
Chapter 1

Coxeter Groups and Artin Groups

1.1 Euclidean Reflection Groups

Let

• E be a Euclidean space, and let

• H be a set of hyperplanes satisfying the following:

1. H is locally finite, i.e., a set of hyperplanes such that

any compact subset of E intersects only finitely many

hyperplanes from H.

2. H is a W-invariant subset of E where W is the subgroup of

Isom(E) generated by all reflections ρH with H ∈ H.

Definition 1.1.1. Such a group W is called a Euclidean reflection

group.

Exercise 1.1.2. Assume that H is finite. Show that
⋂

H∈H H 6= ∅. See

(1.1.16) for a more elaborate statement.

We want to derive a presentation for W.
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1.1.1 The Chamber Decomposition of E

A chamber is a complementary component of H, i.e., a component of

E−⋃
H∈H H. Note that the closure of a chamber C is a convex

polytope (possibly non-compact). The faces of this polytope span

hyperplanes that belong to H. We say that those hyperplanes from H
are supporting C. For any chamber C, we denote by

• |C| the set of hyperplanes in H supporting C.

Two chambers, C and D, are called adjacent along H if

H ∩ C = H ∩D is a CoDim-1-face. In this case, we write

C|HD.

They are called adjacent if they are adjacent along some H. In

this case, we write

C|D.

Note that adjaciency and adjaciency along H are symmetric and

reflexive relations.

A gallery is a sequence

C0|C1| · · · |Cr

of chambers such that Ci is adjacent to Ci+1 for all i < r. If

Ci|HCi+1, we say that the gallery crosses H at this step.

The last index r gives the length of the gallery, which

henceforth is the number of hyperplanes that are crossed by the

gallery. The distance

• δ (C,D) of the chambers C and D is the minimum length of a

gallery connecting them. Note that two chambers are adjacent if

and only if their distance is at most 1.
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Exercise 1.1.3. Show that C and D are H-adjacent if and only if H

supports both and {C, ρHC} = {D, ρHD}.

Observation 1.1.4. Any two chambers are connected by a gallery of

finite length. q.e.d.

Exercise 1.1.5. Prove that a gallery from C to D has minimum length

if and only if it does not cross any hyperplane twice. Moreover,

the set of hyperplanes that are crossed by a minimum length gallery

from C to D is precisely the set of those H ∈ H that separate C

from D. In particular, this set is the same for all those minimum

length galleries.

Note that W acts on the set C of chambers by distance

preserving permutations.

Observation 1.1.6. If the hyperplane H supports the chamber C, then

ρHC|HC.

Let us fix an arbitrary chamber

• C∗, the fundamental chamber. Put

• S := {ρH H ∈ |C∗|}.

Lemma 1.1.7. W acts transitively on C and is generated by S.

Proof. Let

C∗ = C0|C1| · · · |Cr−1|Cr

be any gallery starting at C∗. We will show that there are elements

wi ∈ 〈S〉 with Ci = wiC
∗. This is an easy induction: Suppose wi has

been found already. Let H be the hyperplane with Ci|HCi+1. Then

w−1
i H is a hyperplane in H that supports C∗. Thus

ρH = wisw
−1
i for some s ∈ S
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and

Ci+1 = ρHCi = ρHwiC
∗ = wisw

−1
i wiC

∗ = wisC
∗.

This way, we constructed an element wi+1 = wis ∈ 〈S〉.
Since every chamber can be connected to C∗ by a gallery,

the subgroup 〈S〉 already acts transitively on C.
Consider H ∈ H. Let C = wC∗ (where w ∈ 〈S〉) be a chamber

supported by H. As we already have observered, there is an element

s ∈ S such that

ρH = wsw−1 ∈ 〈S〉 .
Thus the generating set for W is contained in 〈S〉. q.e.d.

