geometric edges since there are at most two orbits of oriented
edges.

Suppose the stabilizer of a geometric edge was
non-trivial. Then the squares of its elements would be trivial as
they stabilize an oriented edge. Since the group is torsion free,

this cannot happen. q.e.d.

2.4.4 Grushko’s Theorem

Theorem 2.75. If a free product Ax B has a set of n generators, then
1t has a separated set of n generators, i.e., a generating set

contained in AUB. In particular,
rk (Ax B) =1k (A) + 1k (B).

We give a version of Stallings’ proof based on [Stal88]. We will,
however, avoid the use of two-complexes and work with folds (also
invented by Stallings). This makes the proof more combinatorial.
It actually yields an algorithm for the construction of a separated

generating set.

Proof. Let us start with an arbitrary set of n generators for Ax B.
Recall that the elements are essentially words over the alphabet
AUB—1. Ve will devise an algorithm that takes this generating
set as an input and has a separated generating set of at most equal
size as its output.

Our main bookkeeping device is a graph with edge labels in

AUB. Here is the precise data structure that we use:

Definition 2.76. An A, B-labeling is a connected graph I' together

with a map ¢: E?r—+,4LLB——1 satisfying
g[er]=g[e] ™.

The values of ¢ are called labels. We color all edges red that have

their label in A. The remaining edges are colored blue. A vertex

2.29

in I' is monochromatic if all edges in its link have the same color.

A path in I' is called monochromatic if it contains edges of one
color only.
Since any directed edge “reads” an element of Ax B, any

directed path “reads” the product. We call a path null-homotopic if

it reads the trivial element in A x B.

Clearly, we have a homomorphism
¢:m (I'v) > Ax B

for any vertex vel.
An A, B-labeling is generating if the induced homomorphism

is surjective.
The start for our algorithm is a rose:

Observation 2.77. We can realize any finite generating set for Ax B
by a generating A, B-labeling modeled on a rTose with subdivided

loops.
The goal of the algorithm is a rose too:

Observation 2.78. Any generating A x B-labeling modeled on a rose
with undivided loops, %t.e., a graph with only one vertexr, represents

a separated generating set for AxB.

Our algorithm modifies A, B-labelings. The goal is to
reduce the number of vertices. Eventually, we have a graph with
only one vertex, which represents a separated generating set.

For the reduction step, assume our labeling I' has at least
two vertices. Then I' contains path that is not a loop. This path
can read any element of AxB, but as ¢:m (I',v) > A*x B is
surjective, we can append a loop so that we obtain a null-homotopic
path that connects two different vertices.

The next step in the reduction is to come up with a

monochromatic, null-homotopic path connecting two different

2.30

vertices. For those, who do not care about a construction: Among
all null-homotopic non-loops, chose a shortest one and prove that
this must be a monochromatic path.

A more constructive approach runs like this: We already
have a null-homotopic non-loop. First remove from this path all
monochromatic, null-homotopic loops. This will shorten the path and
we will still have a null-homotopic non-loop. The edges in this
path come in runs of edges of the same color. Since we remove
null-homotopic, monochromatic loops, each of these runs is either
not null-homotopic or not a loop. Each run gives an element in A or
B. The product of these has to be trivial (the whole path is
null-homotopic), but by the definition of runs, the factors are
taken alternatingly from A and B. An alternating product of
non-trivial elements, however, cannot be trivial in the free product
Ax B. Hence one of the runs reads the identity element. Then, this
run is not a loop. Hence we found a monochromatic, null-homotopic
path connecting two different vertices.

Note that our path has length > 2 since we do not allow
for trivial edge labels. Since it reads the trivial element, the
first edge reads the inverse of the rest. Therefore, adjusting the

orientations, we get the following picture:

Now, we perform a fold, i.e., we replace the picture above by

2.31

S e ,‘ " ".’ ’s . -o
v bm : Vs Vﬁ.,!'

S
® .
A

oo®
o oo
.

