
3.5.1 The Dehn-Nielsen Theorem for the Torus

We fix a base point t on the torus. Let ζ : T → T be a

homeomorphism, and let p : I be a path from t to ζ(t). Then, we have

two group homomorphisms:

ζ∗ : π1(T, t) → π1(T, ζ(t))

[γ] 7→ [ζ ◦ γ]

and

p∗ : π1(T, ζ(t)) → π1(T, t)

[γ] 7→ [p→− ζ ◦ γ →− prev] .

Observation 3.5.4. If q is another path from t to ζ(t), the two

homomorphisms p∗ and q∗ differ by an inner automorphism of π1(T, t)

given by the loop p→− qrev. q.e.d.

Observation 3.5.5. If ξ : T → T is a homeomorphism homotopic to ζ via

a homotopy Φ : T × I→ T, then

p∗ ◦ ζ∗ = (p→− q)∗ ◦ ξ∗

where q is the path from ζt to ξ(t) given by Φ(t,−). q.e.d.

Thus, we obtain a well defined map

• ν : M(T ) → Out (π1(T, t)).

Theorem 3.5.6 (Dehn-Nielsen). The map ν is an isomorphism of groups.

Proof. First, let us check that ν is a homomorphism of groups. So

let ζ and ξ be two homeomorphism of the torus T. We choose paths p

and q from t to ζ(t) and ξ(t), respectively. Then

ν(ζ) ν(ξ) = [p∗ ◦ ζ∗] [q∗ ◦ ξ∗]

= [(p→− ζ ◦ q)∗ (ζ ◦ ξ)∗]

= ν(ζ ◦ ξ) .
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Now, we show that ν is injective. So let ζ : T → T be a

homeomorphism with ν([ζ]) = 1. So, for any path p from t to ζ(t), the

homomorphism p∗ ◦ ζ∗ is an inner automorphism of π1(T, t). We have to

show that ζ is homotopic to the identity.

Let γ be a loop based at t such that p∗ ◦ ζ∗ is conjugation

by γ. This is to say that

γ∗ = p∗ ◦ ζ∗.

Put q := γrev →− p. Then

q∗ ◦ ζ∗ = γrev
∗ ◦ p∗ ◦ ζ∗ = 1.

Thus, for any loop γ′, the curve q →− ζ ◦ γ′→− qrev is homotopic to γ′.

We apply this result to the two fundamental curves γ1 and γ2 on T.

We obtain the following map on the surface of a cube:

On the front, we have the standard identification map

I2 → T. In the back, we have the composition I2 → T
ζ−→ T. The four

faces in the boundary annulus are filled by the homotopies

γi ∼ q →− ζ ◦ γi →− qrev.

This is a map defined on the two-dimensional sphere S2 → T. Since T

is aspherical, it extends to a map on the ball. Moreover, note that

opposite faces along the boudary annulus are mapped identically, we

actually can make face identifications and obtain a map

T × I→ T

that visibly gives a homotopy from the identity (front) to ζ (back).

Finally, we observe that ν is onto. We know that

Out (π1(T, t)) = GL2(Z). The action of GL2(Z) on the plane R2

immediately descends to an action on the torus by homeomorphisms.

This gives an inverse to ν. q.e.d.

Lemma 3.5.7. The torus is aspherical.
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Proof. The sphere is 1-connected. Hence any map to the torus lifts

to the universal cover, which is the plane. The lift extends to a

map on the ball, and so does the original map. q.e.d.

Corollary 3.5.8. Let ζ̃ : T̃ → T̃ be a homeomorphism that commutes with

all deck transformations, i.e., the following diagram commutes for

all deck transformations τ : T̃ → T̃:

T̃
ζ̃ // T̃

T̃

τ

OO

ζ̃ // T̃

τ

OO

Then ζ̃ induces a homeomorphism ζ : T → T, which is homotopic to the

identity.

Proof. It is easy to see that ζ̃ induces a homeomorphism ζ of T. We

will only show that ζ is homotopic to the identity. By the

Dehn-Nielsen Theorem (3.5.6), it suffices to prove that ν(ζ) is the

class of inner automorphisms of π1(T ).

Fix a path p̃ in T̃ from the base point t̃ to ζ̃(t̃). For any

loop γ in T based at t = π(t̃), let γ̃ be the lift of γ based at t̃.

This lift is a path from t̃ to τγ(t̃) where τγ is the deck

transformation corresponding to γ.

