
1.2 Coxeter Groups

Definition 1.2.1. Let S be a set. A Coxeter matrix over S is a

symmetric matrix M = (ms,t)s,t∈S with entries ms,t in {1, 2, 3, . . . ,∞} such

that

ms,t = 1 if and only if s = t.

The Coxeter group defined by M is the group given by the

presentation

W = 〈s ∈ S (st)ms,t = 1 if ms,t finite〉 .
The pair (W,S) is called a Coxeter system.

Example 1.2.2. Every Euclidean reflection group is a Coxeter group.

Coxeter groups are defined by generators and relations. In general,

it is hard to tell wheter a group given in this manner is trivial or

not. So our first problem will be to see that Coxeter groups are

not trivial.

Observation 1.2.3. Every defining relation of W has even length.

Thus, there is a well defined surjective homomorphism

W → C2

sending each generator in S to the generator of C2. In particular,

none of the generators is trivial in W. q.e.d.

Thus, every generator generates a subgroup of order 2 inside W.

1.2.1 The Geometric Representation

To show that the generators have order 2, we used a representation

of W. Now, we shall extend this method to show that the products st

also have the orders that we would expect from the presentation.
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Definition 1.2.4. Let (W,S) be a Coxeter system with Coxeter matrix

M. Let V :=
⊕

s∈S Res be the real vector space generated by S: To

avoid confusion, we denote the basis vector corresponding to s by es.

Define a bilinear form on V by

〈es, et〉M :=




− cos

(
π

ms,t

)
if ms,t < ∞

−1 if ms,t = ∞
and define an action of W on V where the generator s acts as the

linear automorphism

ρs : et 7→ et − 2 〈es, et〉M es.

This action defines the geometric representation

ρ : W → Aut(V ) .

Exercise 1.2.5. Check that the the geometric representation does

exist, i.e., check that the automorphisms ρs satisfy the defining

relations of W.

Lemma 1.2.6. The order of st in M is given by the entry ms,t of the

Coxeter matrix.

Proof. Note that the action of the subgroup 〈s, t〉 leaves the subspace

Vs,t := 〈es, et〉 invariant.

ms,t = ∞: The action hits et as follows:

et
ρs−→ et + 2es

ρt−→ 3et + 2es
ρs−→ 3et + 4es

ρt−→ 5et + 4es
ρs−→ · · ·

Thus, the product ρtρs has infinite order.

ms,t < ∞: In this case, the bilinear form 〈−,−〉M restricts to a

positive definite bilinear form on Vs,t, and a direct computation

shows that the product ρtρs is a rotation about of order

ms,t. q.e.d.
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Corollary 1.2.7. Thus, the generators s and t span a copy of the

dihedral group Dms,t inside W. q.e.d.

Exercise 1.2.8. Show that W is finite if the bilinear form 〈−,−〉M
is positive definite.

Exercise 1.2.9. Show that if W is finite, then there is a unique

bilinear form 〈−,−〉 on V characterized by the following properites

1. 〈−,−〉 is positive definite.

2. All besis vectors es have unit length.

3. The action of W preserves 〈−,−〉.

Moreover, this bilinear form is 〈−,−〉M.

Corollary 1.2.10. Finite Euclidean reflection groups and finite

Coxeter groups are the very same thing.

Remark 1.2.11. The classification of finite Coxeter groups is done

by classifying all Coxeter matrices that are positive definite.

Exercise 1.2.12. A Coxeter system is called irreducible, if there is

no generator that commutes simultaneously with all the others.

Classify all irreducible Coxeter systems over three generators whose

Coxeter groups are finite. (Hint: You should recover descriptions

of the Platonic solids along the way; in fact, the existence of the

Platonic solids can be derived from this classification.)

