
Exercise 1.2.6. Prove that a CAT(1) piecewise spherical simplicial

complex is metrically flag.

1.3 Group Actions

Definition 1.3.1. Let X be a metric space, and let λ : X → X be an

isometry. The displacement function of λ is the map

Dλ : x 7→ d(x, λ(x)) .

The displacement of λ is

D(λ) := inf
x∈X

D(x) .

The min-set of λ is the set

Min(λ) := {x ∈ X D(x) = D(λ)} .

The isometry is parabolic if its min-set is empty. It is

semi-simple otherwise. A semi-simple isometry is called elliptic if

its displacement is 0 and hyperbolic otherwise.

Observation 1.3.2. Let X be CAT(0). Then the min-set of any

semi-simple isometry is a closed, convex, and complete subspace.

Observation 1.3.3. Let X be CAT(0), let λ be a semi-simple isometry

of X, and let X ′ be a closed, convex, complete, and λ-invariant

subspace. Then

DX(λ) = DX′(λ)

since the nearest-point projection to X ′ is λ-equivariant and

distance non-increasing.
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Proposition 1.3.4. Let X be a complete CAT(0) metric space and let λ

be a hyperbolic isometry. Then the min-set of λ is a disjoint union

of bi-infinite geodesics each of which is fixed by λ set-wise.

Indeed, λ acts on each of these axes as a translation of amplitude

D(λ).

Proof. Let x be in the min-set of λ. The axis through x is the

union of the geodesic segments
[
λk−1x, λkx

]
. To see that this is a

geodesic, assume that at one of the break points the angle was not

π. The midpoints of the adjacent edges would have distance strictly

less than D(λ). q.e.d.

Corollary 1.3.5. For any semi-simple isometry λ, we have

D
(
λk

)
= kD(λ) . q.e.d.

1.3.1 Proper Actions

Definition 1.3.6. Let G act by isometries on the metric space X.

For any subset Y ⊂ X, we define the big stabilizer to be

StabG(S) := {g ∈ G gY ∩ Y 6= ∅} .

The action is said to be proper if every compact subset C ⊆ X has a

finite big stabilizer.

The action is properly proper if for every point x ∈ X

there is an r > 0 such that the closed ball B̄r(x) has a finite big

stabilzer.

Exercise 1.3.7. Show that every properly proper action is proper,

and that every proper action on a proper metric space is properly

proper.

Theorem 1.3.8. Let G act properly properly by isometries on the

metric space X. Then the following hold:
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1. For every point x ∈ X there is an ε > 0 such that

StabG

(
B̄ε(x)

)
= StabG(x) .

2. The action is discontinuous, i.e., the distance between orbits

induce a metric (and not just a pseudo-metric) on the quotient

space.

3. If G acts freely, then the projection X → G\X is a covering

projection and a local isometry.

Proof. The first clain is easy and the other two follow. q.e.d.

1.3.2 Proper Cocompact Actions

Exercise 1.3.9. Let G act properly and cocompactly on the length

space X. Show that X is complete and locally compact.

By the Hopf-Rinow theorem (1.1.7), we infer:

Corollary 1.3.10. A length space that admits a cocompact proper

action is a proper metric space. q.e.d.

Proposition 1.3.11. Let G act properly and cocompactly by isometries

on the proper metric space X. Then the following hold:

1. There are only finitely many conjugacy classes of point

stabilizers.

2. Every element g ∈ G acts by a semi-simple isometry.

Proof. For both arguments, we fix a compact subset C ⊆ X whose

G-translates cover X.
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(1) Choose a finite cover of C by finitely many balls B̄1, . . . , B̄r

whose big stabilizers are all finite. Then for every x ∈ X there is

an element g ∈ G such that gx ∈ B̄i for some i. Thus

g−1 Stab(x) g ⊆ Stab
(
B̄i

) ⊆
⋃
i

Stab
(
B̄i

)
.

However the right hand is finite. Note that we only used strict

properness of the action and could do away with properness of the

space.

(2) Let (xi) be a sequence of points in X such that Dg(xi) → D(g) as

i →∞. Choose elements gi such that yi := gixi ∈ C.

Observe that

Dgigg−1yi = d
(
g−1

i yi, gg−1
i y

)
= d(xi, gxi) → D(g) .

Thus there is an ε such that the expression

d
(
x, gigg−1

i x
)

is bounded for all i and all x ∈ C by 2 diam(C) + D(g) + ε. Thus there

is a closed ball such that all gigg−1
i are in its big stabilizer.