Lemma 1.1.8. Let s = s1s2 · · · sr be a word representing w ∈ W. If this

word is a minimum length representative for w, then its length r

equals δ (C∗, wC∗). Otherwise, one can obtain a shorter word

representing w by deleting two of the letters, i.e., there are two

indices i < j such that

w = s1 · · · si−1si+1 · · · sj−1sj+1 · · · sL.

Proof. Put

• wi := s1 · · · si,

• Ci := wiC
∗, and let

• Hi be the hyperplane satisfying si = ρHi
.

We claim that the corresponding gallery

C∗ = C0|w0H1C1|w1H2 · · ·Cr−2|wr−2Hr−1Cr−1|wr−1Hr

does not cross any hyperplane twice provided that s1 · · · sr is a

minimum word length representative for w. Then the claim follows

from (1.1.5).
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So let us suppose that

wi−1Hi = wj−1Hj

for some i < j. We conclude

wi−1siw
−1
i−1 = wj−1sjw

−1
j−1

whence

s1 · · · si−1sisi−1 · · · s1 = s1 · · · sj−1sjsj−1 · · · s1.

Thus,

1 = si · · · sj−1sjsj−1 · · · si+1.

Multiplying from the right, we obtain

si+1 · · · sj−1 = si · · · sj

which implies that we have a shorter word for w:

w = s1 · · · si−1si+1 · · · sj−1sj+1 · · · sL

This is a contradiction. q.e.d.

Corollary 1.1.9. The action of W on C is simply transitive. q.e.d.

This corollary allows us to draw the Cayley graph of W with respect

to S. Since all generators have order 2, we simplify matters by

ommiting all the bi-gons that would arise that way. Thus, we define

the reduced Caley graph

Γ := ΓS(W )

of W to have a vertex for each group element and an edge (labelled

by s) for each unordered pair {w, ws}. Note that W acts from the

left.
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Observation 1.1.10. Pick a point inside the fundamental chamber.

The W-orbit of this point can be identified with the vertex set of

Γ. The edges of Γ correspond to CoDim-1-faces in the chamber

decomposition of E. In fact, we can connect the vertices by edges

perpendicular to those faces. This way, the Cayley graph is

W-equivariantly embedded in E.

Example 1.1.11. Here are the planar reflection groups whose

fundamental chambers are triangles:
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1.1.2 The Coxeter Matrix

The Coxeter Matrix of the pair (W,S) is the S × S-matrix

M := (ms,t := ordW (st))s,t∈S .

The entries are taken from {1, 2, 3, . . . ,∞}. Note that M is symmetric

and satisfies:

ms,t = 1 if and only if s = t. (1.1)

Theorem 1.1.12. The group W has the presentation

W = 〈s ∈ S (st)ms,t = 1 for ms,t < ∞〉 .

Proof. The given relations obviously hold. To deduce any given

other relation, realize the relation as a closed loop in the Cayley

graph. This graph lies in the ambient Euclidean space. Find a

bounding disk that intersects the CoDim-2-skeleton of the chamber

decomposition transversally. Now see the van Kampen

diagram. q.e.d.
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For each s let us be the unit vector perpendicular to the

hyperplane inducing the reflection s. (There is a choice here: we

use the vector that points away from the fundamental chamber.)

Exercise 1.1.13. Show that for any s, t ∈ S,

〈us,ut〉 =




− cos

(
π

ms,t

)
for ms,t finite

−1 for ms,t infinite.

Now, we can settle the question, whether S is finite.

Proposition 1.1.14. The fundamental chamber has finite support.

Proof. Suppose otherwise. Then the set of unit vectors us had an

accumulation point by compactness of the unit sphere. However,

their pair-wise scalar products are negative. q.e.d.

Corollary 1.1.15. The set H decomposes into fintely many parallelity

classes.

Proof. Suppose otherwise, then, by compactness, there would be

hyperplanes that span arbitrary small angles. Take a point very

close to their intersection that lies in a chamber. Since the

angles around faces of chambers are bounded away from 0, we have a

contradiction. q.e.d.

