
Chapter 1

Coxeter Groups and Artin Groups

1.1 Artin Groups

Let M be a Coxeter matrix with index set S. The Artin group

defined by M is given by the presentation:

AM :=

〈
s ∈ S sts · · ·︸ ︷︷ ︸

ms,t factors

= tst · · ·︸ ︷︷ ︸
ms,t factors

〉
.

The Coxeter matrix M defines a Coxeter group WM at the same time.

The canonical homomorphism

AM → WM

is surjective. An Artin group is said to be of finite type if the

associated Coxeter group is finite.

Remark 1.1.1. Sometimes a group G is called of finite type or of

type F if it has a finite Eilenberg-Maclane complex. Therefore the

statement

Artin groups of finite type are of finite type.

is actually meaningfull. It happens to be true.
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1.1.1 The Braid Group

!!! This whole section needs PICTURES !!!

Configuration Spaces as Hyperplane Arrangements

The labeled configuration space of n points in the plane is

C̃n := {(z1, . . . , zn) ∈ Cn zi 6= zj for i 6= j} .

An element in this space is a set of n points in the plane that are

labeled so that we can tell them apart. The symmetric group Permn

on n letters acts on these configurations by permuting the labels.

Hence the quotient

Cn := Permn

∖
C̃n

is the configuration space of n-point subsets in the plane.

Definition 1.1.2. The braid group Bn is the fundamental group of Cn.

The pure braid group Pn is the fundamental group of C̃n.

Observation 1.1.3. The projection

π : C̃n → Cn

is a covering map with Permn acting as its group of deck

transformations. Consequently, we have a short exact sequence

P ↪→ Bn →→ Permn

of groups. In particular, the pure braid group is a finite index

normal subgroup of the braid group.

Out first goal is to prove that configuration spaces are

Eilenberg-Maclane spaces for braid groups. Later, we will find

smaller Eilenberg-Maclane spaces.
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Theorem 1.1.4 (Fadell-Neuwirth 1962 [?, Corollary 2.2]). The space

C̃n is a K (Pn, 1). Consequently, Cn is a K (Bn, 1).

We will follow the proof in [?].

For any finite set P ⊂ C of punctures, put

C̃P,n := {(z1, . . . , zn) zi 6∈ P and zi 6= zj for i 6= j} .

This is the configuration space of n labeled points in a plane with

m := |P | punctures. Note that up to homeomorphism, the position of

the punctures does not matter since all m-punctures planes are

homeomorphic.

Fact 1.1.5. The map

π : C̃P,n → C− P

(z1, . . . , zn) 7→ z1

is a fibre bundle whose fibre over z ∈ C− P is C̃P∪{z},n−1.

This fact allows us to \freeze" the points of the configuration one

by one: Since fibre bundles are fibrations, we have a long exact

sequence of homotopy groups

· · · → πm

(
C̃P∪{z},n−1

)
→ πm

(
C̃P,n

)
→ πm (C− P ) → πm−1

(
C̃P∪{z},n−1

)
→ · · ·

which proves

πm

(
C̃P∪{z},n−1

)
= πm

(
C̃P,n

)
for m ≥ 2

since C− P has trivial homotopy groups in dimension 2 and above.

Applying this observation repeatedly, we conclude that for m ≥ 2:

0 = πm

(
C̃{z1,...,zn},0

)
= πm

(
C̃{z1,...,zn−1},1

)
= · · · = πm

(
C̃{z1},n−1

)
= πm

(
C̃∅,n

)
.

This proves (1.1.4) as C̃∅,n = C̃n.
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Shrinking the Eilenberg-Maclane Space

The space of all configuration deformation retract onto the subspace

C̃0
n of all those configuration whose center of gravity is 0. Note

that the symmetric group Permn acts on V = {(t1, . . . , tn)
∑

i ti = 0} ≤ Rn

by permuting the coordinates. This is, in fact, the geometric

representation of Permn as a finite reflection group. Decomposing

the n-tuples in C̃0
n into real and imaginary parts, we obtain

C̃0
n = V × V −

⋃
H∈H

H ×H

where H is the set of walls defining S as a finite reflection group

on V .

Let X be the Moussong comlpex associated to Permn.

Recall that this is a convex polyhedrong in V given as the convex

hull of a point chosen in a sector such that it has distance 1
2
to

all walls bounding its sector. Shrinking configurations if

necessary by rescaling them using a real scalar yields a deformation

retraction of C̃0
n onto

Yn := X ×X −
⋃

H∈H
H ×H.

Note that Yn is an Eilenberg-Maclane space for the pure braid group.