Therefore, the sequence gigg−1
i traverses only finitely many different

group elements. Passing through several subsequences, we may assume

that gigg−1
i is constant and that yi converges to some point y ∈ C.

But then gigg−1
i is semi-hyperbolic with y in its min-set. Thus g is

semi-hyperbolic with g−1
i y in its min-set. q.e.d.

Definition 1.3.12. The translation distance of a group element g ∈ G

with respect to a given action on the metric space X is the limit

τ(g) := lim
k→∞

d
(
x, gkx

)

k
.
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Exercise 1.3.13. Show that translation distances exits and is

independend of the choice of x ∈ X.

Exercise 1.3.14. Let λ by a semi-simple isometry of a CAT(0) space

X. Show that τ(λ) = D(λ) .

Definition 1.3.15. Let G = 〈Σ〉 be a finitely generated group. For

every element g ∈ G, the translation length (with respect to Σ) is

defined as

τ(g) := lim
k→∞

∣∣gk
∣∣

k
.

Exercise 1.3.16. Show that the translation length of a group element

is well defined, i.e. the limit exists and is independent of the

generating set Σ.

Corollary 1.3.17. If G acts isometrically, cocompactly, and properly

on a proper CAT(0) space, then the following hold:

1. The finite subgroups of G are precisely the subgroups of G that

have a global fixed point in X. In particular:

(a) The group G has only finitely many conjugacy classes of

finite subgroups (1.3.11(1)).

(b) An element of G has finite order if and only if it acts by

an elliptic isometry.

2. The group G does not contain a Baumslag-Solitar group
〈
a, b baqb−1 = ap

〉

where q 6= p.

3. The set of translation distances is discrete.

4. There is a strictly positive lower bound ε > 0 on the

translation length of non-torsion elements of G.

Proof.

10



(1) Since the action is proper, every point stabilizer is finite.

It remains to prove that every finite subgroup has a global fixed

point.

For any compact subset C ⊆ X let B̄C denote the smallest

closed ball that contains C. (It follows from X being CAT(0) that

this ball exists and is unique.) Let xC be the center of B̄C. Note

that since B̄C is defined entirely in metric terms, we have

B̄gC = gB̄C

and

xgC = gxC

for any group element g ∈ G.

Let F ≤ G be a finite subgroup. Let C be the orbit of

some point y ∈ X. Note that C is F-invariant. By the preceeding

considerations, the point xC is F-invariant, too.

(2) As a matter of fact, Baumslag-Solitar groups are torsion free.

Thus, if G contained a copy, the elements inside the subgroup would

be hyperbolic. Since aq and ap are conjugate, they have the same

displacement. On the other hand, their displacements have the ratio
q
p
. It follows that the displacement of a is 0 which is a

contradiction.

(3) Suppose we had a sequence gi of group elements whit different

translation distances that converge to a limit L. Passing to a

sequence of conjugates (which have the same translation lengths), we

find a sequence of points xi ∈ C such that xi is in the min-set of gi.

The contradiction is assumed at any accumulation point x ∈ C as hit

by the different gi: The ball of radius L + 3ε is not moved off
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itself by any gi where τ(gi) = D(gi) is ε-close to L and xi is ε-close

to x.

(4) Observe that for any point x ∈ X, we have

d(x, g1 · · · grx) ≤ d(x, g1 · · · gr−1x) + d(g1 · · · gr−1x, g1 · · · grx)

= d(x, g1 · · · gr−1x) + d(x, grx)

≤
r∑

i=1

d(x, gix)

≤ r max
i∈{1,...,r}

d(x, gix) .

Thus, fixing a generating set, we can find a constant C such that

for any element g ∈ G,
d
(
x, gkx

)

k
≤ C

∣∣gk
∣∣

k
.

Passing to the limit, we find

τ(g) ≥ τ(g)

C
≥ ε

for some ε > 0 that exists by (3). q.e.d.

1.3.3 Abelian and Solvable Subgroups

Exercise 1.3.18. Let G be virtually Zn, and let H be a subgroup of

G that is isomorphic to Zn. Show that H has finite index in G.

(Hint: Consider a finite index Zn inside G and the action of H on

G/Zn.)

Exercise 1.3.19. Let G be finitely generated. Show that G is

virtually abelian provided the commutator subgroup [G,G] is finite.

(Hint: Let H be the centralizer of [G,G] in G and show that the

center of H has finite index in H and that H has finite index in

G.)
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