
Figure 6.5: The second cut.

for some g ≥ 0.

6.3 Poincar�e's Theorem

Theorem 6.3.1 (Poincar�e). Let D be a polygon diagram drawn in the

hyperbolic plane such that the lengths of its edges and the interior

angles at its corners satisfy the following two conditions:

1. Equivalent edges have the same length.

2. The angles of all corners in an equivalence class sum up to 2π.

Then there is a tiling of the hyperbolic plane by isometric copies

of D such that each at edge of two copies of D meet along a pair of

equivalent edges. Moreover, the coloring preserving symmetries of

this tiling are a group of hyperbolic isometries of H2 isomorphic to

the fundamental group of the surface defined by D.

Remark 6.3.2. The conditions say that the polygon diagram D can tile

the hyperbolic plane locally around edges and vertices. Thus, they

are clearly necessary conditions for the existence of a global

tiling. The theorem says, if a tile tiles locally it tiles

globally.
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Figure 6.6: The genus 2 standard polygon diagram can be drawn in

the hyperbolic plane so that all edges have equal length and all in-

terior angles are π
4
. This gives rise to a tiling of H2 by regular

8-gons. The group of coloring preserving symmetries of this tiling

is the fundamental group of the 2-torus.

Figure 6.7: The neighborhood of a vertex in a tiling by regular

genus 2 standard polygons.
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Figure 6.8: An impression of the tiling.

95



type I type II type III

Figure 6.9: Chart types.

Remark 6.3.3. Although the theorem is stated for polygon diagrams in

the hyperbolic plane, it also holds for polygons in the Euclidean

plane and even in the sphere. The proof carries over to these cases

unchanged.

Exercise 6.3.4. Let Σ be a surface, let P be a polygon, and let

f : P → Σ be a map that realizes Σ by identifying the edges of P in

pairs. Prove that the universal cover Σ̃ is naturally tiled with

copies of P that intersect only along their boundaries.

Proof of (6.3.1). Let Σ be the surface defined by D and let Σ̃ its

universal cover. By (6.3.4), Σ̃ is tiled by topological copies of D

in the way the theorem requires. Our strategy will be to put a

hyperbolic structure on Σ̃ and prove that it is isometric to H2.

Recall that the tiles are defined as lifts D → Σ̃ that

take D homeomorphically to its image. Moreover, these lifts make

the following diagram commute:

Σ̃

²²
H2 ⊃ D

??¡¡¡¡¡¡¡
// Σ

Now, we define a hyperbolic structure by three types of charts; see

figure 6.9.
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type I: In the interior D(2) of a tile D̃, we use the fact that we have a

continuous inverse ϕD̃ : D(2) → D ⊂ H2, which we declare to be a

chart map. We say that the interior of D is the defining

piece for the type I charts.

type II: The second type of charts will give us neighborhoods of edges.

Let a be an edge-color and let e and e− be the two open edges of

color a. Fix two disjoint neighborhood Ue+ and Ue− of e+ and e−

in D that do not contain the end points of these edges. We

form a subset Ua ⊂ H2 by gluing together two hyperbolic

translates of Ue+ and Ue− { recall that D is drawn in H2 and

that e+ and e− have the same length. Note that each edge e′ in

Σ̃ of color a has a neighborhood Ve′ that is homeomorphically

identified with U via the map Ue+ ∪ Ue− → Ua. The induced

homeomorphisms

ϕe′ : Ve′ → Ua

are our second collection of coordinate charts. We say that the

open sets Ue+ and Ue− are the defining pieces for the type II

charts.

type III: To define the third type of charts, fix a positive real number

R such that the hyperbolic discs of radius R around all the

corners of D ⊂ H2 are disjoint. Now fix an equivalence class

(vertex-colors) a of corners in D. Translate the open

R-neighborhood of these corners in the hyperbolic plane so that

they form a local picture U ⊂ H2 for neighborhoods Vw of

vertices w of color a in Σ̃. The canonical homeomophisms

ϕw : Vw → Ua

will be our chart. The R-neighborhood of corners in D are the

defining pieces for the type III charts.

The domains of these charts form an open cover of Σ̃. This follows

since the defining pieces form an open cover of D Note that charts
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of type II and III are assebled by moving pieces of D via hyperbolic

isometries. It follows that coordinate changes are hyperbolic

isometries. Thus, we have defined a hyperbolic structure on Σ̃.

Deck transformations of Σ̃ move the tiles and respect the gluing

pattern. Thus, by construction of the hyperbolic structure, deck

transformations become isometries with respect to this structure.

Equivalently, we could say that we have, in fact, constructed a

hyperbolic structure on Σ.

The hyperbolic structure on Σ̃ is complete. This follows

since the cover of D by the defining pieces has a Lebesgue number.

As a consequence, we infer that the simply connected cover Σ̃ is

isometric to H2. Thus, the tiling of Σ̃ is the tiling of H2 that we

were looking for. q.e.d.

6.4 The Dehn-Nielsen Theorem for Higher Genus

Surfaces

Exercise 6.4.1. Prove: In a closed surface with a fixed hyperbolic

structure, every closed curve is freely homotopic to a unique closed

geodesic { here, a closed geodesic need not be simple.

Defintion. Let G be a group with a fixed generating system Σ. The

Cayley graph ΓΣ(G) is a directed graph whose vertices are the

elements of G. For each vertex g and each generator x ∈ Σ, there is

an edge from g to gx. We ignore the orientation of these edges and

define a metric on the vertex set by declaring all edges to have

length 1: The metric

dΣ : G×G → R

is then given by shortest paths { note that Γ(G) is connected since

Σ generated G.

Exercise 6.4.2. Let G and H be groups generated by the finite

generating sets Σ and Ξ, respectively. Let ϕ : G → H be a group
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