Exercise 1.1.16. Show that the following are equivalent:

1. H is finite.

2. W is finite.

3. W is torsion.

4.
⋂

H∈H H 6= ∅.
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Corollary 1.1.17. A Euclidean reflection group W is virtually free

abelian.

Proof. Consider the action of W upon the sphere at infinity. By

(1.1.15), this sphere is decomposed into finitely many regions, upon

which W acts by spherical isometries. The image of W in Isom(S) is

a finite Euclidean reflecion group by (1.1.16). The kernel of the

homomorphism consists of translations. q.e.d.

1.1.3 The Cocompact Case

In this section, we assume that the fundamental chamber has compact

closure. All the result are valid in the general case, though. In

deed, we will prove them for arbitrary Coxeter groups later.

Observation 1.1.18. Every point of E is either contained in a

chamber or belongs to the closures of at least two adjacent

chambers. In the latter case, it has a translate in the closure of

C∗. Thus, the closure of the fundamental chamber is a fundamental

domain for the action of W, i.e., the translates of the closure

cover E while the translates of C∗ stay disjoint.

Theorem 1.1.19. W has only finitely many finite subgroups up to

conjugacy.

Proof. A finite subgroup fixes a point. This point is a translate

of some point in C∗. Thus any finite subgroup is conjugate to a

subgroup of a stabilizer of a point in C∗. There are only finitely

many of those since C∗ has only finitely many faces. q.e.d.

Theorem 1.1.20. The conjugacy problem in W is solvable.

Proof. !!! Do the CAT(0) proof !!! q.e.d.
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1.2 Coxeter Groups

Definition 1.2.1. Let S be a set. A Coxeter matrix over S is a

symmetric matrix M = (ms,t)s,t∈S with entries ms,t in {1, 2, 3, . . . ,∞} such

that

ms,t = 1 if and only if s = t.

The Coxeter group defined by M is the group given by the

presentation

W = 〈s ∈ S (st)ms,t = 1 if ms,t finite〉 .
The pair (W,S) is called a Coxeter system.

Example 1.2.2. Every Euclidean reflection group is a Coxeter group.

Coxeter groups are defined by generators and relations. In general,

it is hard to tell wheter a group given in this manner is trivial or

not. So our first problem will be to see that Coxeter groups are

not trivial.

Observation 1.2.3. Every defining relation of W has even length.

Thus, there is a well defined surjective homomorphism

W → C2

sending each generator in S to the generator of C2. In particular,

none of the generators is trivial in W. q.e.d.

Thus, every generator generates a subgroup of order 2 inside W.

1.2.1 The Geometric Representation

To show that the generators have order 2, we used a representation

of W. Now, we shall extend this method to show that the products st

also have the orders that we would expect from the presentation.
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Definition 1.2.4. Let (W,S) be a Coxeter system with Coxeter matrix

M. Let V :=
⊕

s∈S Res be the real vector space generated by S: To

avoid confusion, we denote the basis vector corresponding to s by es.

Define a bilinear form on V by

〈es, et〉M :=




− cos

(
π

ms,t

)
if ms,t < ∞

−1 if ms,t = ∞
and define an action of W on V where the generator s acts as the

linear automorphism

ρs : et 7→ et − 2 〈es, et〉M es.

This action defines the geometric representation

ρ : W → Aut(V ) .

Exercise 1.2.5. Check that the geometric representation does exist,

i.e., check that the automorphisms ρs satisfy the defining relations

of W.

Lemma 1.2.6. The order of st in M is given by the entry ms,t of the

Coxeter matrix.