From (
ζ̃ ◦ τγ

)
(t̃) =

(
τγ ◦ ζ̃

)
(t̃) ,

it follows that

γ̃ →− τγ ◦ p̃→−
(
ζ̃ ◦ γ̃

)rev

→− p̃rev

is a closed path in T̃. See figure 3.1. Thus,

γ ∼ p→− ζ ◦ γ →− γrev.

Thus, p∗ ◦ ζ∗ is the identity automorphism of π1(T, t). q.e.d.
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γ̃ ζ̃ ◦ γ̃

p̃

τγ ◦ p̃

t̃

τγ(t̃) ζ̃(τγ(t̃)) = τγ

(
ζ̃(t̃)

)

ζ̃(t̃)

Figure 3.1: A closed path in T̃

3.5.2 Calculating Teichm�uller Space

Theorem 3.5.9. The map

Ψ : TT → DT

[E ] 7→ [
ηδ
E
]

is a bijection.

Proof of Injectitivity. Suppose we have two Euclidean structures E1

and E2 on T such that [
ηδ1
E1

]
=

[
ηδ2
E2

]
.

Then there is a similarity σ : E2 → E2 such that, for each loop γ,

the following diagram commutes:

T̃
δ1 // E2 σ // E2 T̃

δ2oo

T̃

τγ

@@¢¢¢¢¢¢¢¢

π

²²

δ1 // E2

η
δ1
E1(γ)

>>}}}}}}}}
σ // E2

η
δ1
E1(γ)

>>}}}}}}}}
T̃

δ2oo

τγ

@@¢¢¢¢¢¢¢¢

π

²²
T T

By (3.5.8), it follows that δ−1
2 ◦ σ ◦ δ1 induces a homeomorphism

ζ : T → T that is homotopic to the identity. It is easy to check
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that all these diagrams add up to:

σE1ζ = E2

Thus, [E1] = [E2]. q.e.d.

Exercise 3.5.10. Let T1 and T2 be two tori, and let

φ : Cov(T1) → Cov(T2) be an isomorphism. Show that there exists a

homeomorphism

ζ̃ : T̃1 → T̃2

of the universal covers that makes the following diagram commute for

each deck transformation τ ∈ Cov(T1):

T̃1

ζ̃ // T̃2

T̃1

τ
??¡¡¡¡¡¡¡

ζ̃ // T̃2

φ(τ)

??¡¡¡¡¡¡¡

Proof of Surjectivity. Let

η : π1(T ) → Isom
(
E2

)

be a discrete, injective homomorphism. We have seen already that η

factors through the group of translations. Thus, the image G :=(η)

is a free abelian group generated by two linearly independend

translations that acts on E2 topologically freely. Hence the

quotient G\E2 is a torus. This torus comes with a Euclidean

structure. The idea is, of course, to transfer this structure to T.

By (3.5.10), there is a homeomorphism

ζ̃ : T̃ → E2

such that

T̃
ζ̃ // E2

T̃

τγ

@@¢¢¢¢¢¢¢¢ ζ̃ // E2

η(γ)

>>}}}}}}}}
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commutes for any loop γ. Thus, we can use ζ̃ to define a Euclidean

structure on T̃ which actually descends to a Euclidean Structure on

T. Using ζ̃ as our developing map, we see that this structure

induces the holonomy η. q.e.d.

3.5.3 Classification of Homeomorphisms

Let us consider orientation preserving homeomorphisms of the torus

up to homotopy. They form the group

SL2(Z) .

A matrix M ∈ SL2(Z) can be studied by looking at its trace.

Definition 3.5.11. M is elliptic if |tr(M)| < 2.

M is parabolic if |tr(M)| = 2.

M is hyperbolic if |tr(M)| > 2.

The significance lies in the fact that the characteristic polynomial

of M is given by:

Det(M)− λ tr(M) + λ2.

Thus we have:

M is elliptic: In this case, we have two complex conjugate

eigenvalues λ1, λ2. There are only three possibilities:

tr(M) = 0: We find λ1 = i and λ2 = i. Thus, the matrix has order

four.

tr(M) = 1: Here we find λi is a third root of unity, and M has

order three.

tr(M) = −1: Finally λi is a sixth root of unity and M has order

six.

Thus, elliptic elements are periodic. They have finite order.

Moreover, since one the eigenvalues lies in the upper half

plane, there is a fixed point in Teichm�uller space.
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