Clearly, the fundamental group of I' did not change: we removed one
edge and reduced the number of vertices by one. Moreover, the
induced homorphism ¢ is still surjective: for every closed loop
before the fold we can find a closed loop after the fold reading the
same group element. So we still have a generating A, B-labeling.
But the number of vertices dropped by one. Keep going, until there
is only one vertex left. This completes the proof.

Wait a minute. Pictures can be so misleading, and in this
prove, there is a serious gap: We want to remove the initial edge
of our path. The justification is that we do not need it as the
complementary segment of the path already reads the same group
element. But what if this segment passes through the initial
segment? Then deleting it would cut the path — ouch.

Hm. Here is a patch. First let us observe that there is
another process that reduces the number of vertices in I'. Suppose v
is a monochromatic vertex, then we can remove v. To do this, we

replace

by

2.32

So let us have a closer look at the initial edge e of our
monochromatic path. Let v_; be the first and v be the second vertex
in the path. Our plan is to do an unfold along e first to split v_;
into two vertices, one of which keeps the connections to blue edges
whereas the other one stays connected to the red edges. So we

replace the picture

by

2.33

Note that we increased the number of vertices by one. On the other
hand, we have a path starting at the new vertex v’, which is
monochromatic and null-homotopic and whose first edge is not used a
second time. Hence we can immediately follow the unfold by a fold
which restores the number of vertices. So what was the progress?
By the unfold, the vertex v became monochromatic. Hence
we can get rid of it, thereby reducing the number of vertices. So
we did one step back and two steps forward, and this does complete

the proof. q.e.d.

Remark 2.79. There is a topological interpretation of this proof,
which explains why we call paths that read the trivial element
“null-homotopic”: Realize A and B as a fundamental groups of base
pointed spaces. Then, by van Kampen’s Theorem, their wedge X has
fundamental group Ax B. A generating set can be realized as a map
from the n-rose Y to X. A path in Y is that maps to a
null-homotopic loop in X is what we called null-homotopic.

One of Stallings proofs for Grushko’s Theorem takes place

in this setting: The preimage of the wedge-point is probably not

2.34

connected. So we want to reduce the number of its components. This
is done by glueing two cells onto Y without changing the homotopy
type. This procedure corresponds to the folds above: we just
collapsed the two cell immediately after the gluing. The patch is
only needed because we insist on this immediate return to a graph.
For this reason, the topological proof is, in fact, shorter and more

elegant.

2.5 The Hanna Neumann Conjecture

Definition 2.80. A group (G has the finite intersection property if

the intersection of any two finitely generated subgroups in G is

finitely generated.

Theorem 2.81 (Howson [Hows54]). Free groups enjoy the finite

intersection property.

By now, there are many proofs of this theorem. The given here is

stolen from [Shor90].

Definition 2.82. Let G be a group with finite generating set . A

subgroup H < G is quasi-convex with respect to X if there is a

constant 2 > 0 such that every geodesic path in the Cayley graph
I's (G) joining two points in H lies in an R-neighbourhood of H.
That is, every point on such a path has distance < R to at least one

point in H C1T'.

Example 2.83. Any finitely generated subgroup H of a free group is
quasi-convex with respect to the standard generators: Let B be a
ball in the Cayley tree I' centered at 1 containing all generators of
H. The union HB is connected and hence a subtree. Any geodesic
joining two point of H in I' actually lies in HB. The constant R,

therefore can be chosen to be the radius of B.

Proposition 2.84. (uasi-conver subgroups are finitely generated.

2.35

Proof. Let G, H, ¥, and R be as in the definition (2.82), and let
B be the open ball in I' =Ty (G) of radius R+ 1. It is easy to see
that

X=HBCT
is connected and that
E:={h€ H|hBnN B # 0}
is finte. By (1.52) this finite set generates H. q.e.d.

Proposition 2.85. The intersection of two quasi-convexr subgroups %s
quasi-convexr. More precisely, let G be a group with finite
generating set X and let A and B be two subgroups that are both
quasi-convezr with respect to .. Then AN DB ts quasi-convexr with

respect to M.

Proof. Let R4 and Rp be the quasi-convexity constants for the two
subgroups. Let Pgr be the set of paths in [' =TIy (G) starting at 1 of
length R. For any such path p let p denote its end point — note
that this is a vertex in [' and therefore an element of the group G.