Proof. Note that the action of the subgroup 〈s, t〉 leaves the subspace

Vs,t := 〈es, et〉 invariant.

ms,t = ∞: The action hits et as follows:

et
ρs−→ et + 2es

ρt−→ 3et + 2es
ρs−→ 3et + 4es

ρt−→ 5et + 4es
ρs−→ · · ·

Thus, the product ρtρs has infinite order.

ms,t < ∞: In this case, the bilinear form 〈−,−〉M restricts to a

positive definite bilinear form on Vs,t, and a direct computation

shows that the product ρtρs is a rotation about of order

ms,t. q.e.d.
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Corollary 1.2.7. Thus, the generators s and t span a copy of the

dihedral group Dms,t inside W. q.e.d.

Exercise 1.2.8. Show that W is finite if the bilinear form 〈−,−〉M
is positive definite.

Exercise 1.2.9. Show that if W is finite, then there is a unique

bilinear form 〈−,−〉 on V characterized by the following properites

1. 〈−,−〉 is positive definite.

2. All basis vectors es have unit length.

3. The action of W preserves 〈−,−〉.

Moreover, this bilinear form is 〈−,−〉M.

Corollary 1.2.10. Finite Euclidean reflection groups and finite

Coxeter groups are the very same thing.

Remark 1.2.11. The classification of finite Coxeter groups is done

by classifying all Coxeter matrices that are positive definite.

Exercise 1.2.12. A Coxeter system is called irreducible if there is

no generator that commutes simultaneously with all the others.

Classify all irreducible Coxeter systems over three generators whose

Coxeter groups are finite. (Hint: You should recover descriptions

of the Platonic solids along the way; in fact, the existence of the

Platonic solids can be derived from this classification.)

1.2.2 The Geometry of a Coxeter System

We studied Euclidean reflection groups by means of the assiciated

Chamber system upon which the group acts. To study general Coxeter
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groups, we will construct the geometry from the group. So, we will

construct a chamber system from the (reduced) Cayley complex ΓS(W )

for the Coxeter presentation. The vertices of the Cayley complex

are the chambers, and two chambers are s-adjacent if they are joined

by an edge with labes s. Of course an edge path in the Cayley

complex is a gallery in the chamber system. We will see that this

chamber system allows reflections and half spaces.

Definition 1.2.13. Two edges e and e′ in ΓS(W ) are opposite if they

are contained in a relator disc and have maximal distance in this

circle. We write e ←→ e′. The edges e and e′ are parallel if e = e′

or if there is a finite sequence

e = e0 ←→ e1 ←→ e2 ←→ · · · ←→ er = e′.

We write e ‖ e′.

Parallelity is an equivalence relation. Its equivalence

classes are called walls.

It is useful to extend the notion of parallelism to

oriented edges. Let us consider opposite edges first. Inside a

relator disc, an oriented edge induces an orientation of the

boundary circle of the disc. We call two oriented edges of a

relator disc opposite, if they induce opposite orientations of the

boundary circle and their underlying geometric edges are opposite.

As above, parallelism is defined as the transitive closure of

opposition. Equivalence classes of oriented edges under parallelism

are called oriented walls
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Observation 1.2.14. Let −→e 0 and −→e 1 are opposite oriented edges in a

relator cell. Then removing these two edges cuts the boundary

circle of the relator disc into two arcs; and the arc from ι(−→e 0) to

ι(−→e 1) reads the same word as the arc from τ(−→e 0) to τ(−→e 1). (Here, we

use that relator discs are not \crushed".)

By induction, it follows that if −→e and −→e ′ are parallel,

then there is a group element w ∈ W such that

ι(−→e ) = ι(−→e ′) w and τ(−→e ) = τ(−→e ′) w.

Note that we are multiplying from the right, which in general will

tear edges apart.

Observation 1.2.15. Let us observe a \local converse": Each relator

disc is in its own right the Cayley graph of a finite dihedral

group. Let −→e and −→e ′ be two oriented edges in this cell. If there

is a group element w in the dihedral group such that

ι(−→e ) = ι(−→e ′) w and τ(−→e ) = τ(−→e ′) w

then −→e and −→e ′ are either opposite or identical.

