
Table 6.1: A polygon diagram

6.1.2 Second Proof: Compactifying Teichm�uller Space

6.2 Classification of Closed Surfaces

We saw that each surface has a triangulation. Compact surfaces have

finite triangulations. In this section, we shall see that one can

put these combinatorial data into a standard form.

The torus is obtained from the square by identifying

opposite edges. In general, a polygon diagram is a polygon whose

edges are marked with orientation arrows and colors such that each

color occurs exactly twice, see figure (6.1). From a polygon

diagram, we obtain a topological space by gluing edges of the same

color together so that their arrows match up.

Exercise 6.2.1. Show that the space defined by a polygon diagram is

a closed surface.

Proposition 6.2.2. Every closed surface Σ can be described by a

polygon diagram.

The proof is an interpolation between two-dimensional simplicial

complexes and polygon diagrams. Thus, we need a notion that

generalizes both.

Definition 6.2.3. A polygon complex is a collection of polygons

whose edges are colored and marked with orientation arrows.

Observation 6.2.4. The following are obvious:
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1. A two-dimensional simplicial complex is a polygon complex if and

only if every vertex and every edge are contained in a

two-simplex. In general, simplicial complexes whose maximal

simplices all have the same dimension are called chamber

complexes.

2. The polygon diagrams are precisely those polygonal complexes

that consist of just one polygon.

3. Any polygon complex gives rise to a topological space by

identifying edges of the same color respecting the orientation

of the edges.

4. Any polygonal complex can be subdivided to yield a

two-dimensional chamber complex.

Proof of (6.2.2). Since Σ can be triangulated, there is a polygon

complex realizing Σ. Now suppose, we had a polygon complex

realizing Σ with more than one polygon. Since Σ is connected, there

is a pair of equi-colored edges in two different tiles. We reduce

the polygon complex by gluing these two tiles along their this pair

of edges. Thereby, we form a bigger polygon. Since this process

decreases the number of polygons in the complex, it will stop and we

arrive at a polygon diagram for Σ. q.e.d.

We can improve upon this quite a bit. Recall that a

polygon diagram represents a surface by identification of its edges.

Thus certain points on the boundary of the polygon represent

identical points in the surface. We call any two such boundary

points in a polygon diagram equivalent. We call to edges equivalent

if their mid-points are equivalent.

Proposition 6.2.5. Any surface that is not homeomorphic to the

sphere has a polygon diagram all of whose corners are equivalent.

Definition 6.2.6. Let us call a polygon diagram a one-vertex-diagram

if all corners are equivalent.
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Figure 6.1: First case { the two edges have the green corner in

common.

Proof. Color the corners of the polygon diagram according to their

equivalence class. Suppose you need more than one color. In this

case, a bigon represents the sphere. Thus, we assume that the

polygon has at least four edges.

We will give a procedure for getting rid of any specified

color. Suppose, we want to eliminate green. As green is not the

only color, there will be an edge connecting a green corner to a

corner of a different color, say blue. This edge has a color, say

red, which specifies a partner edge. There are two cases. Either

the two red edges have a corner in common or not.

Suppose the two edges have a corner in common. Then their

arrow either point both toward that corner or away from that corner

{ this follows from the coloring of the vertices. We can than

\swallow" that common corner into the interior of the polygon

diagram. The case, where the green vertex is swallowed is shown.

In that case, we reduce the number of green vertices by two. If the

blue vertex is swallowed, the number of green vertices decreases by

one.

Suppose the two red edges have no common corner. Then

pick one of the red edges and move along this edge starting in its

blue corner. The next corner you meet is the green corner of this

edge. Continue your path along the polygon until you reach the next

non-green corner. Cut of this region and glue it to the other red

edge. This reduces the number of green corners by one.
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Figure 6.2: Second case { the two edges do not overlap.

Continue this process until all green corners are gone.

If you need still more than one color, rid the picture of the

next. q.e.d.

Definition 6.2.7. A simplicial complex is orientable if all its

simplices can be given orientations compatible with the inclusion of

faces as subsimplices. Note that subdivisions of simplicial

complexes inherit orientations. Thus, orientability of a

triangulated surface does not depend on the triangulation. We call

a surface orientable if it has an orientable triangulation.