Consider the finite set
II:={(p,q) € Pr, X Pr, | Pa =qb for some a € A, b € B}

For any pair (p,q) € II, pick two paths 7,4 (With 7, € A) and g
(with &(,, € B) such that DVpq = ¢0(q)- Let R be the maximum length
that occurs as a path of the form py(, . We will show that any point
that has distance < R4 to A and distance < R to B must have
distance <R to ANB. From this, quasi-convexity follows since the
statement of course applies to points on geodesic paths joining
points in AN B.

So let g€ G be in the R,-neighbourhood of A and in the
Rp-neighbourhood of B. Then there is a path p of length < R, from

g to some element of A. Similarly there is a short path ¢

2.36

connecting ¢ to B. Hence (p,q) € II. Observe that gp € A whence

9DV (pq) € A. Similarly, gqd,q) € B, but because Py = ¢dpq it follows
that gpy(pq € AN B. Hence g has distance < R to ANB. q.e.d.

Proof of (2.81). By (2.83), finitely generated subgroups of free
groups are quasi-convex. By (2.85), the intersection of two of
these is quasi-convex itself. Finally, by (2.83), it the

intersection is finitely generated. q.e.d.

Remark 2.86. Let G and H be two finitely generated subgroups of the
free group F'. As G and H are free groups of finte rank, one might
ask how the rank of GN H relates to the ranks of G and H. Hanna

Neumann [Neumb55] showed:
rtk(GNH)—-1<2(k(G)—-1)(k(H)—-1)
She asked whether
tk(GNH) - 1< (tk(G) - 1) (tk (H) — 1)
This problem is still open and know as the Hanna Neumann conjecture.

Exercise 2.87. Show that F; x (', does not have the finite
intersection property. That is, find two finitely generated

subgroups whose intersection is not finitely generated.

2.6 Equations in Free Groups and the Conjugacy Problem

Reduced word provide normal forms for elements in F,. Hence it is
easy to decide if two words in the free generators represent the

same group element. We can phrase this as
Observation 2.88. Free groups have a solvable word problem.

This is only one of many algorithmic problems one might study for a

group with a fixed generating set:

2.37

Definition 2.89. The word problem for a group G = (X) is to decide

algorithmically for any two words in X WY ~! whether they represent
the same group element.

The conjugacy problem is to decide algorithmically whether

two given words w; and ws represent conjugated group elements, i.e.,

if the equation
X’U}lX_1 = W2

has a solution in the ambient group.

The subgroup membership problem is to decide

algorithmically whether a given word represents an element of the
subgroup generated by a finite list of given elements.

The subgroup conjugacy problem is to decide

algorithmically for two finite sets of words if the two subgroups

they generate are conjugate.

Theorem 2.90. The conjugacy problem in F,, is solvable. More

precisely, tf the equation
XuX"t=w

has at least one solution in F,, then there is a solution v such
that

_lul+

ol < 22

Proof. Suppose v is a solution of minimal length. So we have
vuv~ = w. Assuming that the word v, uw, and w are reduced, we
observe that cancellations on the left had side occur only on the
boundaries of u. We have to keep track of these cancellations.
First, there might be cancellations on both sides of wu.
In this case, we are undoing a conjugation. Since we cannot
conjugate something nontrivial into the empty word, the number of

those cancellations is <:¥§.

2.38

Afterwards, cancellations can only occur on one side of u’,
where u is whatever is left of u. Note that for each letter that
cancels in front of u', a copy of this letter appears in the back.
Hence it does not make sense do have |u'| cancellations or more — we
could spare these superflous letters.

The total number of cancellations, therefore, is
< P) <l

On the other hand, we know that after all cancellations

are done, the right hand side equalls w. Hence

2]+ |u| < |w| + 2 |ul
and the claim follows. q.e.d.
Corollary 2.91. Different generators of F, are not conjugate.

Exercise 2.92. Find an efficient algorithm to solve the conjugacy

problem in finitely generated free groups.