1.2.2 The Geometry of a Coxeter System

We studied Euclidean reflection groups by means of the assiciated

Chamber system upon which the group acts. To study general Coxeter
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groups, we will construct the geometry from the group. So, we will

construct a chamber system from the (reduced) Cayley complex ΓS(W )

for the Coxeter presentation. The vertices of the Cayley complex

are the chambers, and two chambers are s-adjacent if they are joined

by an edge with labes s. Of course an edge path in the Cayley

complex is a gallery in the chamber system. We will see that this

chamber system allows reflections and half spaces.

Definition 1.2.13. Two edges e and e′ in ΓS(W ) are opposite if they

are contained in a relator disc and have maximal distance in this

circle. We write e ←→ e′. The edges e and e′ are parallel if e = e′

or if there is a finite sequence

e = e0 ←→ e1 ←→ e2 ←→ · · · ←→ er = e′.

We write e ‖ e′.

Parallelity is an equivalence relation. Its equivalence

classes are called walls.

Lemma 1.2.14. If a wall intersects a relator disc, then the

intersection consists of precisely one pair of opposite edges.

Proof. Let e and e′ be edges inside the relator disc B that are

parallel. Then there is a chain of relator discs proving them

parallel.

!!! PICTURE !!!

q.e.d.

Definition 1.2.15. An elementary homotopy of an edge path in the

Cayley graph of a Coxeter group is the replacement of a subpath

reading part of a relator disc by the complementary part of the
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relation. Two paths in the Cayley graph are called homotopic if one

can be obtained from the other by a finite sequence of elementary

homotopy.

Observation 1.2.16. Two paths are homotopic if and only if they

connect the same end points.

Observation 1.2.17. Given a wall and a gallery, the number of

crossings between the wall and the gallery changes by an even number

during any elementary homotopy of the gallery. Thus, for any two

chambers and a wall, we have a well defined notion of separation.

Lemma 1.2.18. Each wall separates the Cayley graph into two half

spaces.

Lemma 1.2.19. Associated to each wall, there is a unique element in

W that acts like a reflection along the wall.

Lemma 1.2.20. Half spaces are convex, i.e., if two chambers lie in a

given half space, then so does every minimal chamber between them.

Lemma 1.2.21. The gallery distance of two chambers is the number of

walls seperating them.

Above, we introduced the geometric representation of W on

the vector space V spanned by {es s ∈ S} . Let V ∗ be the dual of V .

It turns out that the induced action of W on V ∗,

τ : W → Aut(V ∗)

w : λ 7→ λ ◦ ρw,

gives another description of the chamber system: For any s, define

the posite and negative halfspace in V ∗ by

U+
s := {λ ∈ V ∗ λ(es) > 0}

U−
s := {λ ∈ V ∗ λ(es) < 0} .
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The Tits cone

C := {λ ∈ V ∗ λ(es) > 0 for all s ∈ S}

is the intersection of the positive cones.

Exercise 1.2.22. Show that for every w ∈ W,

τw(C) ⊆ U+
s if and only if |sw| = |w|+ 1

and

τw(C) ⊆ U−
s if and only if |sw| = |w| − 1.

Exercise 1.2.23. Infer from (1.2.22) that the geometric

representation is faithful.

Corollary 1.2.24. Finitely generated Coxeter groups are

linear. q.e.d.

1.2.3 The Deletion Condition

In (1.1.8), we have seen, that the pair (W,S) for a Euclidean

reflection group satisfies the Deletion Condition:

Definition 1.2.25 (Deletion Condition). Let (W,S) be a pair where W

is a group and S is a generating set for W consisting entirely of

elements of order 2. We say that this pair satisfies the Deletion

Contition if:

For any non-reduced word s1 · · · sr over S there are two

indices i and j such that

s1 · · · sr =W s1 · · · ŝi · · · ŝj · · · sr.

The carets indicate ommision.
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This is, one can delete two letters from any non-minimum-length word

to obtain a shorter representative for the same element of W.

In this section, we will recognize (W,S) as a Coxeter system using

the Deletion Condition.

