. So let $\zeta: T \to T$ be a homeomorphism with $\nu([\zeta]) = 1$. So, for any path p from \underline{t} to $\zeta(\underline{t})$, the homomorphism $p_* \circ \zeta_*$ is an inner automorphism of $\pi_1(T, \underline{t})$. We have to show that ζ is homotopic to the identity.

Let γ be a loop based at $\underline{\mathbf{t}}$ such that $p_*\circ\zeta_*$ is conjugation by $\gamma.$ This is to say that

$$\gamma_* = p_* \circ \zeta_*.$$

Put $q := \gamma^{\mathrm{rev}} \rightarrow p$. Then

$$q_* \circ \zeta_* = \gamma_*^{\text{rev}} \circ p_* \circ \zeta_* = 1.$$

Thus, for any loop γ' , the curve $q \rightarrow \zeta \circ \gamma' \rightarrow q^{\text{rev}}$ is homotopic to γ' . We apply this result to the two fundamental curves γ_1 and γ_2 on T. We obtain the following map on the surface of a cube:

On the front, we have the standard identification map $\mathbb{I}^2 \to T$. In the back, we have the composition $\mathbb{I}^2 \to T \xrightarrow{\zeta} T$. The four faces in the boundary annulus are filled by the homotopies

$$\gamma_i \sim q \longrightarrow \zeta \circ \gamma_i \longrightarrow q^{\text{rev}}.$$

This is a map defined on the two-dimensional sphere $\mathbb{S}^2 \to T$. Since T is aspherical, it extends to a map on the ball. Moreover, note that opposite faces along the boudary annulus are mapped identically, we actually can make face identifications and obtain a map

$$T \times \mathbb{I} \to T$$

that visibly gives a homotopy from the identity (front) to ζ (back).

Finally, we observe that ν is onto. We know that $\operatorname{Out}(\pi_1(T,\underline{t})) = \operatorname{GL}_2(\mathbb{Z})$. The action of $\operatorname{GL}_2(\mathbb{Z})$ on the plane \mathbb{R}^2 immediately descends to an action on the torus by homeomorphisms. This gives an inverse to ν . q.e.d.

Lemma 3.5.7. The torus is <u>aspherical</u>.

Proof. The sphere is 1-connected. Hence any map to the torus lifts to the universal cover, which is the plane. The lift extends to a map on the ball, and so does the original map. q.e.d.

Corollary 3.5.8. Let $\tilde{\zeta}: \tilde{T} \to \tilde{T}$ be a homeomorphism that commutes with all deck transformations, i.e., the following diagram commutes for all deck transformations $\tau: \tilde{T} \to \tilde{T}$:

Then $\tilde{\zeta}$ induces a homeomorphism $\zeta:T o T$, which is homotopic to the identity.

Proof. It is easy to see that $\tilde{\zeta}$ induces a homeomorphism ζ of T. We will only show that ζ is homotopic to the identity. By the Dehn-Nielsen Theorem (3.5.6), it suffices to prove that $\nu(\zeta)$ is the class of inner automorphisms of $\pi_1(T)$.

Fix a path \tilde{p} in \tilde{T} from the base point $\underline{\tilde{t}}$ to $\zeta(\underline{\tilde{t}})$. For any loop γ in T based at $\underline{t} = \pi(\underline{\tilde{t}})$, let $\tilde{\gamma}$ be the lift of γ based at $\underline{\tilde{t}}$. This lift is a path from $\underline{\tilde{t}}$ to $\tau_{\gamma}(\underline{\tilde{t}})$ where τ_{γ} is the deck transformation corresponding to γ .

From

$$\left(\tilde{\zeta}\circ\tau_{\gamma}\right)(\underline{\tilde{\mathbf{t}}})=\left(\tau_{\gamma}\circ\tilde{\zeta}\right)(\underline{\tilde{\mathbf{t}}}),$$

it follows that

$$\tilde{\gamma} \to \tau_{\gamma} \circ \tilde{p} \to \left(\tilde{\zeta} \circ \tilde{\gamma}\right)^{\mathrm{rev}} \to \tilde{p}^{\mathrm{rev}}$$

is a closed path in \tilde{T} . See figure 3.1. Thus,

$$\gamma \sim p \longrightarrow \zeta \circ \gamma \longrightarrow \gamma^{\text{rev}}.$$

Thus, $p_* \circ \zeta_*$ is the identity automorphism of $\pi_1(T, \underline{t})$. **q.e.d.**

Figure 3.1: A closed path in $ilde{T}$

3.5.2 Calculating Teichmüller Space

Theorem 3.5.9. The map

$$\Psi: \mathcal{T}_T \to \mathcal{D}_T$$

 $[\mathcal{E}] \mapsto [\eta_{\mathcal{E}}^{\delta}]$

is a bijection.

