
Chapter 1

Out(Fn) and Aut(Fn)

1.1 Topological Representatives for

Automorphisms

Definition 1.1.1. Let X be a topological space with base point P.

A self-homotopy equivalence is a base point preserving map f : X → X

such that there is a base point preserving homotopy inverse, i.e., a

base point preserving map h : X → X such that

f ◦ h ∼ idX rel P

and

h ◦ f ∼ idX rel P.

The mapping class group of (X,P ) is the group

M(X, P ) := {[f ]P f : X → X is a homotopy equivalence rel. P} .

This is the group of self-homotopy equivalences modulo homotopy

relative to the base point.

Observation 1.1.2. The mappging class group is a group. q.e.d.
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Observation 1.1.3. The map

ν : M(X,P ) → Aut(π1(X, P ))

[f ] 7→ α[f ] : [γ] 7→ [f ◦ γ]

is a group homomorphism.

If X is the rose Rn on n pedals, this homomorphism has an

inverse given as follows: An automorphism of π1(Rn, P ) assigns to

each pedal a loop in Rn. We can think of this loop as a map from

its pedal to Rn. Since the base point is preserved, we can paste

the maps on that we obtained for the individual pedals together.

This way, we defined a map Rn → Rn. q.e.d.

Corollary 1.1.4. Aut(Fn) = M(Rn, P ). q.e.d.

1.1.1 Stallings Folds

Let Γ and ∆ be two graphs. A fold is a map

f−→e ,−→e ′ : Γ → ∆

that identifies two oriented edges −→e and −→e ′ that have the same

initial vertex. A fold is called singular if the two edges also

share their terminal vertices, it is called non-singular otherwise.

Observation 1.1.5. A non-singular fold is a homotopy equivalence. A

singular fold induces a non-injective map in homotopy. Its kernel

is the normal subgroup generated by the loop −→e op(−→e ′). q.e.d.

Observation 1.1.6. Let ϕ : Γ → ∆ be a graph morphism. If ϕ is not

locally injective, then there is a vertex v from which two edges −→e
and −→e ′ issue that are identified by the map ϕ. Thus, ϕ factors

through the fold f−→e ,−→e ′:

ϕ = ϕ′f−→e ,−→e ′ . q.e.d.
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Proposition 1.1.7 (Stallings). Let Γ be a finite graph and let

ϕ : Γ → ∆ be a graph morphism. Then there is a finite sequence of

folds

Γ = Γ0
f1−→ Γ1

f2−→ Γ2
f3−→ · · · fr−→ Γr

and a graph morphism

ψ : Γr → ∆

such that

ϕ = ψ ◦ fr ◦ fr−1 ◦ · · · ◦ f1

and such that ψ is locally injective.

Proof. Since every fold decreases the number of edges, every

sequence of folds must terminate. So you try to write ϕ = ϕ1f1. If

this succeds, you try the same on ϕ1. Continue until you do not

find a way of factoring through a fold. We have observed in (1.1.6)

that in this case the map is locally injective. q.e.d.

Let α : Fn → Fn be an automorphism. We realize α as a

graph morphism: Subdivide Rn such that pedal li has as many segments

as needed to write the word representing α(xi). Call the subdivided

rose Rn. These words then define a map

ϕ : Rn → Rn.

Let us factor out a maximal sequence of folds:

ϕ = ψ ◦ fr ◦ fr−1 ◦ · · · ◦ f1

such that ψ is locally injective. By (1.1.5), all the folds are

non-singular, for otherwise we would not induce an isomorphism of

fundamental groups.
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Observation 1.1.8. A locally injective map takes non-backtraking

paths to non-backtracking paths. Thus, since ϕ is onto in π1, the

map ψ : Γr → Rn is an isomorphism of graphs: Look at the vertex in

Rn and consider which paths in Γr give rise to the simple loops

based at the vertex. It is immediate that for each such simple loop

in Rn there has to be a corresponding loop in Γr based at its base

point. Then, however, local injectivity rules out the existence of

any other edges. q.e.d.

Corollary 1.1.9. Any assignment xi 7→ wi of words to generators

determines a homomorphism Fn → Fn. This homomorphism is an

automorphism if and only if the topological representative, realized

as a graph morphism ϕ : Rn → Rn, decomposes as

ϕ = ψ ◦ fr ◦ fr−1 ◦ · · · ◦ f1

such that all folds are non-singular and ψ : Γn → Rn is an

isomorphism of graphs. This criterion can be checked

algorithmically. q.e.d.

Corollary 1.1.10. Every generating set of Fn that consists of

precisely n elements is a free generating set.

Proof. We only needed surjectivity to argue that ψ is an isomorphism

of graphs. Since a non-singular fold will ensure non-surjectivity

(check this in homology, if you consider it non-obvious), we infer

from surjectivity alone that all folds are non-singular and the

final locally injective graphmorphism is an isomorphism. Thus,

every surjection Fn →→ Fn is an isomorphism. Compare also Grushko's

Theorem (??), which is also proved using Stallings folds. q.e.d.

Example 1.1.11. Let us consider F3 = 〈b,g, r〉.

4



1. The assignment

b 7→ b

g 7→ brgr−1

r 7→ rgr−1

has the following topological representative and crucial stages

in the folding sequence:

The non-singular fold at the end detects a failure of

injectivity. The final picture also indicates a failure of

surjectivity. Indeed, we can read off that the image of the

homomorphism is the subgroup generated by b and rgr−1.

2. The assignment

b 7→ gb

g 7→ rgb

r 7→ g−1bg

yields:
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and we see that surjectivity fails.

