Chapter 4

Higher Genus Surfaces

4.1 The Main Result

We will outline two proofs of the main theorem:

Theorem 4.1.1. Let X be a closed oriented surface of genus g > 1.
Then every homotopy class of homeomorphisms has a representative

(:X — Y satisfying one of the following conditions:
elliptic case: The homeomorphism has finite order, i.e., ¢k =idy.

hyperbolic case: The homeomorphism leaves a pair of geodestic

laminations on X invaraint.

parabolic case: There ts a non-empty collection of simple closed
cuves on X that is left invartant as a subset of X. In this

case, a power of ( fizes the curves point wise.

Definition 4.1.2. For a closed oriented surface of genus g > 1,

Teichmiller space is defined as

hyperbolic structures on X
Ts — {hyp h/Honuxn(E) .

The main problem to overcome in both proofs is that the action of
M(X) on 7y is not cocompact. There are two main strategies to

overcome this obstacle:
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e Restrict your attention to a cocompact subspace of Ty.
e Compactify 7y so that the action of M(X) extends to the

compactification.

4.1.1 First Proof: Cutting off Infinity
Promise 4.1.3 There %s a metric on Teichmiller space 7Ty such that:
1. 7x 4is a geodestic metric space.
2. Geodesics are unique.
3. Local geodesics are global.
4. The action of M(X) on 7 4s by isometries.

Thus, Ty, 4is a proper metric space and uniquely geodesic.

Definition 4.1.4. Let X be a metric space and A: X — X be an

isometry. The displacement function of X is

D)\ZX—>]R
x — dx(x,\(x)).

The displacement of A is

D(\) := inf D)(x).

rzeX
The displacement is realized if there is a point z € X such that

D(\) = Dy(x).

Fix a homeomorphism

(:X—X,

which induces an isometry A; on Teichmiiller space by
At [H] = [H(].
There are three cases:
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e The displacement is realized and equals 0.
e The displacement is realized and strictly positive.

e The displacement is not realized.

The Displacement is Realized and Equals 0

Let H be a hyperbolic structure on ¥ such that [H]| € 7y, realizes the
displacement 0. Note that this point is a fixed point of (:

[H] = [H(].

Thus there is a homeomorphism & : 3 — 3 homotopic to the identity
such that
HE = HC.

Therefore, (o0& ! is an isometry of (X,H). Since £ is homotopic to
the identity, we conclude that (¢ is homotopic to an isometry of

(3¥,H). This isometry has finite order:

Promise 4.1.5 Any tsometry of an oriented closed hyperbolic surface

has finite order.

The Displacement is realized and Strictly Positive

Our first goal is to construct a geodesic that is fixed by A::

Lemma 4.1.6. Let X be a geodesic metric space and A\: X — X be an
1sometry whose displacement is strictly positive and realized at a

point v € X. Then

[ = U (X, M (2)] N (2) = U X, z) M)

keZ keZ

2s locally a geodestc.

Proof. We know that [ is geodesic at all points in the interior of
[z, A(z)]. Since A preserves being locally geodesic, it suffices to

show that [ is geodesic at A(x).
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Consider the midpoint y of [z, A(z)]. Observe that
D(A) < d(y, My)) < d(y, A(z)) + d(AMx), A(y)) < d(z, Mx)) = D(A).
Thus | is geodesic at A(z). q.e.d.

This construction applies to Teichmiiller space and yields are global
bi-infinite geodesic C' by (??.3). Note that this geodesic is
invariant with respect to Ac.

This is the hyperbolic case:

Promise 4.1.7 Every geodestc in Teichmiller space Ty gives rise to a

pair of transverse geodesic laminations.

The Displacement is Not Realized

Definition 4.1.8. A metric space is proper if closed balls are

compact.

Exercise 4.1.9. Show that a metric space is proper if an only if:

compact <= closed and bounded

Exercise 4.1.10. Show that a geodesic metric space is proper if it

is complete and locally compact.

Definition 4.1.11. A group G acts properly discontinuously on a

topological space X if for every compact subset C' C X, the set
{geGlgCnC #0}
is finite.