Corollary 1.2.16. An (oriented) wall either avoids a relator cell or

intersects it in a pair of opposite (oriented) edges. q.e.d.
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Proof. Let −→e be an oriented edge in a relator cell. We have to

show that the only parallel edge in this cell is the opposite one.

So let −→e ′ be any other parallel edge in this relator cell. We know

that there is an element w ∈ W such that

ι(−→e ) = ι(−→e ′) w and τ(−→e ) = τ(−→e ′) w.

Since both edges belong to the relator cell, the element w actually

belongs to the dihedral subgroup generated by the two labels around

the relator cell. Now, it follows from the local converse that −→e
and −→e ′ are opposite or identical. q.e.d.

The same reasoning actually yields:

Corollary 1.2.17. Let e be an edge and let −→e and ←−e denote the two

corresponding oriented edges. Then −→e and ←−e are not parallel.

In particular, every wall can be oriented in precisely two

ways. q.e.d.

Let h be a wall. The boundary ∂(h) of h is the set of vertices

(chambers) that are incident with at least one edge in h { recall

that a wall is an equivalence class of edges.

Example 1.2.18. Here is the Cayley graph for the group〈
b,g, r b2 = g2 = r2 = (br)3 = (bg)2 = 1

〉
. drawn in the hyperbolic plane.

Oberserve how the axes for the reflections intersect groups of two

or four edges perpendicularly. These are precisely the walls. The

shaded regions are the relator discs.
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Let h be a wall and let g be an edge path (a gallery).

Let

• hits (h,g) denote the number of times that the edge path g passes

through the wall h.

Definition 1.2.19. An elementary homotopy of an edge path in the

Cayley graph of a Coxeter group is one of the following two types of

moves:

1. Replacing a subpath reading part of a relator disc by the

complementary part of the relation.

2. Adding or removing a backtracking edge.

Two paths in the Cayley graph are called homotopic if one can be

obtained from the other by a finite sequence of elementary homotopy.
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Observation 1.2.20. Since elementary homotopies correspond to

substitutions in words waranted by the defining relations, two

galleries are homotopic if and only if they connect the same end

points.

Observation 1.2.21. Given a wall and a path, the number of crossings

between the wall and the gallery changes by an even number during

any elementary homotopy of the gallery. This follows from (1.2.16)

Thus for a given wall h and two galleries g0 and g1, we have

hits (h,g0) ≡ hits (h,g1) mod 2.

In particular, the endpoints of an edge inside h cannot be connected

by a gallery that does not cross h.

Corollary 1.2.22. Every wall separates Γ.

Observation 1.2.23. If −→e and −→e ′ are parallel their terminal

vertices can be joined by a path that does not intersect the wall

they belong to. This follows by induction from the corresponding

statement about opposite oriented edges, which is obvious.

Corollary 1.2.24. Each wall separates the Cayley graph into

precisely two half spaces.

Proof. We already know that walls separate. That there are not more

than two components follows from (1.2.23). q.e.d.

Lemma 1.2.25. Associated to each wall, there is a unique element in

W that acts like a reflection along the wall.

Proof. Let e be an edge in the wall. Then there is a unique element

in W that interchanged its endpoints. (This is, indeed, true for
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any edge: There is a unique group element taking the initial point

to the terminal point. But then, it has to swap the two points,

because the action of W preserves the labelling of edges by

generators.)

Now, just check that this swap condition extends to edges

that are opposite in a relator disc. q.e.d.

Corollary 1.2.26. Half spaces are convex, i.e., if two chambers lie

in a given half space, then so does every minimal chamber between

them. q.e.d.

Corollary 1.2.27. The gallery distance of two chambers is the number

of walls seperating them. q.e.d.

Definition 1.2.28. A morphism of graphs is a distance non-increasing

map from the vertices of graph to the vertices of another graph. A

folding of a graph is an idempotent graph endomorphism f : Γ → Γ such

that the preimage of each vertex v is either empty or contains

precisely two vertices (one of which is v). The image αf of a

folding is called a half space or a root. Two foldings f and f ′ are

opposite if their images are disjoint and the following hold:

f = f ◦ f ′

f ′ = f ′ ◦ f.

