Math 758 – Your Favorite Groups (homework 1, due Feb 5)

Exercise 1.1. Prove that a gallery from C to D has minimum length if and only if it does not cross any hyperplane twice. Moreover, the set of hyperplanes that are crossed by a minimum length gallery from C to D is precisely the set of those $H \in \mathcal{H}$ that separate C from D. In particular, this set is the same for all those minimum length galleries.

Exercise 1.2. Show that for any $s, t \in S$,

$$\langle \mathbf{u}_s, \mathbf{u}_t \rangle = \begin{cases} -\cos\left(\frac{\pi}{m_{s,t}}\right) & \text{for } m_{s,t} \text{ finite} \\ -1 & \text{for } m_{s,t} \text{ infinite.} \end{cases}$$

Exercise 1.3. Show that the following are equivalent:

- 1. \mathcal{H} is finite.
- 2. W is finite.
- 3. W is torsion.
- 4. $\bigcap_{H \in \mathcal{H}} H \neq \emptyset$.

Definition. Let $G = \langle x_1, \ldots, x_r \rangle$ be a group generated by a given finite generating set $\Sigma = \{x_1, \ldots, x_r\}$.

The <u>word problem</u> for the pair (G, Σ) is the following:

Is there an algorithm that takes as input any word w over $\Sigma \cup \Sigma^{-1}$ and prints "yes" if the word w evaluates in G to 1 and prints "no" otherwise?

If there is such an algorithm, the pair (G, Σ) is said to have <u>solvable word problem</u>. The conjugacy problem for the pair (G, Σ) is the following:

Is there an algorithm that takes as input any pair (w, u) of words over $\Sigma \cup \Sigma^{-1}$ and prints "yes" if the two word evaluate to conjugate elements of G and prints "no" otherwise.

If there is such an algorithm, the pair (G, Σ) is said to have <u>solvable conjugacy</u> problem.

Exercise 1.4. Let Σ and Ξ be two finite generating sets for G. Show that the pair (G, Σ) has a solvable word problem (conjugacy problem) if and only if the pair (G, Σ) has a solvable word problem (conjugacy problem). As the parentheses indicate, there is a proof that works for both problems.

Exercise 1.5. Let $H \hookrightarrow G \longrightarrow F$ be a short exact sequence of groups where F is finite and H is finitely generated and has solvable word problem. Show that G is finitely generated and has solvable word problem.

Exercise 1.6. Let H be a subgroup of finite index in the finitely generated G. Then H is finitely generated, too. Show that H has solvable word problem if and only if G has solvable word problem.

Each problem is worth 5 points, but you can earn at most 20 points with this assignment.

Late homework will not be accepted.