Chapter 1

Coxeter Groups and Artin Groups

1.1 Euclidean Reflection Groups
Let
e £ be a Euclidean space, and let
e H be a set of hyperplanes satisfying the following:

1. H is locally finite, i.e., a set of hyperplanes such that

any compact subset of £ intersects only finitely many

hyperplanes from H.

2. H is a W-invariant subset of [E where W is the subgroup of
Isom(E) generated by all reflections py with H € H.

Definition 1.1.1. Such a group W is called a Euclidean reflection

group.

Exercise 1.1.2. Assume that H is finite. Show that [\, H # 0. See

(1.1.16) for a more elaborate statement.

We want to derive a presentation for W.



1.1.1 The Chamber Decomposition of IE

A chamber is a complementary component of H, i.e., a component of
E—Uyey H- Note that the closure of a chamber C is a convex
polytope (possibly non-compact). The faces of this polytope span
hyperplanes that belong to H. We say that those hyperplanes from #H
are supporting C. For any chamber (', we denote by

e |C| the set of hyperplanes in A supporting C.

Two chambers, C and D, are called adjacient along H if

HNC=HND is a CoDim-1-face. In this case, we write

CluD.

They are called adjacient if they are adjacient along some H.
In this case, we write

C|D.
Note that adjaciency and adjaciency along H are symmetric and

reflexive relations.

A gallery is a sequence
Co|01| . |CT

of chambers such that C; is adjacient to C;;; for all ¢ <r. If
C;|gCiy1, we say that the gallery crosses H at this step.

The last index r gives the length of the gallery, which
henceforth is the number of hyperplanes that are crossed by the

gallery. The distance

e 0(C,D) of the chambers C and D is the minimum length of a
gallery connecting them. Note that two chambers are adjacient

if and only if their distance is at most 1.



Exercise 1.1.3. Show that C' and D are H-adjacient if and only if H
supports both and {C,pyC} = {D,pyD}.

Observation 1.1.4. Any two chambers are connected by a gallery of

finite length. q.e.d.

Exercise 1.1.5. Prove that a gallery from C to D has minimum length
if and only if it does not cross any hyperplane twice. Moreover,
the set of hyperplanes that are crossed by a minimum length gallery
from C' to D is precisely the set of those H € H that separate C
from D. In particular, this set is the same for all those minimum

length galleries.

Note that W acts on the set C of chambers by distance

preserving permutations.

Observation 1.1.6. If the hyperplane H supports the chamber C, then

Let us fix an arbitrary chamber

e (*, the fundamental chamber. Put

o = {pu|Hel|C"]}.
Lemma 1.1.7. W acts transitively on C and is generated by S.

Proof. Let
c* ::CXACH|~-|C)_HCL

be any gallery starting at C*. We will show that there are elements
w; € (S) with C; = w;C*. This is an easy induction: Suppose w; has
been found already. Let H be the hyperplane with C;|gC;y1. Then
w;'H is a hyperplane in # that supports C*. Thus

pH-::wisu)Z-_'1 for some s€ S
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and

* —1 * *
Ci-l—l = ,OHCZ = pH’U)ZC = W;SW; ’U)ZC = ’UJZ'SC .

This way, we constructed an element w;;; = w;s € (S).

Since every chamber can be connected to C* by a gallery,
the subgroup (S) already acts transitively on C.

Consider H € H. Let C =wC* (where w € (S)) be a chamber
supported by H. As we already have observered, there is an element
s € S such that

prr = wsw ' € (S).

Thus the generating set for W is contained in (S). q.e.d.

Lemma 1.1.8. Let s= 51595, be a word representing we W. If this
word s a minimum length representative for w, then its length r
equals § (C*,wC*). Otherwise, one can obtain a shorter word
representing w by deleting two of the letters, <.e., there are two

indices 1 < j such that
W= 81+ 8i_18i41"**Sj_18j41" " SL.

Proof. Put

® Ww;=S51--5;,

o C;:=w;C*, and let

e H; be the hyperplane satisfying s; = pg,.
We claim that the corresponding gallery

C* = Coluwom, Cilwy iy * * * Cr—2|w,_y 11,y Cr 1w, _y 1,

does not cross any hyperplane twice provided that s;---s, is a
minimum word length representative for w. Then the claim follows
from (1.1.5).



So let us suppose that
wilei = wj,lHj
for some 7 < j. We conclude

-1 -1
W;—18;W;_1 = wj_lsjwj_l

whence

81 .. .Si_lsisi_l .. .81 fry 81 .. .Sj—lsjsj—]_ Y .81.