Any two opposite foldings f and f ′ induce a reflection

ρ : Γ → Γ

v 7→




f(v) if v ∈ αf ′

f(v) if v ∈ αf

Exercise 1.2.29. Show that a (locally finite) graph is the Cayley

graph of a (finitely generated) Coxeter group if and only if the

following conditions holds:
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1. For each oriented edge −→e there is a unique folding f−→e of Γ

satisfying f−→e (ι(−→e )) = τ(−→e ) .

2. If −→e and ←−e are opposite orientations of the same underlying

geometric edge, then f−→e and f←−e are opposite foldings.

Above, we introduced the geometric representation of W on

the vector space V spanned by {es s ∈ S} . Let V ∗ be the dual of V .

It turns out that the induced action of W on V ∗,

τ : W → Aut(V ∗)

w : λ 7→ λ ◦ ρw,

gives another description of the chamber system: For any s, define

the posite and negative halfspace in V ∗ by

U+
s := {λ ∈ V ∗ λ(es) > 0}

U−
s := {λ ∈ V ∗ λ(es) < 0} .

The Tits cone

C := {λ ∈ V ∗ λ(es) > 0 for all s ∈ S}

is the intersection of the positive cones.

Exercise 1.2.30. Show that for every w ∈ W,

τw(C) ⊆ U+
s if and only if |sw| = |w|+ 1

and

τw(C) ⊆ U−
s if and only if |sw| = |w| − 1.

Exercise 1.2.31. Infer from (1.2.30) that the geometric

representation is faithful.

Corollary 1.2.32. Finitely generated Coxeter groups are

linear. q.e.d.
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1.2.3 The Deletion Condition

In (1.1.8), we have seen, that the pair (W,S) for a Euclidean

reflection group satisfies the Deletion Condition:

Definition 1.2.33 (Deletion Condition). Let (W,S) be a pair where W

is a group and S is a generating set for W consisting entirely of

elements of order 2. We say that this pair satisfies the Deletion

Contition if:

For any non-reduced word s1 · · · sr over S there are two

indices i and j such that

s1 · · · sr =W s1 · · · ŝi · · · ŝj · · · sr.

The carets indicate ommision.

This is, one can delete two letters from any non-minimum-length word

to obtain a shorter representative for the same element of W.

In this section, we will recognize (W,S) as a Coxeter system using

the Deletion Condition.

Lemma and Definition 1.2.34 (Exchange Condition). The pair (W,S)

satifies the Exchange Condition, i.e.:

Let s1 · · · sr and and t1 · · · tr be two reduced words over S

representing the same element w ∈ W. If s1 6= t1, then there

is an index i ∈ {2, . . . , r} such that

w =W s1t1 · · · t̂i · · · tr.

Proof. This is a formal consequence of the Deletion Condition: From

s1 · · · sr =W t1 · · · tr,

20



we obtain

s2 · · · sr =W s1t1 · · · tr
where the right hand is longer than the left hand whence there must

be a pair of letters that can be dropped without changing the value

of the product. However, one of the two letters must be the leading

s1: Otherwise, we had

s2 · · · sr =W s1t1 · · · t̂i · · · t̂i · · · tr

whence

s1 · · · sr =W t1 · · · t̂i · · · t̂i · · · tr
contradicting the minimality of the initial words.

Thus, we have

s2 · · · sr =W t1 · · · t̂i · · · · · · tr

whence

s1 · · · sr =W s1t1 · · · t̂i · · · · · · tr. q.e.d.

The Coxeter Matrix of the pair (W,S) is the S × S-matrix

M := (ms,t := ordW (st))s,t∈S .