Let us define a poset

An := {(c, v) c cell in X, v vertex in c}

where the order is given by

(c, v) ¹ (d, w) if and only if c ≤ d and v = πc(w) .

We will prove
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Lemma 1.1.6. There is a cover Yn =
⋃

α∈An
Uα by convex open sets

indexed by the element of An such that for any subset σ ⊂ An,

Uσ :=
⋂
α∈σ

Uα 6= ∅ if and only if σ is a chain in An.

Corollary 1.1.7. The geometric realization of A is an

Eilenberg-Maclane space for the pure braid group.

Proof. For any closed cell c in the Moussong complex, let Hc denote

the set of walls cutting through c. Note that removing these walls

chops up the Moussong comlex into convex open subsets. The set of

these subsets is in 1-1-correspondence to the vertices of C: Each

vertex of c pick the convex open set C(c,v) that contains v.

On the other hand, let Dc be the open star of the

barycenter of c in the barycentric subdivision of X. Then Dc is,

again, a convex open subset of X. Finally, put

U(c,v) := Dc × C(c,v).

This is a cover of X by convex open sets.

!!! finish this !!! q.e.d.

Corollary 1.1.8. The geometric realization |An| is an

Eilenberg-Maclane space for the pure braid group Bn.

Remark 1.1.9. All of this is Permn-equivariant. Thus

Permn

∖|An|

is an Eilenberg-Maclane space for the braid group.

As a consequence, we can actually work out a presentation for the

braid group Bn. Let us consider the case of B3 first. Here, the

underlying Coxeter group is the symmetric group on 3 letters with
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standard genrating set given by two transpositions. Our

Eilenberg-Maclane complex has precisely one 2-cell, which is a

hexagon, two edges, and one vertex. The tricky part is to figure

out, how the 2-cell is attached.

!!! ... !!!

It turns out, that we get the following presentation of

the braid group Bn:

Bn =

〈
s1, . . . , sn

sisjsi = sjsisj for |i− j| ≥ 2

sisj = sjsi for |i− j| = 1

〉
.

Exercise 1.1.10. Show that the H3

(
Permn

∖|A4|) is non-trivial. Infer

that B4 does not have an Eilenberg-Maclane complex of dimension ≤ 2.

Exercise 1.1.11. Prove that B3 = 〈a, b, c ab = bc = ca〉 .

Exercise 1.1.12. More generally, prove that

Bn =

〈
x[i,j] (i 6= j)

x[i,j]x[j,k] = x[j,k]x[k,i] if [i, j, k]

x[i,j]x[k,l] = x[k,l]x[i,j] if [i, j, k, l]

〉

where we put a cyclic ordering on {1, 2, . . . , n} and [a, b, . . .] denotes the

fact that the listed elements form a cycle in their given order. In

particular, the generators are indexed by cycles of length 2.

Exercise 1.1.13. Prove that B3 = 〈a, b, c, s ab = bc = ca = s〉 . Moreover,

show that the Cayley 2-complex (i.e., the universal cover of the

canonical 2-complex associated to this presentation) admits a CAT(0)

metric. (This implies that the presentation 2-complex for this

presentation is an Eilenberg-Maclane space for B3.)

Exercise 1.1.14. Decide whether the presentation 2-complex for the

presentation

B3 = 〈a, b, c ab = bc = ca〉
is an Eilenberg-Maclane complex for B3.
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CAT(0)-Structures

1.1.2 General Artin Groups

Fact 1.1.15 (van Lek). Let M be a Coxeter matrix over S, and let

J ⊆ S be a set of generators with restricted Coxeter matrx MJ. Then

the canonical homorphism

AMJ
→ AM

is injective. The image is the subgroup generated by J.

Fact 1.1.16. The space

X ×X −
⋃
H

H ×H

is homotopy equivalent to the poset

AM := {(c, v) c cell in X, v vertex in c}

where the order is given by

(c, v) ¹ (d, w) if and only if c ≤ d and v = πc(w) .

The fundamental group of these spaces is the pure Artin group.

This space is conjectured to be an Eilenberg-Maclane space.

Fact 1.1.17 (Charney-Davis). The poset AM is an Eilenberg-Maclane

space for the pure Artin group PM, provided any two Artin generators

generate a finite subgroup, i.e., the Coxeter matrix M is

2-spherical. One obtains an Eilenberg-Maclane space for the

corresponding Artin group AM by modding out the group action of

WM ]. In particular, Artin groups of finite type have a finite

Eilenberg-Maclane complex.
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1.1.3 Artin Groups of Finite Type

Fact 1.1.18 (Brieskorn-Saito). Artin groups of finite type have

solvable word and conjugacy problem.