Proof of Injectitivity. Suppose we have two Euclidean structures \mathcal{E}_1 and \mathcal{E}_2 on T such that

$$\left[\eta_{\mathcal{E}_1}^{\delta_1}\right] = \left[\eta_{\mathcal{E}_2}^{\delta_2}\right].$$

Then there is a similarity $\sigma:\mathbb{E}^2\to\mathbb{E}^2$ such that, for each loop γ , the following diagram commutes:

By (3.5.8), it follows that $\delta_2^{-1} \circ \sigma \circ \delta_1$ induces a homeomorphism $\zeta: T \to T$ that is homotopic to the identity. It is easy to check

that all these diagrams add up to:

$$\sigma \mathcal{E}_1 \zeta = \mathcal{E}_2$$

Thus, $[\mathcal{E}_1] = [\mathcal{E}_2]$.

Exercise 3.5.10. Let T_1 and T_2 be two tori, and let $\phi: \operatorname{Cov}(T_1) \to \operatorname{Cov}(T_2)$ be an isomorphism. Show that there exists a homeomorphism

$$\tilde{\zeta}: \tilde{T}_1 \to \tilde{T}_2$$

of the universal covers that makes the following diagram commute for each deck transformation $au \in \operatorname{Cov}(T_1)$:

Proof of Surjectivity. Let

$$\eta: \pi_1(T) \to \operatorname{Isom}(\mathbb{E}^2)$$

be a discrete, injective homomorphism. We have seen already that η factors through the group of translations. Thus, the image $G := (\eta)$ is a free abelian group generated by two linearly independend translations that acts on \mathbb{E}^2 topologically freely. Hence the quotient $G \setminus \mathbb{E}^2$ is a torus. This torus comes with a Euclidean structure. The idea is, of course, to transfer this structure to T.

By (3.5.10), there is a homeomorphism

 $\tilde{\zeta}: \tilde{T} \to \mathbb{E}^2$

such that

q.e.d.

commutes for any loop γ . Thus, we can use $\tilde{\zeta}$ to define a Euclidean structure on \tilde{T} which actually descends to a Euclidean Structure on T. Using $\tilde{\zeta}$ as our developing map, we see that this structure induces the holonomy η . q.e.d.

3.5.3 Classification of Homeomorphisms

Let us consider orientation preserving homeomorphisms of the torus up to homotopy. They form the group

 $\operatorname{SL}_2(\mathbb{Z})$.

A matrix $M \in \mathrm{SL}_2(\mathbb{Z})$ can be studied by looking at its trace.

```
Definition 3.5.11. M is <u>elliptic</u> if |tr(M)| < 2.
```

M is <u>parabolic</u> if |tr(M)| = 2.

M is <u>hyperbolic</u> if |tr(M)| > 2.

The significance lies in the fact that the characteristic polynomial of M is given by:

$$Det(M) - \lambda tr(M) + \lambda^2.$$

Thus we have:

 \underline{M} is elliptic: In this case, we have two complex conjugate eigenvalues λ_1, λ_2 . There are only three possibilities:

- $\underline{\operatorname{tr}(M)=0}$: We find $\lambda_1=\mathrm{i}$ and $\lambda_2=\mathrm{i}$. Thus, the matrix has order four.
- $\underline{\operatorname{tr}(M)=1}$. Here we find λ_i is a third root of unity, and M has order three.
- $\underline{\operatorname{tr}(M)=-1}\colon$ Finally λ_i is a sixth root of unity and M has order six.

Thus, elliptic elements are periodic. They have finite order. Moreover, since one the eigenvalues lies in the upper half plane, there is a fixed point in Teichmüller space.