Remark 4.1.12. A properly discontinuous action is a topological

analogue of an action with finite stabilizers.

We already know that the mapping class group does not act freely on

Teichmiiller space.

80



Promise 4.1.13 Teichmiller space s a complete, locally compact,
proper metric space, and the action of the mapping class group acts

properly discontinuously on Teichmiller space.

We need a big theorem. For any € >0 let 7. be the subset
of 7y of those hyperbolic structures for which the length of all
closed geodesics in ¥ are bounded from below by c. Note that 7. is

M(X)-invariant.

Promise 4.1.14 (Mumford’s Compactness Theorem) For each ¢ >0, there

1s a compact subset C. C Ty such that
T. =C.M(Y).

In fact, C. can be taken to be a fundamental domain for the action.

Let us choose a sequence of hyperbolic structures (H;) such
that

Lemma 4.1.15. There %s no £ >0 such that [H;] € 7. for all i.

Proof. We argue by contradiction. So suppose [H;] € 7. for all i.
Then we can find a sequence & € M(X) such that

[Hi&i| € C.
Note that the sequence
d([Hi], [HiC]) = d([H:&] , [HiC&i])
is bounded. Thus the points
[HiC&) = [Hi€io & 0 C o &)]

stays within bounded distance from the compact set C.. Thus we can

pass to a subsequence such that simultaneously
[Hi&i] — H+
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and
[Hi&io& o Co&] — H..

Observe that the isometries & 'o(o¢; take points close to
H, to points close to H,.. Since the mapping class group acts
properly discontinuously on Teichmiiller space, it follows that there
are only finitely many elements in M(X) that do this. By the box
principle, one of these occurs infinitely many times in the sequence
100, Let this isometry be ¢ 'o(o&. Since

d([H.],[H.]) = D(C)
it follows that the displacement of ( is realized at
[7{+§_1}.
q.e.d.

Definition 4.1.16. The spectrum of a hyperbolic structure H on ¥ is
the set

Y(H) :={ln(y) | v is a simple closed geodesic in X}.

Promise 4.1.17 For any hyperbolic surface, closed geodesics of

length less than 3+V2 do not intersect.

Promise 4.1.18 Any collection of pairwise non intersecting
non-homotopic loops on a surface of genus g has at most 3g — 3

elements.
Corollary 4.1.19. For any hyperbolic structure H,
‘Z(’H)ﬂ(—oo,ln(ﬁ%—l—\/é)” <3g—3. q.e.d.

Promise 4.1.20 Let v be a simple closed curve on X that is not
homotopically trivial. For each hyperbolic structure H, there is a

unique geodesic 7y homotopic to y. Moreover, the map
l,:[H] — In(lenght of vx)
18 well defined and satisfies the inequality

|63 ([Hal) = 64 ((H2])| < dr([HA ] [Ha) -
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Choose L greater than all D, ([H;]). Since no 7 contains
all [H;], it follows that there is an index ¢ for which

YXHi)=Mu4yN
with
o M£0.
e sup M < ln(3+\/§).

e supM + L <inf N.

We claim that the curves from which the lengths in M arise form an
invariant system. Let A denote the set of homotopy classes of those
closed geodesics.

Observe that
S(H) = S(HC) = M w N.

Thus, we may ask whether ( respects the decomposition into M and N.
The answer is “yes” because of (4.1.20): The curves 7 in A are

those with logarithmic length relative to H; in M:
CH; € M
Since
|0 H; — 0 HiC < d(Hi, Hi¢) < L,
it follows from sup M + L < inf N that
CHiC = leoyH € M.
Thus, ( permutes the homotopy classes in A. A final fact proves the

( is reducible:

Promise 4.1.21 If a homeomorphism ( permutes a finte set A of
non-parallel, pairwise disjoint simple closed curves then these
homotopy classes can simultaneously realized by simple closed curves

which are permuted by a homeomorphism homotopic to (.

4.1.2 Second Proof: Compactifying Teichmiller Space
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