Lemma and Definition 1.2.26 (Exchange Condition). The pair (W,S)

satifies the Exchange Condition, i.e.:

Let s1 · · · sr and and t1 · · · tr be two reduced words over S

representing the same element w ∈ W. If s1 6= t1, then there

is an index i ∈ {2, . . . , r} such that

w =W s1t1 · · · t̂i · · · tr.

Proof. This is a formal consequence of the Deletion Condition: From

s1 · · · sr =W t1 · · · tr,

we obtain

s2 · · · sr =W s1t1 · · · tr
where the right hand is longer than the left hand whence there must

be a pair of letters that can be dropped without changing the value

of the product. However, one of the two letters must be the leading

s1: Otherwise, we had

s2 · · · sr =W s1t1 · · · t̂i · · · t̂i · · · tr

whence

s1 · · · sr =W t1 · · · t̂i · · · t̂i · · · tr
contradicting the minimality of the initial words.

Thus, we have

s2 · · · sr =W t1 · · · t̂i · · · · · · tr
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whence

s1 · · · sr =W s1t1 · · · t̂i · · · · · · tr. q.e.d.

The Coxeter Matrix of the pair (W,S) is the S × S-matrix

M := (ms,t := ordW (st))s,t∈S .

The entries are taken from {1, 2, 3, . . . ,∞}. Note that M is symmetric

and satisfies:

ms,t = 1 if and only if s = t. (1.2)

Any symmetric matrix satisfying (1.2) is called a Coxeter matrix.

An elementary M-reduction is one of the following moves:

1. Delete a subword ss.

2. Replace a subword sts · · ·︸ ︷︷ ︸
ms,t letters

by tst · · ·︸ ︷︷ ︸
ms,t letters

.

Theorem 1.2.27 (Tits). Let s = s1 · · · s|s| be a reduced word over S.

Then s can be obtained from any word t = t1 · · · t|t| by a sequence of

elementary M-reductions.

Proof. This is also a purely formal consequence of the Deletion

Condition. Let us first prove the theorem under the additional

hypothesis that t is reduced, as well. In this case, |s| = |t| and
only moves of type (2) are possible. We induct on the length of the

words.

Assume first that s1 = t1. Then s2 · · · s|s| and t2 · · · t|s| are two

reduced words representing the same group element. By induction, we

can pass from one to the other by elementary M-reductions.

So assume s1 6= t1. So we can apply the exchange condition

both ways and obtain

s1 · · · s|s| =W s1t1 · · · ŷi · · · t|s|
t1 · · · t|s| =W t1s1 · · · x̂i · · · s|s|
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Note that both equations actually can be realized by M-reduction

since the words start with identical letters. Thus, we only have to

realize an M-reduction to pass from s1t1 · · · ŷi · · · t|s| to t1s1 · · · x̂i · · · s|s|.
If ms,t = 1, we are done. Otherwise we apply the exchange condition

again: ...

Now let us drop the assumption that t is reduced. It

suffices to prove that t can be shortened by M-reductions. We

induct on the length of t. If t2 · · · t|t| is not reduced, we apply the

induction hypothesis to this subword.

So we assume that t2 · · · t|t| is reduced. Then we find

t1 · · · t|t| =W t2 · · · t̂i · · · t|t|

whence t2 · · · t|t| can be transformed into t1t2 · · · t̂it|t| by M-reductions.

(Both of these words are reduced, so we are in the case that we have

discussed already.) Now, we can shorten:

t1 · · · t|t|
M−→ t1t1t2 · · · t̂it|t|

M−→ t2 · · · t̂it|t|.

The final step is an operation of type (1). q.e.d.

Corollary 1.2.28. The pair (W,S) is a Coxeter system.

Proof. A relation is a word that evaluates to 1 in W. Therefore,

any relation can be transformed into the empty word by

M-reductions. However, these correspond to the relations of the

Coxeter presentation. q.e.d.
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