Exercise 2.93. Modify the graphs-and-folds technique used in proving

Grushko’s Theorem to devise an algorithm that does the following:

The input it takes is a finite set {¢i,...,9,} of elements

in F),, given as reduced words in the standard generators.

The output is a list of free generators {hi,...,hs;} for the
subgroup (gi,---,9,) generated by the g;.

Exercise 2.94. Find an algorithm that solves the subgroup membership

problem for finitely generated free groups.

Remark 2.95. The subgroup conjugacy problem is related to the
recognition problem for groups: Suppose we had a machine the could
tell us if the standard generator z; is has a conjugate in
(91,---,9r), then we could run the test on all the generators and see
if the normal closure of (gi,...,¢,) is all of the free group. Given
this machine, we had an easy way of deciding if a finite
presentation acutally presents the trivial group. This problem,

however is undecidable.

2.39

Conjecture 2.96. The subgroup conjugacy problem is unsolvable for

non-abelian free groups.

For free groups, there has been a lot of research about

decidability questions. We list the most famous results:

Theorem 2.97 (Makanin [Maka82]). There ¢s an algorithm that, given
an equation in a free group, decides whether the equation has a

solution.

Theorem 2.98 (Razborov [Razb84]). There is an algorithm that, given
a system of equations in a free group, decides whether it has a

solution.

In both cases, the basis for the algorithm generalizes what we did
for the conjugacy problem: Find an a priory bound on the length of
a minimal solution.

The ultimate theorem along those lines is a recent
solution to Tarski’s problem. To state the problem (and the
solution) we need to understand the “elementary theory” of a free

group.

Definition 2.99. Let F,, be a free group of rank n. Consider
statements of first order logic over an alphabet containing a
multiplication operation, the identity relation, infinitely many
variables, and one constant symbol for any of the n free generators
of F,,. We can interpret those statements over F,, in an obvious way.

The elementary theory of F,, is the set of all true

statements.

The elementary theory encoded everything that can be said about Fj,
with “finite linguistic means”, i.e., you are not allowed to use the
langugage of sets or phrases like “and so forth”. Obviously, it
would be nice if the elementary theories of free groups were

decidable. This would generalize the theorems of Makanin and

2.40

Razborov to a large extend — e.g., we could deal with systems of
equations and inequalities.

By means of the standard inclusions
BR<FKBCF<---

we can interpret any statement over a free group on n generators as
a statement about all free groups of higher rank, as well. Tarski
asked whether there is a statement that has different truth values
when interpreted in different free groups.

Both problems, decidability of elementary theories and
Tarski’s problem, have positive solutions. The priority for these
results, which turn out to be strongly related, is still unsettled.
0. Kharlampovich and A. Myasnikov have their proofs spread out in
[KM98a], [KM98b], [KM98c], [KMOOa], [KMOOb], and [KMOOc]; Z. Sela
has presented his account in [SeOlal], [SeO1b]l, [SeOic], [Se01d],
[SeOle], and [Se01f]. Both proofs are several hundred pages each.
The upshot is:

Theorem 2.100 (Kharlampovic-Myasnikov, Sela). The elementary
theories of all non-abelian free groups of finite rank coincide and

are dectdable.

Remark 2.101. It is also possible to describe the set of all
solutions to a system of equations (or more generally the set of all
solutions to an open sentence) by means of “parametrized words”.
This also comes out of the heavy machinery used to solve Tarski’s

problem.

2.41

3 Grigorchuk’s First Group

The First Grigorchuk Group G; is a group of automorphisms of the
infinite binary rooted tree. So let us consider the automorphism
group of this gadget first.

Let 717 be the rooted binary tree without terminal
vertices. Any vertex in 75 can be reached from the root by a
minimal path. Along this path, you have to make binary decisions
whether you want to go left or right. Hence the vertices in 75 are
finite word over {—1,1} with the empty word as the root. The
vertices come in levels indexed by natural numbers: the root is the
unique vertex at level 0, its children are at level 1, and so on.
The level of a vertex is its path-metric distance to the root. Let
Ty (n) denote the sub-tree spanned by the vertices of level <n.

let 7, := Aut(7y) denote the automorphism group of 7;.
Note that any automorphism preserves the root (as this is the only
vertex of valency 2). Hence the sets 7y (n) are invariant under

automorphism, and we have, for any n, a canonical homomorphism
mn : Ty — Aut (T35 (n)) .
In fact, 7, is easily seen to be the inverse limit of the system
Aut (T3 (0)) < Aut (T3 (1)) < Aut (T3 (2)) + - .