The entries are taken from {1, 2, 3, . . . ,∞}. Note that M is symmetric

and satisfies:

ms,t = 1 if and only if s = t. (1.2)

Any symmetric matrix satisfying (1.2) is called a Coxeter matrix.

An elementary M-reduction is one of the following moves:

1. Delete a subword ss.

2. Replace a subword sts · · ·︸ ︷︷ ︸
ms,t letters

by tst · · ·︸ ︷︷ ︸
ms,t letters

.
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Theorem 1.2.35 (Tits). Let s = s1 · · · s|s| be a reduced word over S.

Then s can be obtained from any word t = t1 · · · t|t| by a sequence of

elementary M-reductions.

Proof. This is also a purely formal consequence of the Deletion

Condition. Let us first prove the theorem under the additional

hypothesis that t is reduced, as well. In this case, |s| = |t| and
only moves of type (2) are possible. We induct on the length of the

words.

Assume first that s1 = t1. Then s2 · · · s|s| and t2 · · · t|s| are two

reduced words representing the same group element. By induction, we

can pass from one to the other by elementary M-reductions.

So assume s1 6= t1. So we can apply the exchange condition

both ways and obtain

s1 · · · s|s| =W s1t1 · · · ŷi · · · t|s|
t1 · · · t|s| =W t1s1 · · · x̂i · · · s|s|

Note that both equations actually can be realized by M-reduction

since the words start with identical letters. Thus, we only have to

realize an M-reduction to pass from s1t1 · · · ŷi · · · t|s| to t1s1 · · · x̂i · · · s|s|.
If ms,t = 1, we are done. Otherwise we apply the exchange condition

again:

!!! ... !!! (Finish this)

Now let us drop the assumption that t is reduced. It

suffices to prove that t can be shortened by M-reductions. We

induct on the length of t. If t2 · · · t|t| is not reduced, we apply the

induction hypothesis to this subword.

So we assume that t2 · · · t|t| is reduced. Then we find

t1 · · · t|t| =W t2 · · · t̂i · · · t|t|
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whence t2 · · · t|t| can be transformed into t1t2 · · · t̂it|t| by M-reductions.

(Both of these words are reduced, so we are in the case that we have

discussed already.) Now, we can shorten:

t1 · · · t|t|
M−→ t1t1t2 · · · t̂it|t|

M−→ t2 · · · t̂it|t|.

The final step is an operation of type (1). q.e.d.

Corollary 1.2.36. The pair (W,S) is a Coxeter system.

Proof. A relation is a word that evaluates to 1 in W. Therefore,

any relation can be transformed into the empty word by

M-reductions. However, these correspond to the relations of the

Coxeter presentation. q.e.d.

1.2.4 The Moussong Complex

The goal in this section is to describe a piecewise Euclidean CAT(0)

complex upon which the Coxeter group W acts cocompactly, properly,

and discontinuously. We can find such a complex, provided the

generating set S of reflections is finite. The existence of such a

complex settles a lot of questions at once:

Corollary 1.2.37. For every finitely generated Coxeter group the

following hold:

1. W has solvable conjugacy problem.

2. W has only fintely many conjugacy classes of finite subgroups.

The construction start with the Cayley graph. For any

subset J ⊆ S, we define J-residues to be the components of the

Cayley graph after all edges whose labels are not in J have been

removed. So we restrict ourselves to edges with labels in J and
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look at the connected components of the resulting graph. By

(1.2.10), every finite Coxeter group WJ is a Euclidean reflection

group acting on some Euclidean space E. The reflections are induced

by finitely many hyperplanes that all pass through a common point.

The hyperplanes chop up E into chambers. In one of these chambers

find a point that has distance 1
2
from all the walls. The orbit of

this points spans a convex polyhedron PJ all of whose edges have

length 1. Indeed, the 1-skeleton of this convex polyhedron is a

Cayley graph for the finite Coxeter group WJ. The following

exercise justifies all these claims.

