Example 5.22. The infinite cyclic group is arithmetic. In fact, it
is the arithmetic subgroup of the Q-group

o)

Fact 5.23 (Mal’cev). Any torsion free finitely generated nilpotent

group s arithmetic.

Fact 5.24 (from rational homotopy theory). The mapping class group
of any simply connected finite CW-complex %s arithmetic.

Conversely, any torsion free arithmetic group arises this way.

5.1 Preliminary Observations

Arithmetic groups are groups of integer matrices with determinant 1.

This already implies some properties:

Observation 5.26. Every finitely generated subgroup of an arithmetic

group has a solvable word problem.
Observation 5.26. SL,(Z) is restdually finite. q.e.d.
Corollary 5.27. Arithmetic subgroups are residually finite. q.e.d.

Exercise 5.28. Prove that SL,(Z) is generated by elementary
matrices, i.e., matrices that have 1ls in the diagonal and precisely

one additional 1 in an off-diagonal slot.

Exercise 5.29 (extra credit). Prove that SL,(Z) is generated by two
elements for n > 5. Remark: The statement holds for n > 2.
However, a proof of the more general statement distinguishes between

n even and n odd.
Exercise 5.30 (Minkowski (1887)). Show that the kernel of the map

SL,, (Z) — SL,, (Z,)
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is torsion free for any odd prime p. Hint: If M is a torsion
element of SL,(Z) then the roots of its characteristic polynomial
are roots of unity. This tells you something about the way it

factors over Z.

Corollary 5.31. Arithmetic groups are virtually torsion

free' q.e.dn

5.2 SL2(Z) and the Hyperbolic Plane
5.2.1 The Symmetric Space of SL, (R)

The group SL; (R) acts on the complex projective line P!(C) in an
obvious way. The complex projective line is the Riemann sphere, and
since the coefficients of matrices in SL; (R) are real, the equator
of the Riemann sphere is invariant under this action. Moreover, the
action does not swap the northern and southern hemispheres. Hence,
there is an induced action on the northern hemisphere — the north

pole is i. This action is given by Mdbius transformations:

(a b) az+b
z = }
c d cz+d

The kernel of this action is the center of SL,(R):

{1[2, —]IQ} .

The northern hemisphere is a well known model for the hyperbolic

plane HZ?.

Exercise 5.32. Prove that H? has constant curvature —1.

Exercise 5.33. Show that Mdbius transformations are isometries of
H2.

Exercise 5.34 (extra credit). Show that any orientation preserving

isometry of H? is given by a M&bius transformation.
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Exercise 5.35. Show that geodesics in H? are vertical lines or half

circles orthogonal to the real axis.

Definition 5.36. A horizontal line or a circle tangent to the real

axis in H? is called a horocircle.

Exercise 5.37. Show that the action of SL;(R) takes horocircles to
horocircles.

: Lb :
Observation 5.38. Elements of the form 01 act as translations

that preserve the tmaginary part and shift the real part by b. These

elements are called translations.

0

afl

the imaginary line. They move lines in the upper half plane to

a
Elements of the form ( 0 ) act act transitively on

parallel lines. These elements are dilations.
Corollary 5.39. The action of SLy(R) on H? 4is transitive. q.e.d.

We determine the stabilizer of i: First, we have

a b \. .
i =i
c d

ai+b = —c+di
a=d b= —c.

Now, the determinant gives:
a® + b = 1.

It follows that the stabilizer of i is precisely the group SO (2).
This is a compact Lie group of rotations. Since these rotations act
transitively on the unit tangent vectors at i, we obtain the

following strengthening of (5.39)
Observation 5.40. SL; (R) acts transitively on the following sets:

e The set of embeddings R — H2.
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e The unit sphere bundle of the Riemannian manifold H2.

Theorem 5.41. Any compact subgroup of SL, (R) is conjugate to a
subgroup of SO (2)R

Proof. A compact subgroup has bounded orbits. The hyperbolic plane
is negatively curved and simply connected. Hence, compact subsets
have unique centers — the center of a bounded subset is the center
of a minimal covering disk. Since the group acts by isometries
(6.33), the compact subgroup fixes the center of any of its orbits.
Thus, any compact subgroup fixes a point of the hyperbolic plane.

By transitivity of the action (5.39), we find an element
that moves the fixed point to i. This element conjugates the compact

subgroup into Stabi. q.e.d.
Corollary 5.42. H? =SL,(R)/SO(2).
Definition 5.43. An element M € SLy(R) is called

e elliptic if |tr (M)| <2,

e parabolic if [tr(M)| =2, and

e hyperbolic if [tr (M)| > 2.