Remark 6.2.8. Let us discuss orientability of surfaces. Think of a

realization of the surface as a polygon complex. Take some big

sheet of paper whose two sides are colored red and yellow. Cut out

the polygons of the complex. If the edge identifications allow you

to glue the pieces so that crossing an edge will never get you from

a red side to a green side, then you obtain an oriented surface.

For a polygon diagram, the criterion for orientability given in

(6.2.8) is also necessary:

Exercise 6.2.9. Prove: A polygon diagram describes an orientable

surface if and only if, for each edge-color a, the two edges of
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A+
blue

A−
blue

Figure 6.3: The two arcs defined by a pair of equivalent edges.

color a are oriented oppositely in the boundary circle of the

polygon diagram.

Corollary 6.2.10. In a one-vertex-diagram for an orientable surface,

adjacent edges are inequivalent.

Proof. Suppose we had a pair of equivalent adjacent edges. Since

the surface is orientable, these edges are oppositely oriented. In

this case, however, the corner spanned by these two edges is

inequivalent to any other corner. Thus, we are not dealing with a

one-vertex-diagram. q.e.d.

Thus, in a one-vertex-diagram for an orientable surface, any color a

defines two edges with opposite orientations that cut the boundary

into two non-empty arcs: The arc A+
a , toward which the edges of

color a point, and the arc A−
a , away from which the edges point. See

figure 6.3.

Observation 6.2.11. In any one-vertex-diagram for an orientable

surface and any edge-color a, there is a pair of equivalent edges

such that one of them lies on A+
a and the other one lies on A−

a .

90



Proof. Suppose not, then the corners at the edges of color a would

fall into two distinct equivalence classes. q.e.d.

Definition 6.2.12. The genus g standard polygon diagram is the

regular 4g polygon whose edges are colored with 2g colors a1, . . . , ag

and b1, . . . , bg and marked so that the boundary reads the word

• a1−→ • b1−→ • a1←− • b1←− • a2−→ • b2−→ • a2←− • b2←− • · · · • ag−→ • bg−→ • ag←− • bg←−
The g-torus is the surface obtained from the genus g standard

polygon diagram.

Theorem 6.2.13. Every closed oriented surface is either a sphere or

a g-torus for some g ≥ 1.

Proof. Let us start with a one-vertex-diagram for the surface. We

will use cut and paste to transform the diagram until we obtain a

genus g standard polygon diagram.

Let us call a sequence of four edges a run if it has the

form

• a−→ • b−→ • a←− • b←− •.
If every edge occurs in a run then we have the a standard polygon

for some genus. Thus, we want to eliminate edge colors that do not

occur in runs. Let a be a color whose corresponding edges do not

form a run. By (6.2.11), we know that there is another color b such

that the polygon diagram looks essentially like this:
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Figure 6.4: The first cut.

We cut and past as illustrated in figure 6.4. Note that

the runs in the dashed arcs are not destroyed.

The first cut put us in a situation where we have three

edges of a run but the forth partner of the middle edge might be

somewhere:

We can create a run by cut and past ash shown in figure 6.5. Again,

we do not destroy any runs previously created. q.e.d.

Exercise 6.2.14. Show that any non-orientable surface has a

one-vertex-diagram whose boundary reads the colors

• a1−→ • a1−→ • a2−→ • a2−→ • a3−→ • a3−→ • · · · • ag−→ • ag−→
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Figure 6.5: The second cut.

for some g ≥ 0.

6.3 Poincar�e's Theorem

Theorem 6.3.1 (Poincar�e). Let D be a polygon diagram drawn in the

hyperbolic plane such that the lengths of its edges and the interior

angles at its corners satisfy the following two conditions:

1. Equivalent edges have the same length.

2. The angles of all corners in an equivalence class sum up to 2π.

Then there is a tiling of the hyperbolic plane by isometric copies

of D such that each at edge of two copies of D meet along a pair of

equivalent edges. Moreover, the coloring preserving symmetries of

this tiling are a group of hyperbolic isometries of H2 isomorphic to

the fundamental group of the surface defined by D.

Remark 6.3.2. The conditions say that the polygon diagram D can tile

the hyperbolic plane locally around edges and vertices. Thus, they

are clearly necessary conditions for the existence of a global

tiling. The theorem says, if a tile tiles locally it tiles

globally.
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