Thus,

1= 8;°8j-15j8j—1" " " Si+1.

Multiplying from the right, we obtain
iyl S8j_1 = 8i 8
which implies that we have a shorter word for w:
W= 81 8; 18i41° " Sj 18441 SL
This is a contradiction. q.e.d.

Corollary 1.1.9. The action of W on C is simply transitive. q.e.d.

This corollary allows us to draw the Cayley graph of W with respect
to S. Since all generators have order 2, we simplify matters by
ommiting all the bi-gons that would arise that way. Thus, we define

the reduced Caley graph

I':= Fs(W)

of W to have a vertex for each group element and an edge (labelled
by s) for each unordered pair {w,ws}. Note that W acts from the
left.



Observation 1.1.10. Pick a point instide the fundamental chamber.
The W-orbit of this point can be identified with the vertex set of
['. The edges of I' correspond to CoDim-1-faces in the chamber
decomposition of IE. In fact, we can connect the vertices by edges
perpendicular to those faces. This way, the Cayley graph s

W -equivariantly embedded in IE.

Example 1.1.11. Here are the planar reflection groups whose

fundamental chambers are triangles:
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1.1.2 The Coxeter Matrix
The Coxeter Matrix of the pair (W.,S) is the S x S-matrix

M := (msy := ordw (st)), 1cs -

The entries are taken from {1,2,3,...,00}. Note that M is symmetric

and satisfies:

ms; =1 if and only if s=1¢. (1.1)
Theorem 1.1.12. The group W has the presentation

W=(seS| (st)™" =1 for ms; < o0).

Proof. The given relations obviously hold. To deduce any given
other relation, realize the relation as a closed loop in the Cayley
graph. This graph lies in the ambient Euclidean space. Find a
bounding disk that intersects the CoDim-2-skeleton of the chamber
decomposition transversally. Now see the van Kampen

diagram. q.e.d.



For each s let u,; be the unit vector perpendicular to the
hyperplane inducing the reflection s. (There is a choice here: we

use the vector that points away from the fundamental chamber.)
Exercise 1.1.13. Show that for any s,t€ S,
_ ——cos(——;) for m,; finite
—1 for m,; infinite.
Now, we can settle the question, whether S is finite.

Proposition 1.1.14. The fundamental chamber has finite support.

Proof. Suppose otherwise. Then the set of unit vectors u, had an
accumulation point by compactness of the unit sphere. However,

their pair-wise scalar products are negative. q.e.d.

Corollary 1.1.15. The set H decomposes into fintely many parallelity

classes.

Proof. Suppose otherwise, then, by compactness, there would be
hyperplanes that span arbitrary small angles. Take a point very
close to their intersection that lies in a chamber. Since the
angles around faces of chambers are bounded away from 0, we have a

contradiction. gq.e.d.
Exercise 1.1.16. Show that the following are equivalent:

1. H is finite.

2. W is finite.

3. W is torsion.

N

e HAD.



Corollary 1.1.17. A4 Euclidean reflection group W <s wirtually free

abelian.

Proof. Consider the action of I upon the sphere at infinity. By
(1.1.15), this sphere is decomposed into finitely many regions, upon
which W acts by spherical isometries. The image of W in Isom(S) is
a finite Euclidean reflecion group by (1.1.16). The kernel of the

homomorphism consists of translations. q.e.d.

1.1.3 The Cocompact Case

In this section, we assume that the fundamental chamber has compact
closure. All the result are valid in the general case, though. In

deed, we will prove them for arbitrary Coxeter groups later.

Observation 1.1.18. Every point of IE is either contained in a
chamber or belongs to the closures of at least two adjacient
chambers. In the latter case, it has a translate in the closure of
C*. Thus, the closure of the fundamental chamber is a fundamental
domain for the action of W, i.e., the translates of the closure

cover E while the translates of C* stay disjoint.

Theorem 1.1.19. W has only finitely many finite subgroups up to

conjugacy.

Proof. A finite subgroup fixes a point. This point is a tramslate
of some point in C*. Thus any finite subgroup is conjugate to a
subgroup of a stabilizer of a point in C*. There are only finitely

many of those since C* has only finitely many faces. q.e.d.
Theorem 1.1.20. The conjugacy problem in W 4s solvable.

Proof. !!! Do the CAT(0) proof !!! q.e.d.



