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commutes for each deck transformation τ. Thus, we use ζ̃ to define a

hyperbolic structure on Σ̃, which visibly descends to a hyperbolic

structure H on Σ. The homeomorphism ζ̃ is a developing map for H,

and using this developing map, we see that η is the holonomy

representation induced by the hyperbolic structure H. q.e.d.

6.6 Short Geodesics

We will prove that short simple closed geodesics on a closed

hyperbolic surface either coincide or are disjoint. Let us first

give a quick an dirty reason why something like that should be true.

Proposition 6.6.1. Let Σ be a closed hyperbolic surface and let γ1

and γ2 be two non-homotopic simple closed geodesics of length

< arcosh(5
4
). Then, γ1 ∩ γ2 = ∅.

Proof. Suppose the two loops had an intersection point. We look at

the universal cover H2. We lift the point of intersection and we

lift the loops to intersecting geodesic lines, which are the axes of

the corresponding deck transformations. The lengths of the loops

are precisely the displacements of the two deck transformations.

Let us apply both deck transformations to both geodesics.

The key idea is that we cannot obtain a quadrilateral since it had

to be a parallelogram as isometries preserve angles. Since there

are no parallelograms in the hyperbolic plane, we obtain a

contradiction. Thus, the displacements have to be large enough to

ensure that the shifted geodesics to not intersect. In terms of

figure 6.12, this means that the left picture is forbidden. The

right picture is the extreme case of what is just barely

permissible.
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Figure 6.12: Geodesic parallelogram.

To work out the numbers, we consider the right hand of

figure 6.12. We want to find a number ` such that the red and blue

geodesics form a quadrilateral in H2 provided both displacements are

strictly less than `. First observe that shrinking one displacement

even further will make intersections even more likely. Thus, we may

assume that both displacements in the just permissible picture equal

`.

This minimum displacement ` for which one vertex of the

quadrilateral lies on the boundary, depends on the angle β. To

compute it, we need the following formula from hyperbolic

trigonometry:

cosh(c) =
cos(α) cos(β) + cos(γ)

sin(α) sin(β) c

a

b
α

γ

β

111



`

η(`)

¾ -

6

?

Figure 6.13: The width function.

We obtain:

cosh(`) =
cos(β) cos(π − 2β) + 1

sin(β) sin(π − 2β)
.

It turns out that this function is increasing and can be extended

continuously at β = 0. The value is found by L'Hospital's rule and

yields the estimate

cosh(`) ≥ 5

4
.

Verification of this claim is most conveniently done using a

computer algebra system. q.e.d.

Now we follow John H. Hubbard and derive the real thing.

Definition 6.6.2. The width function η : R+ → R+ is defined as

follows. For any positive real number `, draw a line segment of

length ` on you favorite geodesic in H2. At its endpoints, draw the

perpendiculars and extend them into one side of the hyperbolic plane

until they hit the boundary. This way, you obtain two points on the

boundary, one for each perpendicular. Join these boundary points by

a geodesic. The distance from this geodesic to your favorite one is

η(`). (See figure 6.13.)

Observation 6.6.3. The width function is monotonically

decreasing. q.e.d.
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Figure 6.14: A hyperbolic pair of pants with cut lines.

Lemma 6.6.4. In a hyperbolic pair of pants with totally geodesic

boundary circles γ1, γ2, and γ3 of lengths `1, `2, and `3,

respectively, you can draw an annulus of width η(`i) around γi and all

three annuli will be pairwise disjoint.

Proof. Consider the pair of pants in figure 6.14 and let the red

boundary circle be γ1 and the blue circle be γ2. Fix shortest lines

from the third circle to γ1 and γ2. Note that these two green arcs

will be geodesics, they will be perpendicular to the boundary, and

they will be disjoint. Cut along the green geodesic arcs. We

obtain a right-angled octagon as shown in the right figure. Note

that the green geodesics do not intersect since they have common

perpendiculars. Thus, the two yellow geodesics that determine η(`1)

and η(`2) do not intersect. The claim now follows. q.e.d.

Theorem 6.6.5. Let {γ1, γ2, . . .} be a set of pairwise non-homotopic

simple closed geodesics in a closed hyperbolic surface with lengths

`1, `2, . . .. Then the open η(`i)-neighborhoods of the loops γi are

pairwise disjoint.

Proof. Extend the set of curves to a complete pair of pants

decomposition of the surface and apply (6.6.4). q.e.d.

113



`

η(`)

¾ -

6

?

Figure 6.15: Solving ` = 2η(`).

Corollary 6.6.6. Let γ1 and γ2 be two simple closed geodesics of

lengths `1 and `2 on a closed hyperbolic surface. If `2 < 2η(`1) then

the loops are either disjoint or coincide.

Proof. Suppose the intersection of the two loops in non-empty but

the two loops do not coincide, then γ2 intersects γ1 transversally.

In this case, it has to pass through the whole η(`1)-width annulus

around γ1. Thus, `2 ≥ 2η(`1) as the annulus extends to both sides of

γ1. q.e.d.

Exercise 6.6.7. Show that the number ln(3 + 2
√

2) is the unique

solution to the equation ` = 2η(`). (Hint: look at figure 6.15.)

Corollary 6.6.8. If two non-homotopic simple closed geodesics in a

closed hyperbolic surface have both length < ln(3 + 2
√

2), then these

loops are disjoint.

Proof. Let γ1 and γ2 be two simple closed geodesic curves of length

`1 and `2. We suppose `1, `2 < ln(3 + 2
√

2). Thus, we have

`2 < ln(3 + 2
√

2) < 2η(`1)
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whence the claim follows from (6.6.6). q.e.d.
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