Exercise 1.2.38. For any subset J ⊆ S, let MJ be the submatrix of M

whose rows and columns have indices in J, and let (WJ , J) be the

Coxeter system defined by MJ. Prove:

1. The inclusion J ↪→ S induces an injective group homomorphism

WJ → W that identifies the group WJ with the subgroup of W

generated by J ⊆ S.

2. in view of the preceeding result, we regard WJ as a subgroup of

W. These subgroups are called special parabolic subgroups.

Prove that

WJ∩I = WJ ∩WI

for any two subsets J, I ⊆ S.

3. The J-residues in ΓW are in bijective correspondence to the

left cosets of WJ.

4. Every J-residue is isomorphic to the Cayley graph of WJ with

respect to the generating set J.

Example 1.2.39. Here is the polyhedron for〈
b,g, r b2 = g2 = r2 = (bg)3 = (br)3 = (gr)2 = 1

〉
, which is the symmetric

group on four letters:
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Note how the faces correspond to cosets of special parabolic

subgroups.

The Moussong complex X for the Coxeter system (W,S) is

defined by the following procedure:

• Start with with the Cayley graph, and declare all edges to be of

length 1. Observe that the edges with label s correspond

precisely to the {s}-residues.

• Construct the 2-skeleton by glueing in polygons P{s,t} for any

pair {s, t} of generators that generate a finite subgroup. More

precisely, if the {s, t}-residues are finite then P{s,t} is a

polygon whose boundary is isomorphic to these residues. The

isomorphism induces attaching maps that we use to glue in one

copy of P{s,t} for each residue.

• The 3-skeleton is defined similarly. For every J ⊆ S of size

three, we glue in copies of PJ if the J-residues are finite.

Note that the boundary sphere of PJ consists of polygons that
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are isomorphic to the cells PI for strict subsets I ⊂ J. Thus,

we find the boundary spheres of our 3-cells in the 2-skeleton

that has been constructed already.

• Proceed on higher skeleta until every finite residue is

geometrically realized.

Observation 1.2.40. The Moussong complex carries a natural piecewise

Euclidean structure: all its cells are convex polyhedra in

Euclidean space, and all attaching maps identify lower dimensional

cells isometrically with faces of higher dimensional cells.

Observation 1.2.41. The 1-skeleton of X is the Cayley graph. The

2-skeleton is the Cayley complex of the Coxeter presentation for W:

The 2-cells in X are precisely the cells whose boundaries read valid

relations in W. It follows that X is simply connected.

Corollary 1.2.42. To prove X to be CAT(0) it suffices to show that

vertex links in X are CAT(1) since X is piecewise Euclidean and

simply connected.

Example 1.2.43. Here is a (distorted picture of) the Moussong

complex for the group

〈
b,g, r b2 = g2 = r2 = (br)3 = (bg)2 = 1

〉
.

26



The grey shaded area consists of hexagons and squares that are glued

in. All these polygons are regular Euclidean polygons.

Observation 1.2.44. Since W acts transitively on the set of

vertices, all vertex links are isometric.

Theorem 1.2.45. The vertex link L of X is CAT(1).

Proof. We give an explicit description of the link as a piecewise

spherical complex: The vertex set of L is S. For every subset

J ⊆ S that generates a finite subgroup in W, we glue in a spherical

simplex whose edge lengths are

d(s, t) = π − π

ms,t

.

We have to show that the resulting complex is metrically

flag, i.e., if we find a subset J ⊆ S such that all elements are

joined by an edge (equivalently, ms,t is finite), then this subset

should generate a finite subgroup if the edge lengths can be

realized by a spherical simplex.
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So suppose {us s ∈ J} is a collection of unit vectors whose

distances realize the edge lengths. Then

〈us,ut〉 = cos

(
π − π

ms,t

)
= − cos

(
π

ms,t

)

which is precisely the coefficient in the bilinear form 〈−,−〉MJ
,

which therefore is positive definite. By (1.2.8), this implies that

WJ is finite as required. q.e.d.
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