3. The assignment

b 7→ bbrb−1g

g 7→ brb−1g

r 7→ brb−1

has the following topological representative and crucial stages

in the folding sequence:

In this case, we actually have an automorphism.
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1.2 A Generating Set for Aut(Fn)

Theorem 1.2.1 (Nielsen). The following automorphisms of Fn generate

Aut(Fn):

1. Transposition of two free generators.

2. Inversion of a free generators.

3. The autmorphisms αi,j defined as follows:

xk 7→




xk if k 6= i

xixj if k = i.

1.2.1 Proof of Nielsen's Theorem

The idea is to use Stallings folds. So let ϕ : Rn → Rn be a graph

morphism representing the automorphism α : Fn → Fn. We decompose

ϕ = ψ ◦ fr ◦ · · · ◦ f1

with ψ locally injective and f : Γi−1 → Γi a fold. We know that ψ is

actually an isomorphism of graphs. Thus this gives a permutation of

the genertators, some of which are possibly inverted. We will want

to recognize the folds as being related to the generators αi,j.

However, this is not straight forward since there is no canonical

identification of Fn with the fundamental groups of the intermediate

graphs Γi.

The way to fix this, is to consider spanning trees in

these graphs. Since permuting and inverting generators is covered

by the generating set, we will need a data structure that just keeps

track of an unodered set of free generators up to inversion (we

could call a two element subset {g, g−1} ⊂ Fn an unsigned element).

Definition 1.2.2. So let Γ together with
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1. a labeling, i.e., a graph morphism ρ : Γ → Rn (one should think

of this as an assignment of free generators or their inverses to

the oriented edges such that swapping the orientation of an edge

corresponds to inverting the generator),

2. a base vertex v0,

3. and a spanning tree T.

We will associate to this the following set of unsigned elements in

Fn: For each edge e not in T, there is a reduced cyclic edge path,

unique up to orientation, starting at v0 traveling along a geodesic

in T going through e and heading back to v0 within T. Collect all

these elements. Let S(Γ, ρ, v0, T ) denote this set.

We have to study how this set changes with respect to the following

transformations:

1. Change of the spanning tree.

2. Folding the graph.

Let us do change of spanning trees first. To simplify matters, we

will want to change spanning trees only a little bit, say replacing

one edge at a time.

Definition 1.2.3. Let Γ be a graph. The complex of forests is the

simplicial complex F(Γ) whose vertices are the non-loop edges in Γ

and whose simplices are the sub-forests in Γ. Note that all maximal

simplices in F(Γ) have the same dimension. Such complexes are

called chamber complexes|the chambers are the maximal simplices. In

the case of F(Γ) the chambers are precisely the spanning trees.

Two chambers are called adjacent if they share a

codimension-1 face. A gallery is a sequence of chambers such that

neighboring terms in the sequence are adjacent chambers.
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Lemma 1.2.4. F(Γ) is gallery connected, i.e., any two chambers are

joined by a gallery.

Proof. Let T and T ′ two spanning trees, and let e be an edge of T ′

that does not occur in T. Adding this edge to T will create a

circle. So we are to remove an edge from this circle. Note that

any edge will do. At least one of the edges alon this circle does

not belong to T ′ since this tree does not contain circles. So we can

exchange an edge that is in T but not in T ′ by the edge e that is in

T ′ but not in T and form a new spanning tree. However, this tree

differs from T ′ in fewer places. So, we keep doing this until we

have removed all differences (which are only finite in

number). q.e.d. q.e.d.

Proposition 1.2.5. Let T and T ′ be two adjacent spanning trees in

the labelled and basepointed graph Γ. Then ST := S(Γ, ρ, v0, T ) and

ST ′ := S(Γ, ρ, v0, T
′) are related as follows:

There is an element g ∈ ST ∩ ST ′, and for every other element

h ∈ ST ′ there is an element h′ ∈ ST such that one of the

following holds:

h = h′

h = h′g

h = h′g−1

h = gh′

h = g−1h′

Note that we can realize a transition of this type as a product of

Nielsen generators.

Proof. !!! PICTURE !!! q.e.d.
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The very same picture also yields our first result about how folds

change the generating set:

Proposition 1.2.6. Let f : Γ → ∆ be a fold compatible with the

labeling ρ that identifies an edge in the spanning tree T with a

loop. Then ∆ has a spanning tree T ′ induced by T and a labeling τ

induced by the labeling ρ. and SΓ := S(Γ, ρ, v0, T ) is related to

S∆ := S(∆, τ, v0, T
′) in the same way as described in (1.2.5).

Proof. !!! PICTURE !!! q.e.d.

Observation 1.2.7. A fold of two edges in the spanning tree does not

affect S(Γ, ρ, v0, T ). q.e.d.

We put everything together. If a fold identifies two

edges none of which is a loop, then we can change the spanning tree

to contain both of these edges. The change of the spanning tree is

taken care of by (1.2.5). If one of the edges is a loop, we can at

least put the other edge in the spanning tree (it cannot be a loop

itself, since we do not have singular folds). Afterwards, we are

done by (1.2.6). Therefore, along our chain of folds, we can use

Nielsen generators to realize each fold.

1.2.2 The Homotopytype of the Complex of Forests

Theorem 1.2.8. Let Γ be a finite graph with m + 2 vertices. Then the

complex F(Γ) is homotopy equivalent to a wedge of m-spheres.

Proof. Induct on the number of edges. Starting point is the case of

a bridge edge which serves as a cone point. The Induction step is

that removing a non-bride gives you a complex of the same type with

fewer edges which is m-spherical by induction. Now, the relative
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link of the vertex corresponding to the removed edge is a the forest

complex for the graph obtained by collapsing this edge. This is

(m− 1)-spherical. q.e.d.

Exercise 1.2.9. Find a recursive way to compute the number of

spanning trees in a graph Γ.

1.3 Outer Space
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