It follows that 7, is pro-finite. So it is a compact topological
group.
Let us have a look at the kernels of these homomorphism.

We define
T® .= ker (1, : T* — Aut (T3 (n))).

A1l of these subgroups are normal. The first one deserves our
utmost attention: Note that 75 contains two copies of itself as
subtrees — the vertices at level 1 serve as roots for these

subtrees. Let us call these subtrees the left subtree 7' and the

3.1

right subtree 7". The subgroup 7, is the group of automorphisms
taking 7' to 7! and 7" to T". Moreover, this subgroup is clearly
isomorphic to the square of 7;:
T x Ty =T7W,
On the other hand, the short exact sequence

T T = Cy

splits since the swap o € 7°® has order two. This is the automorphism
that interchanges the left and right subtree. The formal definition
makes use of the representation of vertices as words over {£1}: The

swap o just flips the sign in the first slot. Hence
T 2T %G
Putting things together, we obtain a strange isomorphism:
T = (T X T;) % Cy = Ty 1 Ch
This allows us to define automorphisms recursively. As an
example, consider the tree automorphism ¢ defined by
v =(1,¢)0
This equation has a unique solution. Indeed, the right hand side
tells us first how ¢ acts on level 1 vertices. Then we can plug
this information back into the right hand side. Now the right hand

side is defined on all vertices up to level 2. We can continue in

this fashion. Similarly we have

Observation 3.1. Let ¢; be wariables with values in 7, w; and u;
given words in these variables and some fizred given automorphisms
(like the swap), and ¢; given elements of {l,0}. Then any system of

equations

Y1 = (wl, U1)€1

On = (wnaun)gn

3.2

has a unique solution. q.e.d.
Exercise 3.2. Show that the ¢ defined by

¢=(1,¢)0
has infinite order.

Now we can define cool automorphisms!

Definition 3.3. Let the automorphisms /3, 7, and J be defined by

g = (0-7’7)
= (0,0)
6 = (1,8)

The First Grigorchuk Group G; is the subgroup of 7° generated by

{Oaﬁ,7,5}:
gl = <Uaﬁ5755>'

Our observation (3.1) is quite powerful. In fact, we can derive a
complete multiplication table for the generators [, 7, and J as

follows:

Proposition 3.4. The set {1,5,7,0} is a subgroup of G isomorphic to

Klein’s Vierergruppe Csy X C.

Proof. From the defining equations, we get

g = (1,7
7 o= (1,6%)
0 = (Lp)

Regarding this as a system of equations in (%, 7%, and 2%, we

conclude that the unique solution is

We turn this trick into a method, i.e., we use it twice. So let us
write down a system of equations in the products of length 3. We
find:

Byd = (1,74B)
58 = (1,687)
opy = (1,B79)

and it follows that

pyd =08 =08y = 1.

So we established that the defining relations of Klein’s
Vierergruppe hold. Hence we only have to check that [, 7, and § are
non-trivial. But this follows from the swaps that occur in the

defining set of equations. q.e.d.

Let us call an automorphism of 73 is recursive if it can
be defined by a finite system of equations. If you invert all the
equations, you see that the inverse of a recursive automorphism is
recursive, too. Moreover, it is easy to see that products of
recursive automorphisms are recursive. Hence the recursive
automorphisms form a group. We shall study a subgroup of this

momentarily.

3.1 Automaton Groups and the Word Problem

Definition 3.5. A simplistic finite state automaton over the

alphabet A is a finite directed graph with a distinguished start
vertex whose edges and vertices are labeled by elements of A such
that for any vertex v and any letter a € A there is precisely one

edge starting at v labeled with a.