Observation 5.44. The characteristic polynomial of
a b
( ) € SLy (R)
c d

1—2a zb

%8

=2~ (a+d)z+ 1.

zc 1—2ad

Hence the matriz M € SLy (R) has two conjugate complex eigenvalues if
it is elliptic. This is to say, M fizes a point in H2. 1In
particular, M 1is conjugate to a rotation. If M is hyperbolic, it
has two real eigenvalues whence it has two fized points on

0(H?) =P' (R). Finally, if M s parabolic, it has one fized point
on the boundary O (H?). q.e.d.
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5.2.2 A Fundamental Domain for SL, (Z)

Definition 5.45. Let G act on H? by isometries. A strong

fundamental domain for the action is a subset D C H? such that every

G-orbit has precisely one point in D.

a b
Observation 5.46. Let M = ( d) € SLy (R). Then we have:
c

C I d C
—ad + a4+ be

—cd+Ltc+de
—1+4+a

+c
aF1
_

e (a b)—dil

This computation shows that M takes the half circle of radius |%

centered at _Td to the half circle of the same radius centered at ¢.

Since M preserves the orientation, we see that

1
<—}: {ze]H2
c|
1
>—}:{Z€]H2
c|

a b
c d

—d
z — —
C

M{zelH2

and

—d
[ A—

M{zE]H2
c

Corollary 5.47. Fiz M = ( ) € SLy (R). The (M)-orbit of any

point intersects

—d 1 1
zeBl?| |z— —|>— or ‘z E‘>_
¢ |~ e cl ™ el
in at most one point.
Put
— 2 1 1
D:=4Jze€H*| |2/ >1 and —§§§R(z)§§




and

S:={M€eSLy(Z)| MDND #0}.

a b
We shall first determine Y. Let M = (

) € SLy (Z). 1If there
c d

are two points z,y € D with
Mz =y
then (5.47) implies c€ {-1,0,1}.

c=0: Since Det (M) =1, we have a =d = +1. It follows that M
either acts as the identity or as a translation. Now
be{-1,0,1} follows, and we obtain

vt 0) =) =G )

It is obvious that all these matrices belong to X.

c=41: There are only three half circles of radius 1::15 centered

at integer points that intersect D mnon-trivially. Thus (5.47)
implies a,d € {—1,0,1}. Once we pick a and d the last entry b is
determined by Det (M) =1. Thus, we have the following

candidates:

10 -1 0 1 -2 ~1 -2
+ , £ , * , * ;
11 1 -1 1 -1 1 1
+1 -1 0 —1 0 -1
+ .+ .+ .
1 0 1 +1 1 0

By inspection, one establishes that the following matrices

actually belong to X:

10 -1 0 +1 -1 0 —1 0 —1
+ ,+ + L+ + .
11 1 -1 1 0 1 +1 1 0

5.10



Hence we have

10 11 1 -1 10
+ , £ , £ , £ ,
v 01 01 0 1 11
a -1 0 +1 -1 0 —1 0 —1
+ ,E ,E , £
1 -1 1 0 1 +£1 1 0
Exercise 5.48. Show that, for any M € Sl,(Z),
MDnD
does not contain a non-empty open subset of HZ.

Let us define a subset D of D by excluding the right boundary and
the open right half of the bottom boundary. Thus D is given by the

following picture:

o "

Lemma 5.49. H?=SL,(Z)D.

Proof. We claim that the following algorithm eventually moves every
z € H? into D. Put 2z := 2z and define two sequences of points by the

following rules:
e Let
Zii=zi+n

where n € Z is chosen such that

—% <R(Z) <

N =
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e Put

for |2]| <1

U

il =
2 otherwise.

Note that 2, € SLy(Z)z; and 2,1, € SLy(Z)z,. Hence it suffices to
prove that, eventually, z; € D.

First observe that

implies
|2i11] > 2|2

since [R(z)| < 3. Thus, we have S (z]) = S(z) > 5 for ¢ large enough.
for such an i, let 2, =z +1iy and assume |z}| < 1. We claim 2, € D.

This is apparent from the following picture:

which is valid by (5.37). q.e.d.

Our discussion so far can be summarized as follows:

Proposition 5.50. The collection of closed subsets MD where
M € SLy (Z) forms an SLy(Z)-invariant tiling of H? with ideal

triangles. q.e.d.

From this, we can derive a good deal of information about SL,(Z).
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Theorem 5.51. The group SL,(Z) has only finitely many conjugacy

classes of finite subgroups.

Proof. Let F < SL,(7Z) be finite. Then there is a point z € H? such
that

Fz =z
Chose M € SLy(Z) such that Mz € D. Then
MFM™' C¥X.
But X is finite. q.e.d.

Exercise 5.52. Let (G be a residually finite group that has only
finitely many conjugacy classes of finite subgroups. Show that G is

virtually torsion free.
Corollary 5.53. Sl (Z) is wvirtually torsion free.
Theorem 5.54. The group SL,(Z) is finitely presented.

Proof. Let U be a contractible open neighborhood of D contained the
union of all tiling triangles that intersect D. Then (A.10)
applies. q.e.d.

We also note

Proposition 5.56. Show that D is a strong fundamental domain for
SL2 (Z) n ]H2 .

Proof. By (5.49), half of the claim is already proved. Thus we only
have to show that no two points in D are in the same SL,(Z)-orbit.

This is done by inspection of the elements in X. q.e.d.
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