Fact 1.1.19 (Charney). Artin groups of finite type are biautomatic.

Fact 1.1.20 (Bestvina). Artin groups of finite type have the look

and feel of CAT(0)-groups: Let A be an Artin group of finite type.

Then the following hold:

1. The group A contains only finitely many conjugacy classes of

finite subgroups.

2. Every solvable subgroup of A is finitely generated and

virtually abelian.

3. The set of translation lengths is bounded away from 0. (Note

that Artin groups of finite type have a finite Eilenberg-Maclane

complex by (1.1.17) and are, therefore, torsion free.)

Fact 1.1.21 (Squier). An Artin group of finite type over the

generating set S is a duality group of dimension |S|.

Fact 1.1.22 (Krammer, Cohen-Wales). Arting groups of finite type are

linear.

1.1.4 Right-Angled Artin Groups and the Example of

M. Bestvina and N. Brady

Right-angled Artin groups are also known as graph groups since the

data determining the presentation can most easyly be visualized as a

graph: To any graph Γ with vertex set V, we associate the group

GΓ := 〈v ∈ V vw = wv if there is an edge v −− w in Γ〉 .
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Note that there is a canonical homomorphism

ϕ : GΓ → Z

v 7→ 1

whose kernel will be denoted by KΓ.

In this section, we also identify Γ with its associated

flag complex, i.e., the simplicial complex that shares the vertices

with Γ and whose simplices are cliques in Γ: A set of vertices

forms a simplex if the vertices are pairwise connected by edges.

Theorem 1.1.23 (Bestvina-Brady [?]). If Γ is a finite flag complex

then the following hold:

1. KΓ is of type Fm if and only if Γ is (m− 1)-connected.

2. KΓ is of type FPm if and only if Γ is (m− 1)-acyclic.

This section is devoted to a proof of this result. Note that the

theorem allows one to construct groups with prescribed finiteness

properties. In particular, we could take Γ to be 1-acyclic but not

simply connected and infer:

Corollary 1.1.24. There is a group of type FP2 that is not finitely

presented. q.e.d.

First, we construct an Eilenberg-Maclane space for GΓ.

Let TV a product of a family of circles S1
v indexed by the vertices

in V. We assume that all these circles have a basepoint so that we

can regard them as subspaces in TV. For any subset σ of V we regard

the torus Tσ =
J

v∈σ S1
v as a subtorus of TV. We put

QΓ :=
⋃

σ simplex

Tσ
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and let

XΓ := Q̃Γ

denote its universal cover.

Observation 1.1.25. The complex QΓ has precisely one vertex P, and

the link of this vertex is

Lk (P ) = S(Γ) =
⋃

σ simplex

Sσ ⊂ RV

where Sσ denotes the unit sphere in Rσ ⊆ RV. The cuibical structure

on QΓ induces the triangulation on S(L) given by

Sσ =
A
v∈σ

S{v}.

Note that XΓ is a piecewise Euclidean cube complex and all its

vertex links are isomorphic to S(Γ).

Exercise 1.1.26. Show that S(Γ) is a flag complex.

Corollary 1.1.27. XΓ is CAT(0) and, therefore, contractible. q.e.d.

The canonical homomorphism ϕ has a topological

representative

h : Q → S1

that is piecewise linear and restricts to the degree 1 map on each

S1
v. It lifts to a piecewise linear map

h : X → R

which is affine on each cube in X.

Definition 1.1.28. A combinatorial Morse function on a piecewise

Euclidean complex is a real valued function h that is affine on
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closed cells, non-constant on edges, and has a discrete set of

critical values, i.e., the image of the 0-skeleton is discrete in R.

The descending (ascending) link of a vertex v is that part

of its link spanned by those cells for which v is a maximum

(minimum) for h.

The s-level set is the h-preimage of the real number s.

The s-sublevel set is the preimage of (−∞, s]. For any closed

interval I, we call its h-preimage the I-slice.

Lemma 1.1.29. Let r < s be two real numbers such that there are no

critical values in [r, s]. Then the r-sublevel and s-sublevel sets are

homotopy equivalent. Similarly, any two slices whose difference

does not contain vertices are homotopy equivalent.

Proof. Observe that the level set cut through the polyhedral cells

of the complex. Thereby, the upper level set creates a free face in

each cell. You can collapse the top-dimensional material in the

affected cells away. This defines a deformation retraction. Now

induct on lower dimensional material. q.e.d.

!!! Finish this !!!
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