Remark 3.6. There is an obvious way to use a finite state automaton
over A to define a transformation A* — A*. Given a sequence of

letters, there is a unique directed path starting at the start

3.4

vertex that reads this sequence of letters. The output is given by
reading the vertex labels along this path, starting with the vertex

after the start vertex.

Definition 3.7. A sophisticated finite state automaton over the

alphabet A is a finite directed graph with a distinguished start
vertex together with to labelings. The vertices are labeled by
elements of Perm (A) and the edges carry labels taken from the
alphabet A such that for any vertex v and any letter a € A there is

precisely one edge starting at v labeled with «a.

Remark 3.8. There is also an obvious way to use a sophisticated
finite state automaton over A to define a transformation A* — A*.
Given a sequence of letters, take the unique directed path starting
at the start vertex that reads this sequence of letters. The output
is given by applying the permutations you read along this path to

the letters in your sequence.

Exercise 3.9. Show that a transformation A* — A* can be defined by a
simplistic finite state automaton if and only if it can be realized

by a sophisticated finite state automaton.

Remark 3.10. Maybe, one should introduce the even more convenient

notion of a finite state automaton deluxe where the vertices carry

labels in Maps (A, A). This generalizes both notions: For
simplistic automata, use constant maps; and for sophisticated
automata, use permutations. However, it does not add to the

computational power of these devices.

Definition 3.11. A vertex v in a finite state automaton is
accessible if there is a directed path from the start vertex to wv.

An automaton is sophomoric if it has inaccessible vertices.

From now on, all automata will be simplistic but not
sophomoric. Let us have a look at some small automata over the

alphabet with two letters {L,R}.

3.5

Example 3.12. Here is an automaton, that maps everything to a string

of Rs of the same length.

LC@fDR

Example 3.13. The identity can be realized with two vertices:

R
LG Q"

Example 3.14. And here is the swap:

P

Example 3.15. The twist automorphism

R DR

needs two states but has a fairly complicated dynamic.
The picture shows that this automorphism is just a twisted

swap whence the name!

Example 3.16. Here is a picture that displays all the generators of

G, at once. You just have to pick the right vertex as start.

3.6

Definition 3.17. A map ¢ : A* — A* is finitary if it can be realized

by a finite state automaton.

Observation 3.18. Of course, bijective transformations ¢ : A* — A*
are tree-automorphisms of a rooted tree where each vertex has
precisely |A| children. Hence we can speak of finitary
tree-automorphisms.

Moreover, any finitary automorphism is recursive. You
construct the defining equations from the automation A as follows:
For each wertex introduce a variable, and the defining equation will
have the children of this vertex in the pair followed by a swap of
the identity, depending on the local labels. Rule: the child that
prints R 18 in the right slot. As the preceding sentence s
incomprehensible for those who are not in the know, let us consider
an ezample. Here 1s the system for the twist (3.15) where t

corresponds to the start at R and y corresponds to the start at L.

z = (y,z)0

y = (y,2)
Exercise 3.19. This is an automaton over {0,1}. What does it do? Is
the transformation invertible? Is it of infinite order? If the

transformation is invertible, find a recursive definition as small

as possible.

3.7

We will show that finitary bijections form a group.
Obviously, we have to construct automata for inverses and products.

So let us start with inverses.

Key Idea 3.20. The bastic idea of tnverting an automaton is this: 1if
you are at the start vertex and the input sequence gives you a
letter, you do not have to look at the edge labels but at the labels
of the neighboring vertices. If there is precisely one with that
label, you know where to go. While you are on the way, you print
out the label of the edge. So we would like to construct the
inverse of an automaton just by exchanging the label of an oriented

edge with the label of its terminal wvertez.

However, this simple minded procedure might not be allowed! Have a
look at example (3.15). The trouble comes from the fact that some

vertices have edges with different label pointing to them.

Definition 3.21. A finite state automaton is tidy if every vertex

has all its incoming edges given identical labels.

The main tool for inverting an automaton is the blow-up

construction:

3.8

Proposition 3.22 (Blow-Up). For every finite state automaton, there

13 an equivalent tidy finite state automaton.

Proof. We use a cover. So let A be a finite state automaton over
the alphabet A. We define a new automaton B on the vertex set
Vi x A. For an edge € in A with label ¢ pointing from S to T, we
glue in |A| edges in B. They point from the vertices (S,—) to the
vertex (T,a).

It is obvious that the result B is tidy and equivalent to
A. To understand this, let us give the pictures for the

twist-automaton. Here is the untidy version again:

Play and see!! q.e.d.

For tidy automata, finding the inverse is no problem.

Proposition 3.23. Let A be a tidy finite state automaton. Define a
graph B with edge and vertex labels on the same vertex set by

exchanging the label of each oriented edge with the label of its

3.9

terminal vertex. The result is a fintte state automaton <f and only
if A realizes an invertible transformation. In this case B ts tidy

and realizes the inverse.

Proof. Look at the picture for the twist-automorphism. Here is the

tidy twist:

No play with it, and see how the key idea (3.20) works. q.e.d.

Corollary 3.24. It is decidable whether a finite state automaton
defines an invertible transformation, and if it does an automaton

realizing the inverse can be constructed effectively.

3.10

Proposition 3.25. Suppose the transformations ¢ :A* — A" and

Y: A — A* are finitary, i.e., they can both be realized by finite
state automata A and B. Then the composition Yy (second factor
acts first on the input!) is finitary, too. Moreover, an automaton

realizing the product can be effectively constructed from A and B.

Proof. The product automaton is constructed on the vertex set A X B.
The start vertex is the pair of start vertices. From (S;,7)) we have
an edge labeled with a to (S;,73) if there is an a-edge from S; to S
and an edge from 77 to 75 that has the same label as v,. The point
is, that this label is the output of A at this stage and therefore
guides the computational path in B. q.e.d.

Corollary 3.26. The set of all those bijections that can be realized

by finite state automata forms a group.

Definition 3.27. An automata group over A is a group of bijective

finitary transformations A4* — A*.
Example 3.28. From (3.16) it follows that §; is an automata group.

The following lemma introduces an idea that is ubiquitous
in the study of finite state automata. The key observation is that
a path in a finite graph has to contain a loop if it becomes too

long.

Lemma 3.29. If two finite state automata A and B over the same
alphabet are inequivalent, then there ts an input of length
< |A| x |B| for which their outputs differ.

Let us first note an immediate consequence.

Corollary 3.30. There %s an algorithm that, taking two finite state
automata A;, and As over the same alphabet is its input, decides if

these automata define the same transformation.

3.11

Proof. Let us assume the shortest input sequence that proves the two
automata to be inequivalent has length > |A| x |B|. Follow the
computational paths in A and B for this sequence. As there are
only |A| X |B| many pairs of states (S,7) € A x B, one of these pairs
is visited twice. Then, however, the part of the input sequence
between the two times can be cut out without affecting the rest of

the computation. q.e.d.

Exercise 3.31. The decision procedure for equivalence of finite
state automata based on (3.29) is exponential since you have to test
all input sequences of length < |A| X |B|. Find an effective

algorithm that decides if two automata are equivalent.

Let us fix some consequences that pertain to Grigorchuk’s Group.

Corollary 3.32. The word problem for finitely generated automata

groups s solwvable.
Corollary 3.33. The word problem in G; is solwable.

Remark 3.34. This solution to the word problem closely parallels the
solution to the word problem in finitely generated linear groups.
The idea is as follows: Given a word in the generators, just
multiply the corresponding matrices and check if the result is the
identity matrix. Of course, this presupposes that you can multiply
matrices. The problem is that, say, complex numbers do not have
finite representations.

To overcome this problem, observe that finitely many
matrices have only finitely many coefficients. So all computations
really take place in a finite extension of the prime field. Now,
there is a little lemma to be proved that says you can always do
this extension in two steps: (a) pass to a purely transcendental
extension. This field obviously has a computationally effective
arithmetic. (b) move on to an algebraic extension of finite degree

— this can be done since finitely generated algebraic extensions are

3.12

finite. Those extensions can be represented as matrix algebras over

their base field. Hence they, too, are computationally effective.

3.13

